
 
 

 

 
Polymers 2022, 14, 981. https://doi.org/10.3390/polym14050981 www.mdpi.com/journal/polymers 

Review 

Heterogeneous Dendrimer-Based Catalysts 
Eduard Karakhanov 1, Anton Maximov 2 and Anna Zolotukhina 2,* 

1 Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, 
Russia; kar@petrol.chem.msu.ru 

2 Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia; max@ips.ac.ru 
* Correspondence: anisole@yandex.ru 

Abstract: The present review compiles the advances in the dendritic catalysis within the last two 
decades, in particular concerning heterogeneous dendrimer-based catalysts and their and applica-
tion in various processes, such as hydrogenation, oxidation, cross-coupling reactions, etc. There are 
considered three main approaches to the synthesis of immobilized heterogeneous dendrimer-based 
catalysts: (1) impregnation/adsorption on silica or carbon carriers; (2) dendrimer covalent grafting 
to various supports (silica, polystyrene, carbon nanotubes, porous aromatic frameworks, etc.), 
which may be performed in a divergent (as a gradual dendron growth on the support) or conver-
gent way (as a grafting of whole dendrimer to the support); and (3) dendrimer cross-linking, using 
transition metal ions (resulting in coordination polymer networks) or bifunctional organic linkers, 
whose size, polarity, and rigidity define the properties of the resulted material. Additionally, 
magnetically separable dendritic catalysts, which can be synthesized using the three 
above-mentioned approaches, are also considered. Dendritic catalysts, synthesized in such ways, 
can be stored as powders and be easily separated from the reaction medium by filtra-
tion/centrifugation as traditional heterogeneous catalysts, maintaining efficiency as for homoge-
neous dendritic catalysts. 

Keywords: dendrimers; nanocatalysis; heterogeneous catalysis; supramolecular chemistry; hy-
drogenation; cross-coupling 
 

1. Introduction 
Various catalytic processes, such as hydrogenation, oxidation, polymerization, etc., 

are of great importance in the modern petrochemistry and pharmaceutical industry [1–
6]. The last tendencies, concerning the advanced science and technology in catalysis, 
consist in the transition to nanoscale and nanoreactor supramolecular systems, providing 
higher reaction rates and selectivity due to the metal nanoparticle high specific surface 
area, size, geometry, and electron effects as well as of specific microenvironment metal 
complexes or nanoparticles [7–25]. To prevent metal nanoparticle sintering and agglom-
eration, and, as a consequence, catalyst deactivation during the process, various organic 
ligands, such as ionic liquids [26–35], simple amines, phosphines, and thiols [16,26–32], 
cyclodextrins [24,26,35–43], calixarenes [26,44–46], and polymers were suggested [24,26–
32,35,37–39,43,47–56]. Worthy to distinguish among the latter are dendrimers, 
three-dimensional globular macromolecules with a branched regular structure [10,57–
64]. 

Dendrimers were independently synthesized for the first time by Vögtle [65,66], 
Denkewalter [67], Tomalia [68], Fréchet [69] and Newkome [70] in the 1980s. Since that 
time, due to their unique structure and relative facility for modification, dendrimers have 
found a wide application in nanomedicine [25,61–63,71–78], light and electron-sensing 
devices [25,63,71,72,76,79–83], material science [10,24,25,61–64,72,76–80,82–86], and, es-
pecially, in nanocatalysis [10,24–26,28,60–64,72,79,81,87–95]. Hence there were developed 
materials, based on poly(amido amine) (PAMAM) (Tomalia type) [68,96], 
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poly(propylene imine) (Vögtle type) [66,81,97], poly(ether imine) (PETIM) [98–102], 
poly(ester amide) (Newkome type) [70,103], poly(benzyl/aryl ether) (Fréchet type) 
[68,104], poly(aliphatic ester) (Newkome type) [105], poly(carbosilane) [106], triazol or 
allyl-ended carbosilane arene-cored (Astruc type) [107,108], phenylazomethine (DPA) 
(Yamamoto type) [80,109], arylphosphite phosphazene cored (Caminade/Majoral-type) 
dendrimers, etc. (Figure 1) [110–113]. 
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Figure 1. Structures of some dendrimer types, used in nanocatalysis [10,63,64,71,72,90,93]. 

In the dendrimer structure, there is a core, branches, and periphery (terminal, end, 
or surface) groups (Figure 2) [10,26,63,64,68,71,79,80,85]. Herein PAMAM dendrimers of 
higher generations (G) are comparable in the size (up to 10 nm) with protein molecules 
[75,84,87,114]. 
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Figure 2. Dendrimer structure on the example of PPI dendrimer [26,71]. Adapted with permission 
of Springer Nature, from: Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Yu. 
S. Hydrogenation catalysts based on metal nanoparticles stabilized by organic ligand. Russ. Chem. 
Bull. Int. Ed. 2013, 62, 1465−1492 [26]. Copyright 2014, Springer. 

The main advantages for dendrimer application in catalysis are: (1) the possibility to 
sorb a well-defined quantity of metal through the coordination by donor node and end 
groups [10,26,60,62,70,81–83,91,93,115]; (2) the control of substrate selectivity via choice 
of the dendrimer appropriate generation [25,26,60,92,93,116–118] and/or by terminal 
group modification, specifying the dendrimer solubility in the reaction medium and 
substrate affinity [25,60,62,73,80,90,92,93,116–118]; (3) the recyclability of den-
drimer-based catalysts via fractional precipitation from solution or separation to another 
phase by the addition of appropriate, so-called “bad” solvents [60,89,93,108,115,119–130], 
or cooling the reaction mixture below upper critical solution temperature (UCST) or 
heating above low critical solution temperature (LCST) [63,71,77,89,90,94,115,131–135]. 
The active metallocenters in dendrimers can be located in a core or at the focal point 
(Figure 3a) [10,60,62,64,79,84,89,90,92,93,113,119–121,129,131,136–138], at nodes (Figure 
3b) [10,60,64,80,93,113,132,136,139,140], end functional groups (Figure 3c) 
[60,63,79,89,90,92–94,101,102,108,113,136,140–150], or in a cavity between dendrimer 
branches (Figure 3d) [10,60,62,64,90,93,94,115–118,125,126,136,139,150]. 
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(a) (b) (c) (d) 

Figure 3. Possible locations of active metallocenters in dendrimer: (a) core; (b) nodes; (c) end 
groups; (d) inner cavity [57,61,78,90–92,135]. 

In the end of 1990s and 2000s, Crooks and co-workers 
[10,25,26,28,60,62,64,91,92,115,117,151–154], on the one hand, and Kaneda and Mizugaki 
[10,26,28,62,64,91,92,116,155–157], on the other hand, suggested an approach for the 
synthesis of Cu, Pt, Pd, Rh, Ag, and Au nanoparticles (NP) of 1–3 nm in diameter, en-
capsulated inside the cavities of PAMAM or PPI dendrimers. This approach includes two 
steps (Scheme 1): (1) metal ion complexation with the dendrimer functional groups (both 
nodes and periphery); and (2) reduction by NaBH4 or KBH4 (sodium or potassium bo-
rohydride), resulting in nanoparticle or cluster formation. It can be applied for synthesis 
of both monometallic and bi- or polymetallic dendrimer-encapsulated nanoparticles 
[10,25,62,64,91,92,95,115,158]. 

M+ BH4
−

 
Scheme 1. The typical approach for two-step synthesis of dendrimer-encapsulated nanoparticles 
(DENs), using PAMAM, PPI, and other poly(alkyl amine) dendrimers as nanoreactor stabilizing 
ligands [57,91,115–117,151–157]. 

In the last case, one may distinguish three different sub-approaches (Scheme 2). The 
first one is co-complexation of two or more different metal ions simultaneously, resulting 
in alloy or core-shell nanoparticles depending on the reduction rate of each metal 
(Scheme 2) [10,62,64,88,91,92,95,115,131,154,158–166]. The second one is the subsequent 
complexation, including two repeated procedures of complexation followed by reduction 
for each metal and, as a rule, resulting in core-shell nanoparticles (Scheme 2) 
[10,62,64,88,91,95,115,154,158,167,168]. The third one is the so-called galvanic displace-
ment (Scheme 2), suggesting the use of oxidizable metal (e.g., Cu0) as a reducing agent for 
more noble metals with higher oxidation-reduction potential (e.g., Pt, Au), resulting in 
core/shell or alloy-type bimetallic nanoparticles [88,91,95,115,158,169,170]. 
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Scheme 2. Possible pathways for the synthesis of various type bimetallic DENs [88,95,115]. 

The driving force, providing the metal ion adsorption, uniform distribution, and 
well dispersion in the interior of the dendrimer molecule, further resulting in the for-
mation of metal nanoparticles and clusters with narrow size distribution, was here for the 
coordination and complex formation between metal ions and dendrimer amino groups 
[60,88,115–117,151,155,156]. Moreover, dendrimer-encapsulated nanoparticles and clus-
ters may be formed from dendritic metal complexes in situ under hydrogenation condi-
tions [140,148,171] or via partial reduction by NH2 end groups of PPI or PAMAM den-
drimers [128,148,171–177]. As a rule, due to the steric hindrances, the mean particle size 
decreased with the increase in dendrimer generation [91,116,155]. 

The similar approach, including metal ion complexation followed by reduction with 
NaBH4, was applied by Yamamoto’s group for the synthesis of ultra-small mono-, bi-, 
and polymetallic nanoparticles and clusters (of 0.5–1.5 nm in diameter), encapsulated 
into the cavities of poly(phenylazomethine) dendrimers [10,64,162,178–184]. It is worth 
noting that, in contrast to globular PPI, PAMAM, and other related poly(alkyl amine) 
dendrimers, the complexation of rigid poly(phenylazomethine) dendrimers (DPA) with 
metal ions proceeds radially, layer by layer, from core to periphery (Scheme 3) 
[10,64,80,109,166,178–185]. This is due to the rigid, conjugated, electron transfer structure 
of poly(phenylazomethine) dendrimers, resulting in higher electron density and, as a 
consequence, in higher proton association constants for core imine groups, as compared 
with periphery [10,80,109,162,183–185]. 
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Scheme 3. Radial complexation of poly(phenylazomethine) dendrimer with different metal ions 
and their further reduction to alloy-type nanoparticle [10,80,166,183–185]. 

With regard to bi- and polymetallic complexes, it implies the preferential complex-
ation of inner imine groups by metal ions with stronger association constants, whereas 
less affine metal ions coordinate outer imine sites [10,109,166,183–185]. Reduction of bi- 
and polymetallic DPA complexes with sodium borohydride afforded to formation of al-
loy-type nanoparticles and clusters [166,183–185]. 

Astruc et al. developed hybrid aryl-cored poly(carbosilane/triazol/aryl ether) den-
drimers, terminated with allyl, ferrocenyl, triazol, sodium sulfonate, or tri(ethylene gly-
col) moieties, and used them for the synthesis of Pd, Cu, and Au nanoparticles with so-
dium borohydride, MeOH, or sodium ascorbate as reducing agents [90,107,108,150,186–
191]. Herein, depending on the dendrimer size and generation, as well as on the metal to 
dendrimer ratio, small dendrimer-encapsulated nanoparticles (DENs) of 1–2 nm can be 
obtained for Pd with the narrower size distribution or dendrimer-stabilized nanoparti-
cles (DSNs) with the sizes of 1–4 nm for Pd, 3–12 nm for Au, and 4–20 nm for Ag (Figure 
4) [10,25,62,64,90,150,186–188,191]. The similar is also true for PPI, PAMAM, and other 
related poly(alkyl amine) dendrimers [60,115,116,156,168,192,193]. 

  

Figure 4. Dendrimer-stabilized (left) and dendrimer-encapsulated nanoparticles (right) 
[25,90,150,186–188,191,193]. 

Dendrimer-stabilized core nanoparticles (or nanoparticle-cored dendrimers, NCD) 
were mostly synthesized in the presence of Fréchet type poly(aryl ether) or poly(aryl es-
ter) dendrons with the donor phosphine, thiol, hydroxyl, or amino groups at the focal 
point, resulting in so-called monolayer protected cores (MPC) (Figure 5) [10,62,84,89,119–
121,129,137,194–200]. The synthesis was usually carried out in the organic solvent (tolu-
ene or THF) as a metal source and reducing agent, respectively; the combinations of eas-
ily decomposed organic metal salt (e.g., Pd(OAc)2) or complex (e.g., [Ru(Cumene)Cl2]2 or 
[Ru(COD)(COT)]) and molecular hydrogen [119,120,129], or chloride complex salt or acid 
(e.g., K2PdCl4, HAuCl4 or H2PtCl6), often additionally stabilized by amphiphilic ionic 
liquid (e.g., [N(C8H17)4]Br), and sodium borohydride [121,137,194–200], were used. An-
other approach implied the modification of nanoparticles, already stabilized by bifunc-
tional ligands (e.g., Au NPs, stabilized by 11-mercaptoundecanoic acid), with hydroxyl 
poly(aryl ether) dendrons of various generations (Scheme 4), hence providing the nano-
particle uniform and narrow in size distribution [201]. 
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Figure 5. Pd-cored nanoparticle, coated with thiol poly(aryl ether) dendrons [26,121]. Reprinted 
(adapted) with permission of American Chemical Society, from: Gopidas, K. R.; Whitesell, J. K.; 
Fox, M. A. Synthesis, Characterization, and Catalytic Applications of a Palladi-
um-Nanoparticle-Cored Dendrimer. Nano Lett. 2003, 3, 1757–1760 [121]. Copyright 2003, American 
Chemical Society. 
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Scheme 4. NCD synthesis via post-functionalization method [62,201]. Reprinted (adapted) with 
permission of American Chemical Society, from: Shon, Y.-S.; Choi, D.; Dare, J.; Dinh, T. Synthesis of 
Nanoparticle-Cored Dendrimers by Convergent Dendritic Functionalization of Monolay-
er-Protected Nanoparticles. Langmuir 2008, 24, 6924–6931 [201]. Copyright 2008, American Chem-
ical Society. 

Herein the mean particle size was strongly dependent on the nature of the donor 
group in the dendron focal point, reaching 1–6 nm for Au and Pd nanoparticles, coated 
with more affine thiol or phosphine dendrons [121,129,194–198], thus revealing the wider 
particle size distribution in comparison with PAMAM or PPI dendrimer-encapsulated 
nanoparticles [91,116,151,156], and 2–25 nm for Au-cored dendrimers with hydroxyl 
stabilizer at the focal point [199], and are thus comparable with monometallic Pd and Au 
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nanoparticles, stabilized by PAMAM, PPI [168,192], or poly(carbosilane/triazol/aryl 
ether) dendrimers [188,191]. Pd nanoparticle core size decreased with the increase in the 
dendron generation [129], whereas Au and Ag nanoparticle core size increased [195–
199,202], with the distribution, depending not only on the dendron generation but also on 
the reduction conditions [199]. 

Among the other nanoparticle-cored dendrimers, the synthesis of dendrimer core 
monometallic Pt and bimetallic core/shell Pt[Au] nanoparticles was also reported, stabi-
lized by poly(aryl ether) dendrons with tris(acetic acid) ammonium moieties at focal 
points (Figure 6) [62,200,203]; of Au nanoparticles, stabilized by thiol poly(L-lysine) 
dendrons (Figure 7) [83,204]; of core/shell CdSe/ZnS nanoparticles, stabilized by thi-
ol-focal allyl-terminated poly(ethylene imine)/poly(amido amine) dendrons, which fur-
ther were linked together by metathesis reaction (Figure 8) [84,205,206]; of monometallic 
Pd and bimetallic PtPd alloyed nanoparticles, stabilized by PAMAM dendronized 
4-(aminomethyl pyridine), etc. [131,207]. In the last case, both organic metal sources 
([PdCl(C3H5)]2 and PtCl2(PhCN)2 in CH2Cl2) and reducing agent (LiB(C2H5)3H) were used, 
resulting in mono- or bimetallic nanoparticles with strongly reproducible mean sizes for 
the same dendron generation and periphery and decreasing with the increase in the 
dendron generation and the length of terminal moiety (Scheme 5) [131,207]. 
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drogenation of nitrobenzenes catalyzed by platinum nanoparticle core-polyaryl ether trisacetic acid 
ammonium chloride dendrimer shell nanocomposite. J. Mol. Catal. A: Chem. 2006, 260, 4–10 [200]. 
Copyright 2006, Elsevier. 
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Thus, synthesized metal complexes and nanoparticle dendrimer-based catalysts, 
both monometallic and bi/polymetallic, were successfully applied in various processes, 
such as hydrogenation of alkenes, phenols, aromatic and heterocyclic compounds, 
semihydrogenation of alkynes, dienes and polyenes, hydrogenation and hydroamination 
of carbonyl compounds, nitroarene reduction, oxygen reduction, hydroformylation, al-
kyne-azide cycloaddition, allylic addition, asymmetric synthesis and catalysis, Wacker 
oxidation, C–H, O–H, and sulfide oxidation and epoxidation, olefin oligomerization and 
polymerization, metathesis, oxidative coupling, and various cross-coupling reactions 
since the second half of the 1990s until the end of the 2010s (see Table 1) [10,24–
26,60,62,64,72,79,84,88–94,113–115,136,145]. Herein reaction turnover numbers (TON) 
reached 2700000, while turnover frequencies (TOF) exceeding 28,000 h−1 [186,188]. 
Moreover, bi- and polymetallic catalysts, both metal complex [109] and nanoparticle 
[131,159,160,163,164,166,170,183,203], exhibited the enhanced efficiency due to the metal 
synergism and changed electron properties and geometry of nanoparticles, clusters, and 
complexes [10,62,109,115,164,183,203,208–213]. 

Table 1. Application of metal complex and nanoparticle dendrimer-based material in catalytic 
processes. 

Entry Process Metal Complex Cat-
alysts [Refs.] 

Nanoparticle Cata-
lysts [refs.] 

1 Hydrogenation of alkenes [119,120,139,214–218] 

[116,117,123,128,129,1
37,150,152,161–

163,165,166,178,219,22
0] 

2 Hydrogenation of phenols, aro- [221] [122,127] 
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matic, and heterocyclic compounds 

3 Semihydrogenation of alkynes, 
dienes, and polyenes 

[140,148] 
[116,123,128,131,150,1
56,159,160,164,171,193

,207] 

4 
Hydrogenation and hydroamina-

tion of carbonyl compounds [222] [179,203,217,223] 

5 Nitroarene reduction  
[166,169,170,186,187,1
91,192,200,202,203,219

,224–229] 
6 Oxygen reduction  [153,230] 
7 Hydroformylation [146,217,231]  
8 Alkyne-azide cycloaddition [188,190,232] [233] 
9 Allylic addition [132,234–238] [157] 

10 Asymmetric synthesis and catalysis [238–240]  
11 Wacker oxidation [124,147,241]  
12 C–H, O–H and sulfide oxidation [138,242–244] [180,183,245,246] 
13 Epoxidation [247–253]  

14 Oligomerization and polymeriza-
tion [254–266]  

15 Metathesis [264–270]  
16 Oxidative coupling [109,271–273]  

17 Cross-coupling [101,108,130,132,142–
144,274] 

[118,121,125,126,129,1
86,189,275–278] 

Depending simultaneously on the reaction type, dendrimer nature, and catalytic 
centers location, as well as on the overall weight of the stabilization or steric factors from 
the dendrimer ligand, the so called positive dendritic effect can be observed, appearing in 
the enhanced catalyst performance with the increase in the dendrimer generation [79–
90,92,94,113,115,120,121,129,131,132,136,141,145,146,149,190,193,195,207,215,216,218,221,2
27,242,247,248,252,255,258,261–263,271–274,279–283] or the negative dendritic effect, re-
spectively, and the drop in the catalytic activity with the increase in the dendrimer gen-
eration or substrate size 
[60,90,91,94,101,116,117,122,124,126,130,132,136,142,143,145,147,148,150,187,193,200,214,2
27,234,271,281–284]. 

Moreover, the dendrimer nature was found to have an essential influence on the 
selectivity in the hydrogenation of alkynes and dienes in the presence of Pd-containing 
catalysts. When Pd nanoparticle-cored Fréchet type poly(aryl ether) dendrimers were 
used, both covalently attached to the Pd surface [137] or stabilizing via phosphine focal 
point [129], C≡C triple bonds or conjugated C=C double bonds underwent exhaustive 
hydrogenation. Vice versa, alkynes and dienes could be selectively converted to corre-
sponding monoenes in the presence of Pd catalysts (both mono- and bimetallic), based on 
triazol [150], PAMAM [131,148,159,160,207,241] and, especially, on PPI dendrimers 
[116,128,140,156,171,193,241], with the total selectivity on alkenes increased with the in-
crease in the dendrimer generation [116,148,193]. It was due to the poisoning effects of 
pyridyl moieties at the dendron focal point and/or dendrimer node donor tertiary amino 
group, occupying a part of adsorption sites and thus enriching the nanoparticle surface 
with electrons, facilitating the de-adsorption of alkene formed and interfering with its 
possible further re-adsorption [4,128,131,171,177,193,207,285–287]. Herein, the product 
distribution in semi-hydrogenation of alkynes and, especially, dienes, was strongly af-
fected by metal composition of the catalyst active phase; the dendrimer nature, influ-
encing the metal surface electron properties, as well as substrate and intermediate ad-
sorption features; and, finally, the substrate structure (including the accessibility of C=C 
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double bonds) and electronic properties (the presence of electron donor (EDG) or elec-
tron withdrawing groups (EWG)) [128,131,150,171,193,207,288,289]. 

However, in spite of their remarkably high activity, selectivity, and recyclability 
[121,130–132,190,234,269], homogeneous dendrimer-based catalysts can be stored and 
used mostly as colloidal solutions, undergoing gradual deactivation due to metal leach-
ing and precipitation from the dendrimer stabilizing micelles [118,126,164,186,187,278] 
or, otherwise, should be prepared in situ [130]. As a consequence, since the end of the 
1990s, various approaches for heterogenization of dendrimer-based catalysts have been 
suggested. These heterogenized dendritic catalysts are supposed to exist as powders, 
easily precipitate, and isolate from the reaction medium using filtration or centrifuga-
tion—similar to conventional heterogeneous catalysts. In some cases, homogeneous mi-
cellar dendritic catalysts, initially obtained as solids, may be used as heterogeneous in the 
“bad” solvent medium [121]. Immobilization of dendritic catalysts, using various heter-
ogeneous carriers, such as silica, polystyrene, etc., allows to significantly enhance their 
stability and recyclability. 

Presently, three main approaches to the synthesis of immobilized heterogeneous 
dendrimer-based catalysts have been developed and are further considered in the pre-
sent review. 

The first is the adsorption of metal-containing dendrimers or dendrons on the sur-
face of amorphous silica, carbon, or inside channels in channels of mesoporous materials 
via hydrophobic, electrostatic, or π–π interactions [86]. This approach is considered in 
Section 2. 

The second approach supposes the covalent grafting of dendrimers or dendrons on 
polymers, amorphous silica, carbon nanotubes, or inner walls of mesoporous materials 
[86]. It is considered in Section 3. 

The third approach, including the dendrimer cross-linking, using various transition 
metal ions, as well as bi- or trifunctional agents, polymers, etc., [241], is discussed in Sec-
tion 4. 

Additionally, magnetically separable dendritic catalysts [62], which may be de-
signed using all three approaches mentioned above, are considered in Section 5. 

2. Non-Covalent Immobilization of Dendritic Catalyst 
One of the simplest methods for the immobilization of homogeneous dendritic cat-

alysts, developed by Somorjai [10,64,290,291] and Yamamoto [10,64,178], implies the 
deposition of colloidal DEN solutions (mono- or bi/polymetallic) onto the various het-
erogeneous carriers, such as silica (both amorphous and mesoporous), zirconia, and 
carbon materials, by the wetness impregnation method (Scheme 6). It is worth noting that 
the said approaches suppose the remaining of dendrimers inside the SBA-15 channels or 
on the carbon surface using electrostatic, hydrogen bonding, hydrophobic, or π–π inter-
actions, hence preventing nanoparticle agglomeration sintering [178,292,293]—in con-
trast to previous works, where dendrimers were used just as templates for nanoparticle 
and pore formation and then removed under calcination [26,169,290,291,294–301]. Thus, 
well dispersed and tiny nanoparticles of 1.0–2.5 nm in diameter inside the SBA-15 chan-
nels [292,293] or subnanoclusters with the sizes of 0.5–1.5 nm, deposited onto mesopo-
rous carbon [178,180,183,184], were obtained. 
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Scheme 6. Immobilization of dendrimer-encapsulated nanoparticles inside a mesoporous carrier 
[292]. Reprinted and adapted with permission of American Chemical Society, from: Huang, W.; 
Kuhn, J. N.; Tsung, Ch.-K.; Zhang, Ya.; Habas, S. E.; Yang, P.; Somorjai, G. A. Dendrimer Templated 
Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activ-
ity for Ethylene and Pyrrole Hydrogenation. Nano Lett. 2008, 8, 2027−2034 [290]. Copyright 2008, 
American Chemical Society. 

2.1. Impregnation/Adsorption on Silica-Based Carriers 
Using the above-mentioned approach, Somorjai and co-workers synthesized highly 

active Pt and Rh nanocatalysts for ethylene (at room temperature and 10 atm. of H2) and 
pyrrole hydrogenation, including ring-opening reaction (at 60–150 °C and 50 atm. of H2) 
with turnover frequencies (TOF) up to 4.3 s−1 (~15,500 h−1) (Figure 9) [292,302]. Pd, Pt, and 
Rh nanoparticles, encapsulated into PAMAM dendrimers and supported on SBA-15, 
appeared highly active in the reversible dehydrogenation/hydrogenation of 
N-heterocycles, such as (tetrahydro)quinolines and (dihydro) indoles at 130/60 °C, re-
sulting in the quantitative yields within 24 h [303]. Furthermore, PAMAM den-
drimer-encapsulated Pt and Rh nanoparticles, supported on SBA-15, were successfully 
applied for liquid (at 20–80 °C) and gas-phase (at 200−225 °C) hydrogenative 
ring-opening and isomerization of methylcyclopentane (MCP) and alkyl/aryl cyclopro-
pane (Figure 9) [304,305], whereas Pd nanoparticles, synthesized in the same manner, 
favored MCP dehydrogenation and ring enlargement to benzene at 250−275 °C, giving 
quantitative conversions and TOF values up to 335 h−1 [304], as well as effectively cata-
lyzed electrophilic arylation of indole and one-pot tandem dehydrogenation/arylation of 
indoline at 60–130 °C (Figure 9) [303]. Herein, increases in the mean particle size and 
dendrimer generation lowered the reaction activation energy, thus favoring the en-
hanced catalyst performance [305]. 
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Figure 9. Reactions, catalyzed by PAMAM dendrimer-encapsulated nanoparticles, immobilized in 
the channels of SBA-15 mesoporous material [64,293]. 

Supported on SBA-15, Pt, Pd, and Au nanoparticles encapsulated in PAMAM den-
drimers, in the presence of PhICl2 as an oxidative catalyst activator, exhibited high activ-
ity, just slightly inferior to that for homogeneous catalysts PtCl2 or AuCl3, in the electro-
philic cycloaddition of ortho-alkynyl arenes, phenols, anilines, benzyl amines, or benzoate 
esters to C≡C triple bond, thus forming 5- or 6-membered heterocycles with the yields of 
45–98%, depending on the substrate structure (20–100 °C, 15 h, toluene, Ar) (Figure 9) 
[306–309]. It should be noted that Pt@PAMAM-G4/SBA-15 appeared to be a much more 
stable catalyst in comparison with its analogue, stabilized by poly(vinyl pirrolidone) 
(PVP), and maintained its efficacy at reuse [306]. 

Moreover, the catalyst Au@PAMAM-G4/SBA-15 revealed the best performance and 
well stability in the cyclopropane synthesis via alkene-alkyne cycloaddition (20–70 °C, 12 
h, toluene) (Figure 9) [310] and Hayashi-Ito aldol cycloaddition between aryl aldehyde 
and methyl isocyanoacetate (20 °C, PhICl2, 18 h, toluene), thus surpassing conventional 
homogeneous catalysts, based on Au carbene complexes (Figure 9) [311]. In the last case 
it was additionally established that larger pore size of the heterogeneous carrier favored 
the preferential trans-product formation, whereas smaller pore size constrained 
cis-product formation respectively, with a common decrease in the reaction rate for +I 
and –M substituents in the aryl aldehyde molecule, thus retarding electrophilic attack of 
the aldehyde group to enolate deprotonated forms of isocyanoacetate (Figure 10) [311]. 
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Figure 10. A supposed intermediate structure in Hayashi-Ito aldol cycloaddition to isocyanoacetate 
in the presence of PAMAM dendrimer-encapsulated gold nanoparticles, immobilized in the 
channels of SBA-15 mesoporous material [311]. 

It is worthy to note that heterogenized catalysts, based on PAMAM den-
drimer-encapsulated nanoparticles loaded to mesoporous SBA-15 silica, can be easily 
adopted not only for batch, but also to continuous-flow conditions, exhibiting well 
time-on-stream and recycling properties [307,309,310]. 

The similar approach was suggested for the synthesis of PAMAM den-
drimer-encapsulated Ir nanoparticles, immobilized on amorphous SiO2, and further ap-
plied for the hydrogenation of 2-nitrobenzaldehyde under the mild conditions (30 °C, 1 
atm. of H2) [227]. Herein, the conversion of 98% was achieved within 1 h, and only the 
NO2 group in the substrate structure was subjected to hydrogenation. The increase in 
mean particle size from 0.9 to 1.5 nm resulted in the increased portion from 17% to 42% of 
anthranil, the product of 2-nitrobenzaldehyde semihydrogenation followed by a heter-
ocyclization-dehydration reaction between the intermediately formed NHOH group and 
the C(=)OH group (Scheme 7), whcih was attributed to more efficient dissociative ad-
sorption of H2 on smaller Ir clusters [227]. 
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Scheme 7. Hydrogenation of 2-nitrobenzaldehyde in the presence of Ir@PAMAM-G6/SiO2 [227]. 

Meijboom et al. proposed additional post-treatment of PAMAM den-
drimer-encapsulated Ru nanoparticles, immobilized on amorphous silica, with ionic liq-
uid solution; thus, the so-called solid catalysts with an ionic liquid layer (SCILL) were 
obtained [312,313]. The mean particle size was found as 2.1–2.4 nm, decreasing with the 
increase in the dendrimer generation from G4 to G6. The catalysts synthesized were 
studied in the hydrogenation of citral (90–130 °C, 10–30 atm. of H2, cyclohexane, 4 h) [312] 
and toluene (110 °C, 30 atm. of H2, cyclohexane, 4 h) [313]. The catalyst activity and se-
lectivity were found to be strongly dependent on both the dendrimer generation and the 
ionic liquid nature, as well as on the reaction conditions used. 

The main product of citral hydrogenation was citronellal (Scheme 8) [312]. The latter 
was found out to undergo cyclization to isopulegol—especially at longer reaction times, 
elevated temperatures, and decreases in the dendrimer generation, which authors ex-
plained by thermal decomposition of PAMAM dendrimers, taking place at temperatures 
of 100–150 °C [115,312,314]. The best results (the selectivity on citronellal of 100% at citral 
conversion of 50% after 4 h) were achieved for the catalyst, based on the dendrimer of the 
5th generation, and under the use of [BMIM][NTf2] ionic liquid as catalyst coating [312]. 
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Scheme 8. Possible pathways of citral hydrogenation [312]. 

As for partial toluene hydrogenation, the selectivity on methylcyclohexenes at 110 
°C and 30 atm. of H2 in the presence of [EMIM][NTf2] ionic liquid did not exceed 12%, 
21%, and 16% at conversion of 9–13% for the catalysts, based on PAMAM dendrimers of 
the 4th, 5th, and 6th generations, respectively (Figure 11a) [313]. Further, for the catalysts, 
based on PAMAM dendrimers of the 4th, 5th, and 6th generations, the selectivities on 
methylcyclohexenes at conversions of 69–73% under the same conditions reached 8.5%, 
7.5%, and 6% respectively (Figure 11b) [313]. Thus, one can observe, that in the beginning 
of the reaction, the selectivity on methylcyclohexenes initially increases from the G4 to G5 
catalyst and then decreases from the G5 to G6 catalyst (Figure 11). The authors explained 
the results obtained in terms of mean particle size, increasing with the increase in the 
generation of dendrimer [313,315] 
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Figure 11. Selectivity vs. conversion plots for Ru@PAMAM/SiO2 SCILL catalysts in the presence of 
[EMIM][NTf2] ionic liquid at 110 °C, 30 atm. of H2 [313]: (a) in the beginning of the reaction (0–10 
min.); (b) at conversions of 9–13%, 37–52%, and 69–73%. 

It should also be noted that C=C double bonds more easily undergo hydrogenation 
in the presence of basic promoters [312,316]. The basicity of the PPI or PAMAM den-
drimer increased with its generation and the number of terminal primary and node ter-
tiary amino groups increase [317–319]. Hence, the results, obtained after partial hydro-
genation of toluene in the presence of Ru nanoparticles, encapsulated into PAMAM 
dendrimers and supported on silica [313], appeared to be noticeably inferior to those 
obtained for conventional heterogeneous catalysts, especially containing the bimetallic 
RuZn phase, supported on the acid solid oxide, such as ZrO2 or CeO2 [315,320–323]. 

2.2. Impregnation/Adsorption on Carbon-Based Carriers 
Yamamoto et al. developed catalysts based on DPA-encapsulated subnanoclusters, 

supported on graphitized mesoporous carbon (GMC), Ketjenblack (KB), and zirconia, for 
effective hydrogenation and oxidation reactions (Figure 12) [10,64,178–180,183,245,246]. 
Herein, carbon supports, such as GMC or KB, provided effective catalyst adsorption and 
stability due to the π–π interactions between aromatic fragments of dendrimer and car-
rier, thus preventing metal nanocluster post-aggregation [178,179,245]. 
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Figure 12. Reactions, catalyzed by DPA-encapsulated subnanoclusters, immobilized on zirconia or 
carbon supports [10,64]. 

In particular, Pt12 subnanoclusters with the mean diameter of 0.9 nm appeared 
highly active in the hydrogenation of various alkenes, including unreactive substrates, 
such as 4-chlorostyrene and, especially, 4-trifluoromethylstyrene [178], as well as supe-
rior poison tolerance to amines in the reductive hydroamination of aldehydes [179]—in 
contrast to 2.2. nm Pt nanoparticles, synthesized in the absence of the dendrimer tem-
plate. TOF values up to 5850 h–1 in the hydrogenation of alkenes and quantitative yields 
of hydroamination products were achieved in the presence of the heterogeneous den-
drimer-based catalyst Pt12@DPA-G4/GMC, already under the ambient conditions within 
5 h (25 °C, 1 atm. of H2, MeOH) [178,179]. 

In the presence of tert-butylhydroperoxide under ambient conditions (25 °C, 6 h, 
n-decane) [245] or molecular oxygen (160 °C, 10 atm. of O2, 5 h) [180] DPA-encapsulated 
Pt subnanoclusters, immobilized on graphitized mesoporous carbon or Ketjenblack, af-
forded the oxidation of secondary alcohols, such as 1-phenylethanol [245] or aromatic 
hydrocarbons, such as toluene, respectively [180]. In the last case, the mixture of benzyl 
alcohol, benzaldehyde, and benzoic acid was formed, and the maximum TOF values 
reached up to 3300 h–1 [180]. It was established that oxidation, in both cases, proceeded 
via radical-chain mechanism, depending on cluster/particle size and metal nature [180]. 
In particular, larger sized nanoclusters (>30 atoms) promoted the cleavage of the O–O 
bond of the adsorbed O2 or tert-butylhydroperoxide molecule, thus providing the charge 
transfer to the adsorbed substrate molecule [180,245]. At the same time, electron-deficient 
subnanoclusters (12–19 atoms) of less oxophilic metals, such as Pt, tended to one-end 
coordination of O–O bond, thus providing the formation of peroxide radicals on the 
surface with the subsequent one-electron transfer followed by C–H bond cleavage, hence 
initiating toluene radical oxidation processes similar to homogeneous or nanoheteroge-
neous molecular oxidation catalysts [180,324,325]. More oxophilic metals, such as Ru or 
Cu, and vice versa, were prone to form partial surface oxides, resulting in a drastic de-
crease in the catalyst activity, with TOF values not exceeding 100 h–1 [180]. 

CunOx subnanoclusters, encapsulated in phenyl azamethyne dendrimers and im-
mobilized onto ZrO2, appeared to be much more active catalysts under the same condi-
tions [246]. The catalyst efficiency and TOF values, respectively, increased with the de-
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crease in cluster size, reaching up to 720 h–1, which was due to the increased polarization 
of Cu–O bonds [246]. Nonetheless, the full conversion of toluene to benzoic acid was not 
completed, even after 128 h [246]. Introduction of additional metals, such as Pt and Au, in 
the cluster structure resulted in the essential increase in the catalyst activity in the oxida-
tion of aromatic hydrocarbons (e.g., indane) by molecular oxygen, even under much 
milder conditions (90 °C, 1 atm. of O2, 6 h) [183]. The maximum TOF values, exceeding 
600 h–1, were achieved for trimetallic CuPtAu clusters, that authors explained in terms of 
synergistic effects in alloy, arising from stabilization of Cu (0) and Cu (I) species by Pt, 
Ag, and Au, preventing the further oxidation of the former to Cu (II) [183,326,327]. It was 
established that oxidation of indane to 1-indanone proceeded mainly through the hy-
droperoxide stage, accompanied by Cu (0)/Cu (I) one-electron transitions on the interface 
between Cu, Au, and Pt [183]. 

2.3. Non-Covalent Immobilization on Modified/Coated Surfaces Using Hydrophobic Interactions 
or Hydrogen Bonding 

Crooks and Stevenson suggested a method for the immobilization of PAMAM 
dendrimer-encapsulated monometallic Pd and Pt, or bimetallic PtPd nanoparticles on 
graphite or gold surfaces, using electrostatic interactions and hydrogen bonding 
[10,64,91,328,329]. For gold electrodes, α,ω-mercaptoundecanoic acid (MUA) was used as 
a non-covalent linker, and self-organization of near-surface charged monolayers took 
place (Figure 13) [26,91]. In the case of graphite electrodes, these interactions occurred 
between dendrimer terminal NH2 groups and -C(=O)OH groups, arising from defects on 
the graphite surface [328]. Hydrogen bonding provided the effective adsorption of PA-
MAM dendrimers, impregnated with Pt nanoparticles, on the surface of nitrogen-doped 
single-wall carbon nanotubes (SWCNT), synthesized by chemical vapor deposition 
(CVD) method (Scheme 9) [329]. Thus, obtained systems proved their efficacy in the 
electrocatalytic oxygen reduction, that could effectively proceed only for small nanopar-
ticles (<2 nm in diameter), and the maximum activity was found for bimetallic nanopar-
ticles Pt150Pd30, encapsulated into PAMAM dendrimers of the 6th generation, adsorbed 
on the graphite electrode [64,328]. 
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Figure 13. Immobilization of PAMAM dendrimer-encapsulated palladium nanoparticles on the 
gold surface via electrostatic interactions, using a non-covalent MUA linker [26,92]. Reprinted by 
permission of Springer Nature, from: Karakhanov, E.A.; Maksimov, A.L.; Zolotukhina, A.V.; Kar-
dasheva, Yu. S. Hydrogenation catalysts based on metal nanoparticles stabilized by organic ligand. 
Russ. Chem. Bull. Int. Ed. 2013, 62, 1465−1492 [26]. Copyright 2014, Springer. 
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Replacement of 11-mercaptoundecanoic acid with 
11-mercaptoundecyl-1-tri(ethylene glycol) and 2-(11-mercaptoundecyl-1-hexa(ethylene 
glycol)) acetic acid, modified by 6-(maleic acid imide)hexanoic acid hydrazide, followed 
by covalent attachment to PAMAM dendrimers impregnated with Au nanoparticles, 
resulted in a high stable sensor for selective insulin detection with a concentration limit 
as low as 0.5 pM (Scheme 10) [62,330]. 
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Scheme 10. PAMAM dendrimer-encapsulated Au nanoparticles, immobilized on the gold support 
via linker: hexa(ethylene glycol) carboxylic acid-terminated thiol, modified 
N-(ε-maleimido-caproic acid) hydrazide [62,330]. Reprinted and adapted with permission of 
American Chemical Society, from: Frasconi, M.; Tortolini, C.; Botre, F.; Mazzei, F. Multifunctional 
Au Nanoparticle Dendrimer-Based Surface Plasmon Resonance Biosensor and Its Application for 
Improved Insulin Detection. Anal. Chem. 2010, 82, 7335–7342 [330]. Copyright 2010, American 
Chemical Society. 

The more sophisticated approach was applied by Ghiaci’s group for the synthesis of 
bimetallic Mn/Co heterogeneous catalyst for p-xylene oxidation [324,331]. The negatively 
charged bentonite surface was treated here by cetyl pyridinium bromide; the hydropho-
bic tails of the latter retained the focal dodecyl moieties of PAMAM dendrons of the 1st 
generation, modified with salicylic aldehyde on the periphery (Figure 14) [331]. This bi-
layer system provided the location of Mn2+ and Co2+ ions, coordinated on the dendron 
salicylidene imine end groups, easily accessible for the p-xylene substrate. Hence, under 
the optimal conditions (KBr, AcOH, 190 °C, 17 atm. of O2, 3 h), a near to quantitative yield 
of terephthalic acid (97%) was provided. Nonetheless, in spite of the use of strongly co-
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ordinating chelating dendritic ligands, the catalyst synthesized appeared unable to ef-
fectively retain Mn2+ and Co2+ ions, resulting in the sharp downfall for the yield of ter-
ephthalic acid at recycling [331]. 
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Figure 14. PAMAM dendron-assisted non-covalent immobilization of Mn2+/Co2+ catalyst for 
p-xylene oxidation on the bentonite surface [324,331]. Reprinted with permission of Springer Na-
ture, from: Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Vinokurov, V. A. Oxidation of 
p-Xylene. A Review. Russ. J. Appl. Chem. 2018, 91, 707−727 [324]. Copyright 2018, Springer Nature. 

3. Covalent Immobilization on Heterogeneous Supports 
Heterogeneous catalysts, based on PAMAM, PPI, poly(aryl ether), poly(ester am-

ide), etc., dendrimers, and dendrons covalently attached to various preliminary func-
tionalized insoluble supports, such as amorphous and mesoporous silica, polystyrene, 
carbon nanotubes, etc., have been developed since the end of 1990s 
[10,25,26,62,64,90,92,93]. Herein, dendrimer end group post-modification and metal 
deposition (both complex formation and nanoparticle encapsulation) is performed in the 
same way, as for homogeneous catalysts [26,146–149,171,193]. 

Covalent dendrimer/dendron grafting may be realized in both divergent (otherwise 
called “graft-from”) and convergent ways (otherwise called “graft-to”). The first one as-
sumes the gradual, layer by layer, generation by generation dendron growth from the 
focal point, which is the functional group on the carrier surface (Scheme 11) 
[10,25,26,62,63,71,82,83,86,92,113,114,147,324]. The convergent approach, in its turn, im-
plies the covalent attachment of the ready-synthesized dendrimers or dendrons to the 
preliminary functionalized support, and can be performed through the dendron focal 
point or dendrimer end groups [10,25,62,63,74,92,102,114,171,193]. Both of these ap-
proaches are further considered in the present review. 
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Scheme 11. Covalent dendron immobilization on silica surface via divergent approach on the ex-
ample of PAMAM dendrimer [26,86,92,148,332]. Reprinted by permission of Springer Nature, 
from: Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Yu. S. Hydrogenation 
catalysts based on metal nanoparticles stabilized by organic ligand. Russ. Chem. Bull. Int. Ed. 2013, 
62, 1465−1492 [26]. Copyright 2014, Springer. 

3.1. Divergent Dendrimer Grafting 
3.1.1. Divergent Dendrimer Grafting on Silica Supports 

Silica appears to be the conventional support for dendron grafting; as usual, it was 
preliminarily activated by (3-aminopropyl)triethoxysilane (APTES) treatment, followed 
by repeated divergent dendron growth (Scheme 12) [92,93]. Thus, Chung and Rhee de-
veloped heterogeneous catalysts, based on PAMAM dendrons of different generations, 
attached to silica through 3-aminopropyl spacer, and applied them in the enantioselec-
tive addition of diethylzinc to benzaldehyde (0 °C, toluene, 48 h) [92]. The catalyst chi-
rality was provided by the decoration of dendron end groups with (1R, 2S)-ephedrine 
(Figure 15). It was found out that at low dendron density, the catalyst activity, selectivity, 
and enantiomeric excess (ee) increased from G0.5 to G3.5 dendrons, revealing the posi-
tive dendritic effect, and then dropped back, when passing to the G4.5 dendron. Herein, 
SiO2-G3.5 catalyst in its performance was just slight inferior to homogeneous one and 
could be recycles at least three times without significant loss in effectiveness [92]. 
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Scheme 12. The synthesis of Mn (II) salen complex catalyst based on silica-grafted PAMAM den-
dron [252]. 
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Figure 15. G3.5 (1R, 2S)-ephedrine-terminated PAMAM dendron, covalently immobilized on the 
silica surface [92]. Adapted with permission of Springer, from: Chung, You.-M.; Rhee, H.-K. In-
ternal/External Use of Dendrimer in Catalysis. Korean J. Chem. Eng. 2004, 21, 81–97 [92]. Copyright 
Springer, 2004. 
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Kawi et al. synthesized epoxidation catalyst, based on Mn (II) complexes with sali-
cylidene-terminated PAMAM dendrons of the 0–4th generations, grafted to silica 
(Scheme 12) [252]. The yields of styrene oxide reached 20–75% after 1 h at 0 °C, using 
meta-chloroperbenxoic acid (m-CPBA) as an oxidant and N-methylmorpholine N-oxide as 
a co-oxidant in CH2Cl2 medium, rather than increasing with the increase in the dendron 
generation. Thus, the strong positive dendritic effect was observed. Nonetheless, the use 
of bulky substrates with an internal C=C double bond resulted in the noticeable decrease 
in the catalyst activity and reaction rate, which was typically for sterically crowded 
dendrimers of higher generations [60,91,117]. 

The similar approach for dendrimer immobilization was applied by Wu and Zhang 
to design hollow capsule material, impregnated with gold nanoparticles [26,333]. Herein, 
silica gel particles of ~260 nm in diameter, coated with grafted PAMAM dendrons of the 
4th generation and already containing Au0 nanoparticles with the mean particle size of 
2.3 nm, uniformly distributed over the material surface, were treated with poly(sodium 
4-styrenesulfonate) and poly(allylamine hydrochloride), forming polyelectrolyte layers. 
Subsequent removal of silica core in the presence of HF resulted in hollow capsules of 
~200 nm in diameter (Scheme 13). Thus, the synthesized catalyst proved its effectiveness 
in the 4-nitrophenol reduction, giving the quantitative yields already within 30 min at 
room temperature and was reused 5 times without significant loss in activity [333]. 
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Scheme 13. The synthesis of dendrimer-based hollow capsule material [26,334]. Adapted with 
permission of Springer Nature, from: Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; 
Kardasheva, Yu. S. Hydrogenation catalysts based on metal nanoparticles stabilized by organic 
ligand. Russ. Chem. Bull. Int. Ed. 2013, 62, 1465−1492 [26]. Copyright 2014, Springer. 

Alper, with co-workers, suggested the decoration of grafted PAMAM dendron pe-
riphery by palladium or rhodium phosphine complexes, as well as by palladium PCP 
pincer complexes, through the spacers of various lengths (C2, C6, C12) (Figure 13) [93,146–
149,335]. Thus, synthesized catalysts were successfully applied in the selective hydro-
genation of dienes and polyenes [148], oxidation of cyclic and terminal alkenes [147], 
hydroformylation [146,335], carbonylation [149,332,334,336,337], and cross-coupling re-
actions [338,339]. 
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In particular, the total yields of alkenes in the hydrogenation of dienes in the pres-
ence of Pd phosphine complex catalysts, based on PAMAM dendrons, anchored to silica, 
reached up to 99% under the ambient conditions (25 °C, 1 atm. of H2, MeOH, 0.5–24 h) 
[148]. Herein, the total selectivity on alkenes as well as catalyst stability and recyclability 
increased with the increase in the dendrimer generation and spacer length (C2, C6, C12) 
between end amino and phosphine groups in the ligand (Figure 16, left) [148]. Hydro-
genation mainly proceeded via 1,2-addition; nonetheless, the product distribution was 
strongly dependent on the substrate structure and, as a consequence, on the intermediate 
stability [148,288,289], and dienes, giving the higher portion of unsubstituted terminal 
alkenes, tended to undergo further hydrogenation to alkanes, whose portion may reach 
1–33% at full conversion of initial diene (Scheme 14) [148]. 
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Figure 16. Heterogeneous dendritic catalysts, based on phosphine (left) and PCP com-
plex-terminated PAMAM dendrons (right), covalently immobilized on the silica surface, suggested 
by Alper et al. [93,149,334]. Adapted with permission of John Wiley and Sons, from: Chanthatey-
anonth, R.; Alper, H. Recyclable Tridentate Stable Palladium (II) PCP-Type Catalysts Supported on 
Silica for the Selective Synthesis of Lactones. Adv. Synth. Catal. 2004, 346, 1375–1384 [334]. Copy-
right John Wiley and Sons, 2004. 
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Scheme 14. Product distributions in the hydrogenation of dienes at full substrate conversions in the 
presence of silica-supported catalysts based on grafted PAMAM dendrons terminated with Pd 
phosphine complexes. Reaction conditions: 25 °C, 1 atm. of H2, MeOH, 0.5–24 h [148]. 

Applied in the oxidation of terminal alkenes to methylketones, using tert-butyl hy-
droperoxide as an oxidant (55 °C, nonane), the catalyst SiO2-G0-Pd (i.e., containing only 
3-aminopropyl linker without grafted dendron) gave yields of 27–42%, which decreased 
from 1-octene to 1-decene and 1-tetradecene, and 11% for cyclohexene within 24 h [147]. 
Herein, the strong dendritic effect was observed. An increase in the spacer length (Figure 
16) from C2 to C12 allowed for a significant increase catalyst activity and made it possible 
to oxidize even bulky substrates, such as 5-vinyl-2-norbornene and 4-phenyl-1-butene 
[147]. It should be noted that the efficiency of these hybrid catalysts, based on prolonged 
dendrons, depended on the dendrimer generation, spacer length, and substrate size 
simultaneously, and positive dendritic effect was observed. 

Rh complex catalysts, based on the same PAMAM dendron containing support, af-
forded the hydroformylation of various alkenes [146]. Conversions of 95–99% were 
achieved for various alkenes within 24 h at 65–75 °C, with a syngas pressure of 70 atm. 
(CO:H2 = 1:1) in CH2Cl2 medium. Herein, linear alkenes, such as 1-octene, tended to 
mostly give linear aldehyde, whereas styrenes, vinylnaphthalenes, and vinyl acetates 
(i.e., with substituents, giving –M effect to C=C double bond) gave branched products 
with selectivity often exceeding 90%. SiO2-PAMAM-Rh catalysts display a slightly nega-
tive dendritic effect (catalysts of G0—G1 generations effectively worked even at room 
temperature) and were reused several times without a noticeable decrease in activity 
[146]. 

Carbonylation of terminal alkenes in the presence of Pd phosphine complex cata-
lysts, decorating the PAMAM dendrons of 0–4th generations, anchored to silica, in the 
alcohol medium (115 °C, 7 atm. of CO, MeOH, PPh3, p-TsOH, THF or toluene) resulted in 
the ester formation, with a predominance of linear product, even for styrene-type sub-
strates [149]. Herein, this linear/branched ratio improved at catalyst recycling due to the 
leaching of the adsorbed less hindrance Pd complexes favoring the branched product 
formation [149]. 
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Using otho-allyl- or vinylphenols and anilines as substrates under the similar condi-
tions (100–140 °C, 7–43 atm. of CO, 0–36 atm. of H2, toluene, or CH2Cl2, 
1,4-bis(diphenylphosphino)butane (dppb)), it was possible to obtain five-, six- and sev-
en-membered ring lactones and lactams with yields up to 90% (Scheme 15a,b) [332,334]. 
Varying the reaction conditions (temperature, solvent, CO/H2 ratio, and pressure) for the 
materials, modified by Pd PCP pincer complexes (Figure 16, right), one could direct the 
reaction to the five- or seven-membered ring lactone formation with the selectivity of 82–
91%, significantly exceeding that for a homogeneous non-dendritic Pd PCP complex cat-
alyst [334]. Heterogeneous dendritic PCP pincer Pd catalysts had high stability at recy-
cling, extremely increasing from G0 to G1 dendron generation, with the 7-membered 
lactone as a predominant product even under the conditions for 5-membered lactone 
formation in the 1st cycle [334]. 
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Scheme 15. Carbonylation of: (a) otho-allylphenols in the presence of SiO2-PAMAM-PCP-Pd com-
plex catalyst [93,334]; (b) otho-vinylphenols in the presence of SiO2-PAMAM-PPh2-Pd complex cat-
alyst [93,336]; (c) 2-(2-iodoaryloxy)anilines and other related substrates in the presence of 
SiO2-PAMAM-PPh2-Pd complex catalyst [93,337]. 

In the presence of SiO2-PAMAM-Gn-(Pd(PR2)2)n+1 (n = 0–3, R = Ph, Cy) catalysts un-
der carbonylation conditions (100 °C, 7 atm. of CO, MeOH, NEt3), various iodoarenes 
were effectively converted to corresponding arylcarboxylates with quantitative yields 
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within 24–36 h [332]. In the case of carbonyls, assuming cycle formation (e.g., dibenzox-
azepinone), there was also possible the use of bromoarenes under elevated temperatures 
(80/120 °C, 7 atm. of CO, NEt(i-Pr)2, toluene), with yields exceeding 90%, even for dimeric 
substrates (Scheme 15c) [337]. Catalysts, based on dendrons at least of the 1st generation, 
appeared highly stable under reuse; for substrates, such as 2-(2-iodophenoxy)aniline, the 
yields maintained to as high as 95% during the 8 cycles [338]. 

The same type of catalysts showed high activity in the Heck cross-coupling reactions 
for both iodo- and bromoarenes with styrene, butyl, or methyl acrylate with the pre-
dominant formation of trans-products (120–140 °C, Na2CO3, or NaOAc, DMF) [338,340]. 
The maximum yields of 85–99% were observed for the substrates with electron with-
drawing groups (C(=O)OMe, NO2)), and were maintained when recycling the catalyst 
[341,342]. Herein, the SiO2-G0-PCP-Pd catalyst appeared more stable when reused [93]. 

Hagiwara’s group has developed a heterogenous hybrid catalyst, combining prop-
erties of both supported the ionic liquid catalyst (SILC) and dendritic catalyst [343]. 
Terminally alkylated PAMAM dendrons of the 3rd generation were anchored to 
nano-silica with a mean particle diameter of 10–12 nm, followed by the impregnation of 
Pd(OAc)2, solved in the ionic liquid. Under these conditions Pd complexes were reduced 
and formed dendron-encapsulated clusters (Figure 17) arranged into the raspber-
ry-shaped superstructures [343]. 
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Figure 17. The structure of nano-SiO2-PAMAM-Pd/IL catalyst (left) [26], and its raspberry-shaped 
ensembles in TEM image (right) [343]. Reprinted by permissions of Springer Nature, from: Ka-
rakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Yu. S. Hydrogenation catalysts 
based on metal nanoparticles stabilized by organic ligand. Russ. Chem. Bull. Int. Ed. 2013, 62, 
1465−1492 [26]. Copyright 2014, Springer; and of Georg Thieme Verlag KG, from Hagiwara, H.; 
Sasaki, H.; Tsubokawa, N.; Hoshi, T.; Suzuki, T.; Tsuda, T.; Kuwabata, S. Immobilization of Pd on 
Nanosilica Dendrimer as SILC: Highly Active and Sustainable Cluster Catalyst for Suzuki-Miyaura 
Reaction. Synlett 2010, 1990–1996 [343]. Copyright 2010, Georg Thieme Verlag KG. 

Thus, the synthesized Pd-containing catalyst was successfully applied in the Suzuki 
cross-coupling reactions, using various bromo/iodoarenes and arylboronic acids as sub-
strates under mild conditions (25–60 °C, K2CO3, H2O/EtOH). High biarene yields were 
favored by the use of phenylboronic acids with donor substituents and arylbromides or 
aryliodides with acceptor ones, and the quantitative yields for 4-bromoacetophenone, 
coupled with phenyl- or 1-naphthylboronic acid were achieved already within 30 min at 
room temperature [343]. It was established that the gradual decrease in activity of the 
hybrid dendritic SILC catalyst at recycling originated from Pd cluster aggregation, not 
from Pd leaching [343].  

Li and Xu proposed a heterogeneous catalyst for Suzuki and Heck cross-coupling 
reactions based on poly(ethylene imine) (PEI) dendrons anchored to silica [341]. The lat-
ter was activated by (3-chloropropyl)trimethoxysilane grafting, followed by end-Cl atom 
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replacement with diethanolamine according to the SN2 mechanism (Scheme 16). The 
material obtained, containing OH-terminated dendrons of the 1st generation, was further 
treated with thionyl chloride to replace terminal OH groups by Cl, and then the proce-
dure was repeated until Cl-terminated dendrons of the 2.5th generation were propagated 
and then capped with 1,4-diazabicyclooctane (DABCO) (Scheme 16). Thus, the synthe-
sized carrier, coated by grafted DABCO-terminated dendrons of the 3rd generation, was 
impregnated with PdCl2 solution in EtOH followed by a reduction in the presence of 
hydrazine in situ, resulting in Pd nanoparticles of 3–10 nm in diameter (Scheme 16) [341]. 
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Scheme 16. The synthesis DABCO-terminated PEI dendron, grafted to silica, and subsequent Pd 
nanoparticle impregnation [341]. 

The synthesized SiO2-PEI-G3-DABCO-Pd catalyst revealed high activity Suzuki (for 
p-bromoanisole and phenylboronic acid) and Heck cross-coupling reactions (for p-iodo- 
or bromoanisole and styrene). By carefully adjusting the reaction conditions (80 °C, 0.5 h, 
K2CO3, EtOH/H2O for Suzuki cross-coupling, and 130 °C, 1–3 h, K3PO4, DMF/H2O for 
Heck cross-coupling), it was possible to achieve the quantitative yields for desired 
products (Scheme 17) [341]. It was established that under the said conditions, yields of 
95–99% within 0.5 h in the Suzuki cross-coupling reactions in the presence of the 
SiO2-PEI-G3-DABCO-Pd catalyst were maintained when bromoarenes with para- and 
meta-, donor and acceptor substituents, as well as phenylboronic acid with donor pa-
ra-substituents, were used as substrates. Replacing bromoarene for chloroarene resulted 
in the essential downfall in the catalyst activity; nonetheless, the yields of 77–89% were 
obtained within 24 h at 130 °C and increased catalyst loading for chloroarenes with ac-
ceptor para-substituents (NO2, CN) [341]. 
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Scheme 17. Cross-coupling reactions in the presence of SiO2-PEI-DABCO-Pd catalyst [341]: (a) 
Suzuki; (b) Heck. 

Heck coupling proceeded with quantitative yields within 1 h only for pa-
ra-substituted iodoarenes and styrene. The replacement of iodoarene by bromoarene and, 
moreover, for chloroarene resulted in the noticeable decrease in the catalyst activity, 
making the reaction strongly sensitive to substrate structure and electronic properties 
[344]. The yields of 60–89% within 2–5 h appeared to be achievable for bromo- and chlo-
roarenes only with acceptor para-substituents (NO2, C(=O)OCH3), while the use of donor- 
or meta-substituted bromoarenes (bromobenzene, 4-bromotoluene, and anisole, 
3-bromonitrobenzene) led to the sharp downfall in conversion to 0–25%. The use of 
acrylic acid, such as alkene instead of styrene, resulted in the yields of 83–84%, achievable 
only after 10 h both for iodo- and bromoarenes, which may be connected with a pH de-
crease in the reaction medium [341]. The hybrid SiO2-PEI-G3-DABCO-Pd catalyst ap-
peared to be easily recoverable from the reaction mixture. Nonetheless, its activity no-
ticeably decreased in the recycling of Suzuki coupling, which may be attributed to the 
gradual Pd leaching and/or Pd nanoparticle agglomeration [341]. 

Mohammadpoor-Baltork and Mirkhani developed Pd nanoparticles, immobilized 
on nano-silica (10–40 nm), coated with triazine dendritic polymer (nSTDP) [342,345]. The 
latter was propagated by the repeated alternating stages of triazine trichloride (cyanuric 
chloride) and bis(3-aminopropyl)amine addition according to the Csp2 SN2 mechanism, 
until G3 dendrons were obtained (Scheme 18). The mean particle size of the further de-
posited Pd nanoparticles was found to be 3.1 nm [342,345]. 
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Scheme 18. The synthesis triazine—propylene imine dendron, grafted to nano-silica (nSTDP), and 
subsequent Pd nanoparticle impregnation [342,345]. 

Thus, the synthesized hybrid Pd-nSTDP catalyst was studied in Heck and Suzuki C–
C cross-coupling reactions (Scheme 19) [342], as well as in C–S cross-coupling reactions 
between various arylhalides and diaryldisulfides under both microwave (MW) and 
conventional thermal conditions (Scheme 20) [345]. Suzuki coupling proceeded with near 
quantitative yields (93–96%) within 2–3 h or 6–10 h at room temperature for iodoarenes 
or bromoarenes, respectively (K2CO3 as a base, DMF/H2O (1:3) as a reaction medium) 
(Scheme 19) [342]; the use of MW irradiation (200 W, 70 °C) allowed the achievement of  
the same yields after 2–5 min, both for iodoarenes and bromoarenes. Chloroarenes re-
quired much longer reaction times (18–24 h; 7–10 min under MW) or more severe reac-
tion conditions (80 °C). Heck coupling between various arylhalides and substituted sty-
renes required 9–20 h for the near-to-quantitative yields (90–95%) to be reached under the 
conventional thermal conditions (85 °C, K2CO3, DMF/H2O (1:3)), and 8–20 min under 
MW conditions (200 W, 70 °C), depending on the halide nature [342]. The presence of 
electron-withdrawing or, especially, of electron-donating groups in the structure of both 
substrates resulted in the noticeable decrease in the reaction rate, as in Suzuki and as in 
Heck coupling reactions [342]. 
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Scheme 19. C–C cross-coupling reactions in the presence of Pd-nSTDP catalyst [342]: (a) Suzuki; (b) 
Heck. 
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Scheme 20. C–S cross-coupling reactions in the presence of Pd-nSTDP catalyst [345]. 

In C–S coupling (Scheme 20), yields of 90–95% were achieved within 5 h under 
conventional thermal conditions (80 °C, Bu4NOH, DMF/H2O (1:1)) or within 10–15 min 
under microwave (MW) conditions (Scheme 20) with the TOF values, reaching, in the last 
case, up to 5700 h−1, enormously exceeding those for conventional homogeneous and 
heterogeneous catalytic systems, such as PdCl2(dppf)/Zn, CuFe2O4 or Cu2S/Fe [345]. It 
was found that electron withdrawing para-substituents favored the better reaction yields; 
nonetheless, it was noticeable only for chloroarenes, converted to the corresponding di-
arylsulfides with yields of 90–90% after 10 h. Moreover, double C–S coupling was suc-
cessfully conducted with the various para-and meta-dibromoarenes (including 
2,6-dibromopyridine) and diaryldisulfides (including 2,2′-dithiobis(benzothiazole)) un-
der said conditions. The yields appeared as high as 75–95% within 6–10 h under conven-
tional thermal heating and within 10–45 min under MW irradiation. As in the case of 
mono C–S coupling, the reaction rate and arene disulfide yields were mainly enhanced 
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by electron withdrawing groups (EWG: phenyl, benzo, C=N/pyridine) in the substrates 
[345]. Hence, using the high activity of a Pd-nSTDP catalyst even for chloroarenes, espe-
cially under the MW conditions, it was possible to synthesize via C–C or C–S coupling 
reactions with banana- and star-shaped molecules with benzene, pyridine, or triazine 
cores [342,345]. 

The hybrid dendritic Pd-nSTDP catalyst appeared highly stable at recycling, and no 
decrease in the reaction rate and product yield, nanoparticle agglomeration, or noticeable 
Pd leaching were observed after seven runs in both C–C and C–S coupling reactions 
under both thermal and MW conditions [342,345]. A reaction mechanism was proposed, 
and accordingly, dendron moieties functioned as micro/nanoreactors for Pd nanoparti-
cles, strongly retaining them and, therefore, prevented their leaching (Scheme 21) [344–
348]. Herein, at the first stage, an oxidative addition of arylhalide (ArX) to the surface of 
Pd nanoparticle took place, followed by diaryldisulfide addition and halide release in the 
presence of base. Re-coordination of chemisorbed aryl and aromatic sulfide resulted in 
the reductive elimination of the end product, diarylsulfide, and the subsequent turn-back 
of Pd species to the next cycle (Scheme 21) [345]. 
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Scheme 21. An assumed mechanism for C–S cross-coupling of aryl halides and disulfides,  
providing the effective reaction proceeding [345]. 

It is important to note that dendron grafting on the silica surface is sufficiently in-
tricate, with the increase in the dendron generation and steric hindrances arising from 
this and resulting in the incomplete Michael addition and amidation 
[92,146,252,339,349,350]. Herein, the yields of G3–G4 and higher dendron grafting may 
not exceed 40–60% [147,252,339,350]. In order to improve the performance of sili-
ca-supported dendritic catalysts, it was suggested by Alper and Cao to attach future 
dendron focal points to the inner walls of the ordered mesoporous materials, such as 
pore-expanded MCM-41 [351] and SBA-15 (Scheme 22) [352,353]. 
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Scheme 22. Grafting of PAMAM dendrons inside the channels of ordered mesoporous materials 
SBA-15 or MCM-41 [26,352,353]. Reprinted and adapted with permission of Springer Nature, from: 
Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Yu. S. Hydrogenation cata-
lysts based on metal nanoparticles stabilized by organic ligand. Russ. Chem. Bull. Int. Ed. 2013, 62, 
1465−1492 [26]. Copyright 2014, Springer. 

In particular, it was established that the yield of G3–G4 PAMAM dendrons (up to 4.5 
m in diameter [85,114,354–356]), anchored to pore-expanded MCM-41 material with 
channel diameter of 10.6 nm, reached 70–75% [351], which was also due to the lower ini-
tial APTES loading in comparison with the grafting to amorphous silica [147,339,350], 
hence resulting in the lower dendron density and less steric hindrances. Analogously 
covalent immobilization of G3–G4 PAMAM dendrons in the pores of SBA-15 material 
(pore diameter of ~7.5 nm) proceeded with the yield of ~60% [350]. 

The last material was further used as a carrier for monometallic Pt, Pd, Au, and bi-
metallic PdAu and PdPt nanoparticles, resulting in the catalysts for hydrogenation of 
C=C double bonds [353], reduction of p-nitrophenol [354], oxidation of alcohols [355], and 
Suzuki cross-coupling [357]. Herein, the presence of covalently grafted dendrons pro-
vided uniform and narrow well-dispersed particle size distribution (1–3 nm) inside the 
SBA-15 channels [352,353,357]. Thus, Pd-containing catalysts with the particle size of 1.2–
3.4 nm, based on the dendritic organic-inorganic hybrid composites, revealed extremely 
high activity in the hydrogenation of allyl alcohol under the ambient conditions (30 °C, 1 
atm. of H2, MeOH), reaching conversions of more than 99% and TOF values of 710–2270 
h−1 within 20–120 min [353]. A noticeable negative dendritic effect was observed, ap-
pearing as a decrease in the reaction rate for higher generation catalysts; nonetheless, the 
catalyst based on dendrons of the 3r generation mostly suppressed isomerization of allyl 
alcohol to acetone and demonstrated the best selectivity on 1-propanol, reaching up to 
95% [353]. Moreover, the catalyst SBA-15-PAMAM-G3-Pd revealed the highest stability 
at recycling and storage and was successfully reused several times without any loss of 
activity, Pd leaching, or nanoparticle agglomeration observed [353]. 

A similar approach can be applied for the synthesis of G4-PAMAM den-
dron-encapsulated monometallic Pd and bimetallic PdAu nanoparticles, immobilized in 
the SBA-15 channels by co-complexation method [357]. These dendrimer-encapsulated 
PdAu nanoparticles effectively catalyzed Suzuki cross-coupling between various ar-
ylbromides and phenylboronic acid under the microwave conditions (100 °C, 30 min, 
K3PO4, H2O/EtOH, MW), with the yields significantly exceeding those for monometallic 
Pd catalysts, active mostly in the iodoarene coupling. This phenomenon was attributed to 
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Au3+ ions weakening the coordination interactions between Pd2+ and dendron amino 
groups, hence facilitating the reduction of Pd2+ to Pd0 [357]. The maximum yields (90–
99%) for both Pd and PdAu catalysts were achieved using unsubstituted substrates or 
para-substituted phenylboronic acids with electron donating groups (CH3, OCH3) and 
para-substituted arylhalides with electron withdrawing groups (NO2). Herein, the use of 
sterically hindered ortho-substituted phenylboronic acids, even coupled with iodeben-
zene, resulted in a drastic decrease in the reaction yields down to 30% due to the negative 
dendritic effect [358]. It was discovered that the mean particle size, arising from the initial 
metal/dendrimer ratio, had an essential effect on the reaction rate and cross-coupling 
yield, and the best activity and stability at recycling were revealed for tiny Pd10 and 
Pd5Au5 nanoparticles of 1.4–1.6 nm in diameter strongly encapsulated inside the dendron 
cavities [357]. 

Monometallic Au nanoparticles, encapsulated in PAMAM dendrons of G1–G4 gen-
erations, grafted to SBA-15 ordered mesoposous silica, effectively catalyzed the oxidation 
of secondary alcohols at room temperature and the ambient oxygen pressure in biphasic 
CH2Cl2/H2O reaction medium, in the presence of K3PO4 as a base [355]. An increase in the 
dendron generation from G1 to G4 was found to increase mean particle size from 1.6 to 
3.4 nm, which authors explained in terms of steric crowding on the higher generation 
dendron periphery, interfering the Au3+ ions to penetrate inside the dendron cavities, 
thus resulting in the outer dendron-stabilized nanoparticles [355]. The reaction rate and 
the yield of corresponding ketone decreased with an increase in the dendrimer genera-
tion and increased with a decrease in mean particle size arising from the Au/dendrimer 
ratio. In particular, the yield of 99% for acetophenone in the presence of the 
SBA-15-PAMAM-G4-Au100 catalyst was attained only within 24 h. Rather, it decreased 
down to 80–90% for bulky or negatively induced substrates, such as 
1-(2-naphthyl)ethanol or 1-(4-chlorophenyl)ethanol, which are able to competitively ad-
sorb via their substituents, or, especially, replace aromatic by alicyclic substrates, such as 
cyclopentanol or cyclohexanol (50–70%); for primary linear aliphatic C6–C8 alcohols the 
conversions did not exceed 4–20% [353]. Nonetheless, in the oxidation of aromatic alco-
hols, the SBA-15-PAMAM-G4-Au100 catalyst can be recycled several times without no-
ticeable loss in activity—in contrast to Au nanoparticles, which are supported on SBA-15 
without a grafted dendrimer ligand [353]. 

With respect to heterogenized G4-PAMAM, dendron-encapsulated Pt nanoparticles, 
it was discovered that increase in mean particle size (at elevated Pt loadings) resulted in 
the decrease in the reaction rate both for p-nitrophenol and K3[Fe(CN)6] reduction 
(NaBH4 or Na2S2O3 as a reducing agent, 25 or 40 °C, H2O, 30 or 90 min, respectively) [354]. 
It was presumably due to larger Pt nanoparticles blocking the channels of SBA-15, hence 
reducing the catalyst-specific surface area and retarding the mass transfer in the reaction 
medium [354]. Nonetheless, in contrast to SBA-15-PAMAM-Pd catalysts [354], the anal-
ogous Pt-containing catalyst appeared did not seem very stable at reuse, maintaining 
about 50% of initial activity to the fifth cycle due to mechanical losses [354]. 

Shantz et al. developed monometallic Cu and bimetallic CuAu catalysts, based on 
Simanek-type melamine-piperidine dendrons, covalently grafted inside SBA-15 channels 
(Scheme 23) [233]. Herein, in spite of the fact, that bimetallic catalyst was synthesized by 
co-complexation method, Au core–Cu shell nanoparticles were obtained. The catalysts 
obtained were studied in the alkyne-azide click cycloaddition (50 °C, NEt3, THF), and 
strong negative dendritic effect was observed—also, in comparison with a conventional 
heterogeneous catalyst Cu/SBA-15 without a dendrimer. The yields of 94% and 81% were 
reached for Cu/SBA-15 and Cu@G2/SBA-15 after 5 and 24 h, respectively; nonetheless, 
the presence of dendrimer was found to strongly suppress metal leaching at recycling. 
The presence of gold in the nanoparticle structure provided a remarkable increase in the 
catalyst activity: a 100% conversion Cu@G2/SBA-15 catalyst was achieved after 15 h with 
the reaction rate, quite similar for that of the Cu/SBA-15 catalyst. 
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Scheme 23. Grafting of melamine-aminomethylpiperidine dendrons inside the channels of SBA-15 
material and subsequent metal nanoparticle encapsulation [233]. 

By means of IR spectroscopy, it was established that alkyne adsorbed rapidly on the 
copper surface without any induction period before azide adsorption, thus assuming the 
linear intermediate formation, antecedently the ring closure and triazole formation, to be 
the rate-limiting step in the reaction (Scheme 24) [233]. Herein, all intermediates observed 
were the same, as in homogeneously catalyzed alkyne-azide cycloaddition. No electron 
synergistic effect between copper and gold was revealed, indicating that the increase in 
activity for the bimetallic catalyst was mainly due to enhanced copper atom distribution 
on the nanoparticle surface [233]. 



Polymers 2022, 14, 981 41 of 113 
 

 

N R2

N

N

HR1

N R2

N

N

N R2

N

N

N N
N R2

H
R1

Cu NPH

R1

Cu NP

H

R1

Cu NPCu NP

N
N

N R2

HR1

Cu NP

N
N

N
R2

R1H

 
Scheme 24. An assumed mechanism for Cu-catalyzed heterogeneous alkyne-azide click cycload-
dition [233]. 

3.1.2. Divergent Dendrimer Grafting on Polymer and Carbon Supports 
Linear insoluble polymers, such as polystyrene (PS), are another common support 

for dendron grafting, thus resulting in dendronized polymers (DenPols), which can be 
synthesized in different ways depending on the dendrimer’s nature [63,72,75,86,93,358–
361]. In particular, to produce a focal point of future PAMAM dendrons supported on 
polystyrene, the latter is preliminarly activated by a chlorometylation reaction followed 
by substitution for the amino group directly according to the SN2 mechanism [362,363] or 
via phthalimide stage (Scheme 25) [364–367]. 
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Scheme 25. Polystyrene activation and subsequent PAMAM dendron grafting [362–367]. 

Thus, Feng et al. studied the hydrogenation of 5-membered heterocycles, such as 
furan, pyrrole, and thiophene, in the presence of Pd catalysts, based on salicyli-
den-terminated PAMAM dendrons of the 2nd generation (similar to those in Scheme 12), 
anchored to polystyrene (PS), at an ambient temperature and pressure in the ethanol 
medium [368]. Quantitative conversions were achieved for all substrates, and products of 
ring opening and C–C bond cleavage were also obtained. The PS-PAMAM-Pd catalyst 
was successfully recycled 10 times with a gradual decrease in activity [368]. 

Krishnan and Sreekumar used polystyrene-supported PAMAM dendrons of various 
generations for the synthesis of encapsulated Pd nanoparticles, followed by their appli-
cation in the Suzuki cross-coupling (100 °C, Na2CO3, 1,4-dioxane/water) [364]. Herein, Pd 
nanoparticles, stabilized by G1 and G2 dendritic polymers, tended towards agglomera-
tion, whereas G3 support provided well-separated nanoparticles of 10–20 nm in diameter 
(Figure 18). In the presence of a catalyst, based on dendrons of the 3rd generation, the 
reaction between phenylboronic acid and 4-nitroiodobenzene proceeded with the yield 
of 90–95% within 12–24 h. It was established that the use of substrates with donor sub-
stituents (CH3, C(CH3)3, NH2) both for arylboronic acid and, especially, for arylhalide 
resulted in the significant decrease in the catalyst activity and reaction yield, which was 
extremely noticeable for arylbromides and arylchlorides. PS-PAMAM-G3-Pd had high 
stability at recycling, and only a slight decrease in the reaction yields was observed dur-
ing 6 cycles due to Pd leaching [364]. 
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Figure 18. HRTEM images of the PS-PAMAM-G3 supported palladium nanoparticles [364]. Re-
printed with permission of Taylor and Francis Academic Journals, from: Krishnan, G.R.; Sreeku-
mar, K. Characterization of Polystyrene Supported Catalytically Active Poly(amidoamine) Den-
drimer-Palladium Nanoparticle Conjugates. Soft Mater. 2010, 8, 114–129 [364]. Copyright 2010, 
Taylor & Francis Academic Journals. 

The analogously hybrid metal complex catalyst Mn (II), based on PS-PAMAM-G3 
dendritic carrier, demonstrated a high efficiency in the oxidation of various secondary 
alcohols, giving near-to-quantitative conversions (94–98%) within 3 h at room tempera-
ture, using K2Cr2O7 or KMnO4 as oxidizers and acetone as solvent [252]. PS-PAMAM-G3 
material itself effectively catalyzed Knoevenagel condensation, giving yields of 95–100% 
within 10–120 min at 30–50 °C, using ethanol as solvent [366]. Herein, dendritic material 
acted as a base catalyst, and the reaction rate decreased with the increase of both carbonyl 
and the active methylene compound [366]. For both above-mentioned materials, a strong, 
positive, dendritic affect and excellent recyclability were revealed [252,366]. An increase 
in the degree of the polystyrene cross-linking furthered a slight conversion decrease 
[252], whereas an increase in the dendronization degree, in comparison, positively in-
fluenced the catalyst activity [366].  

Jiang, Yang, and Pan suggested a novel approach for the synthesis of gold nanopar-
ticles, stabilized by PAMAM dendrons divergently grafted to polystyrene beads [367]. 
This approach included preliminary protonation of alkylated tertiary dendron end 
groups, followed by complex formation with NaBH4; this complex functioned as a re-
ducing agent for KAuCl4–, added after all the others, thus resulting in nanoparticles of 5–
10 nm in diameter (Scheme 26).  
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Scheme 26. The synthesis of Au NPs, immobilized on polystyrene beads, coated with PAMAM 
dendrons [367]. 

Thus, synthesized polymeric catalysts were studied in the oxidation of primary and 
secondary benzyl alcohols and in arylboronic acid homocoupling (Scheme 27). As for 
primary benzyl alcohols, the yield of corresponding benzaldehydes reached 99% within 
16 h for substrates with +I or +M para-substituents (Me, OMe, Cl, Br, iPr) at room tem-
perature and ambient oxygen pressure in the presence of the PS-PAMAM-G3-Au catalyst 
[367]. For the secondary alcohols, the quantitative conversions to corresponding 
methylketones were achieved only within 32 h, all other conditions being equal. Re-
placement of the substituent in para-position with the hydroxymethyl group by the NO2 
group’s strong –M-effect resulted in a drastic decrease in the reaction yield down to 13%. 

R2
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OR1
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O2 (1 atm.), K2CO3, CH2Cl2/H2O, r.t., 16−32 h.
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Scheme 27. Benzyl alcohol oxidation and arylboronic acid homocoupling in the presence of 
PS-PAMAM-G3-Au catalyst [367]. 

Additionally, it should be noted that despite the PS-PAMAM-G3-Au catalyst exhib-
iting the best efficiency, for all other catalysts, based on lower generation dendrons, a 
strong negative dendritic effect was observed, and the yields of benzaldehyde reached 
73%, 50%, and 39% for G0, G1, and G2 catalysts, respectively [367]. Homocoupling of 
phenylboronic acids in the presence of the PS-PAMAM-G3-Au catalyst proceeded with 
the yield of 94–99% within 24 h at room temperature, air subjected, in water medium, 
using K2CO3 as a base. Herein, biphenyls were selectively produced from the substrates 
with donor meta- and para-substituents (Me, OMe), whereas ortho-substituted substrates 
resulted in hydrolysis product (phenol) [367]. The catalyst PS-PAMAM-G3-Au appeared 
very stable at reuse and maintained a yield in benzyl alcohol oxidation as high as 99% 
after 16 h and 52–55% after 5 h during 14 cycles [367]. 

Arya, Alper, and Manzer designed polystyrene-supported poly(aryl amide) den-
drons in a divergent route, using a peptide synthesis approach (Scheme 28), and then 
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modified them by Rh phosphine complexes [369]. The synthesized heterogeneous Rh 
complex catalysts were applied in the hydroformylation of various olefins at 65 °C and 
140 atm. of syngas (CO:H2 = 1:1). The positive dendritic effect was discovered, and quan-
titative conversions were achieved within 24 h for G2–G3 catalysts, which did not lose 
their efficacy for 4–6 cycles at reuse. Herein, the portion of branched product often ex-
ceeded 90% not only for styrene-type substrates, but also for vinyl acetate [369]. 
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Scheme 28. The synthesis of polystyrene-supported poly(aryl amide) dendrons and their subse-
quent modification with Rh phosphine complexes [369]. 

Dahan and Portnoy suggested materials, based on Fréchet type poly(aryl ether) 
dendrons, immobilized on hydroxylated polystyrene (Wang resin) [370,371]. The den-
dron grafting was proposed here in two different ways (Scheme 29) [370,371]. The first 
one suggested the attachment of 5-hydroxyisophthalate moiety to hydroxylated poly-
styrene via a Mitsunobu reaction in the presence of diisopropyl azodicarboxylate (DIAD) 
and triphenylphosphine-sulfonamide betaine in CH2Cl2 medium, followed by reduction 
using a LiBH4 reaction in the presence of B(OMe)3 in THF medium (Scheme 29a) [372]. 
According to the second approach, 3,5-bis(acetoxymethyl)-phenol unit was grafted to 
Wand resin via a Mitsunobu reaction again in the presence of PPh3 and DIAD in THF 
medium, followed by hydrolysis of ester groups in the presence of tetrabutylammonium 
hydroxide (TBAH) in water/THF medium (Scheme 29b) [373]. Thus, hydroxyme-
thyl-terminated poly(aryl ether) dendrons of various generations were obtained; their 
subsequent modification by diphenylphosphinobenzoic acid in the presence of diiso-
propylcarbodiimide (DIC) in CH2Cl2 (for ortho-isomer) or DMF medium (for pa-
ra-isomer), catalyzed by 4-(N,N-dimethylamino)pyridine (DMAP), resulted in the het-
erogenized diphenylphosphine-terminated ligands for metal complex catalysis [370,374]. 
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Scheme 29. Grafting of Fréchet type poly(aryl ether) dendrons on Wang resin and their subsequent 
modification with Co or Pd phosphine complexes [370,371,373,374]: (a) via Mitsunobu reaction and 
successive ester reduction [372]; (b) via Mitsunobu reaction and after ester hydrolysis [373]. 

In particular, Co-containing catalysts proved their efficacy in Pauson–Khand [2+2+1] 
cycloaddition of alkyne, alkene, and carbon monoxide (Scheme 30) [374], whereas 
Pd-containing catalysts appeared highly active in the Heck cross-coupling reaction 
(Scheme 30) [370]. A positive dendritic effect was found out in both processes, which was 
explained in terms of a decrease in the resin internal coordination cross-linking, an in-
crease in the number of catalytic sites on the polymer surface, and enhanced stability of 
the metal nanoparticles formed in situ when the dendron generation increased [370,374]. 
The best yields in Pauson–Khand cycloaddition were as high as 68% within 24 h at 70 °C 
and an ambient CO pressure in THF medium, using Co-containing catalysts with 
o-diphenylphosphinobenzoyl dendron end group moieties, which authors attributed to 
the Co bidentante coordination [374]. 
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Scheme 30. Pauson–Khand [2+2+1] cycloaddition in the presence Co poly(aryl ether) dendritic 
catalysts [374]. 

In the Heck coupling between bromobenzene and methyl acrylate (Scheme 31), the 
quantitative yield of methyl trans-cinnamate was analogously obtained for the catalyst, 
based on dendrons of the 3rd generation, decorated on periphery by Pd complexes with 
p-diphenylphosphinobenzoyl fragments, rather than exceeding that for the homogene-
ous catalyst under the same conditions (80 °C, NEt3, NMP, 72 h) [370]. Herein, milder 
reaction conditions (80 °C, 72 h vs. 120 °C, 14 h) provided much higher selectivity on 
cross-coupling products in comparison with bromobenzene homocoupling (200:1 vs. 
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32:1). Replacement of methyl acrylate by styrene, possessing less –M-effect, required 
more severe reaction conditions for better conversion and selectivity, whereas +M butyl 
vinyl ether resulted in a mixture of products of both α- (α-butoxystyrene and acetophe-
none) and β-arylation (cis- and trans-β-butoxystyrenes), and gradually increased together 
with the increase in the dendron generation along with the β/α ratio, which decreased. 
The phenomenon observed was explained in terms of the higher portion of the olefin 
insertion proceeding through cationic intermediates, arising from +M-effect of the OBu 
group and increasing in the polar environment, provided by the catalytic species of a 
higher generation [370]. 

Br R

+ R Pd catalyst +
NEt3, NMP, 80−120 0C, 14−72 h.

R = Ph:
R = C(O)OMe:

56−91%
11−100%

10−34%
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+
OBu
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O

H2O

5−42%9−41% 29−44%

 
Scheme 31. Heck cross-coupling in the presence Pd poly(aryl ether) dendritic catalysts [370]. 

Other interesting carbon materials for dendron immobilization are carbon nano-
tubes (CNTs) [372] and polyaromatic frameworks (PAFs) [363]. The latter (otherwise 
called porous aromatic frameworks) are three-dimensional polymers, who’s rigid, dia-
mond-like structure, consisting of tetrahedral node atoms connected with polyphenylene 
edges (Figure 19), provides high specific surface area and thermal stability [375–378]. 
Earlier it was demonstrated that Pd nanoparticles, immobilized on polyaromatic 
frameworks, functionalized with amino groups, appeared noticeably inferior to those 
based on unmodified PAFs, as catalysts for hydrogenation of various unsaturated com-
pounds (phenylacetylene and styrene, linear alkenes, alkynes, and dienes) [379]. None-
theless, this Pd/PAF-NH2 catalyst exhibited excellent stability, maintaining a conversion 
of about 30% in the hydrogenation of phenylacetylene during 6 cycles [379]. Herein, 
amino groups attached to polyphenylene edges of PAFs can be considered as G0 den-
drons. 
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Figure 19. Three-dimensional structure of polyaromatic frameworks [375–379]. Reprinted with 
permission of Elsevier, from: Karakhanov, E.; Maximov, A.; Terenina, M.; Vinokurov, V.; Kulikov, 
L.; Makeeva, D.; Glotov, A. Selective hydrogenation of terminal alkynes over palladium nanopar-
ticles within the pores of amino-modified porous aromatic frameworks. Catal. Today 2020, 357, 176–
184 [379]. Copyright Elsevier, 2020. 

The dendron grafting to PAF was performed via chloromethylation stage followed 
by replacement with diethanolamine according to SN2 mechanism (Scheme 25) [363]. 
Thus, polyaromatic frameworks were obtained, coated in OH-terminated PEI dendrons 
of the 0th generation. Subsequent chlorination with thionyl chloride and replacement 
with diethanolamine again gave materials with dendrons of the 1st generation (Scheme 
32) [363]. The deposition of Pd nanoparticles was conducted in a typical way for poly-
amine dendritic catalysts, including the impregnation with Pd(OAc)2 solution in chloro-
form followed by the reduction in the presence of sodium borohydride in the etha-
nol/water mixture [363]. It was surprising that more hindered G1 dendrons favored 
larger particle formation with broader-sized distribution in comparison with less hin-
dered G0 dendrons (4.5–13 nm vs. 1.5–4 nm), which authors attributed to the blocking of 
pores by branched aminoethanol moieties and, as a consequence, nanoparticle formation 
outside the pores [363]. 
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Scheme 32. The grafting of OH-terminated PEI dendrons on the PAF surface [363]. 

The grafting of diethanolamine moieties to a PAF surface significantly enhanced the 
catalyst performance in the hydrogenation of various unsaturated compounds (cyclic 
and linear alkenes, alkynes and dienes, phenylacetylene, and styrenes) in comparison 
with just amino-modified PAF, allowing it to reach TOF values more than 100,000 h–1 
versus ~55,000 h–1 for material based on PAF-20 with the terphenylene edges [363,379]. It 
should be noted that the activity of PAF-based catalysts is strongly dependent on the 
pore size determined by the number of phenylene rings in the edges [377,378]. As a 
consequence, change from Pd-PAF-20-PEI-G0 to Pd-PAF-30-PEI-G0 with quarter-
phenylene edges resulted in the increase in the catalyst-specific activity up to 300,000 h–1 
for linear alkynes and dienes (Figure 19) [363]. Dendron grafting and further propagation 
decreased the pore volume and specific surface area; as a consequence, the specific cata-
lyst activity decreased again, and conversions often did not exceed 1–5%. Nonetheless, 
for 1-hexyne the TOF values of as high as 100,000 h–1 and 190,000 h–1 for 
Pd-PAF-20-PEI-G1 and Pd-PAF-30-PEI-G1, respectively, were achieved (Figure 20) [363]. 
Similar to Pd-PAF-NH2 [380], Pd-PAF-PEI catalysts proved their stability at recycling. An 
observed decrease in activity at the first two cycles, especially noticeable for 
Pd-PAF-20-PEI-G0, was attributed to the leaching of Pd nanoparticles formed outside the 
pores [363]. 
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Figure 20. Hydrogenation of unsaturated compounds in the presence of Pd-PAF-PEI catalysts. 
Reaction conditions are: 80 °C, H2 10 atm., 30 min. [363]. 

With regards to carbon nanotubes, their functionalization is mainly performed via 
oxidazing treatment by an HNO3/H2SO4 mixture, causing structure defects on the surface 
(C(O)OH, C=O and OH groups, arising from C=C and C–C bond cleavage) [372]. In par-
ticular, by the esterification of the surface carboxyl groups, arising from the defects on the 
outer carbon nanotube walls, with propargyl alcohol followed by the cycloaddition of 
3-azidopropylamine in the presence of Cu(OAc)2 and sodium ascorbate as catalysts, the 
focal points (G0) for the subsequent PAMAM dendron grafting were produced (Scheme 
33) [372]. The latter was conducted by the divergent method, using the repeated stages of 
methyl acrylate Michael addition and the subsequent amidation by ethylene diamine 
(Scheme 33). Hence the materials, based on multi-wall carbon nanotubes coated with 
dendrons of up to the 3rd generation (PAMAM-g-MWCNTs), were obtained and used 
for Pd nanoparticles deposition analogously to the homogeneous PAMAM den-
drimer-based catalysts [115,372]. Mean particle size was found to be 1.8–2.8 nm for 
Pd-G3-PAMAM-g-MWCNTs material. 
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Scheme 33. The synthesis of Pd nanoparticles, encapsulated on PAMAM dendrons, grafted to 
multiwall carbon nanotubes [26,372]. Adapted with permission of Springer Nature, from: Karak-
hanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Yu. S. Hydrogenation catalysts 
based on metal nanoparticles stabilized by organic ligand. Russ. Chem. Bull. Int. Ed. 2013, 62, 
1465−1492 [26]. Copyright 2014, Springer. 

The synthesized Pd-PAMAM-g-MWCNTs catalysts were examined in the Heck 
cross-coupling reaction, and a strong positive dendritic effect was revealed, which au-
thors explained in terms of higher Pd nanoparticle stability and leaching retarding in the 
presence of dendrimers of higher generations [372]. Yields of 95–99% were achieved al-
ready after 1–6 h at 100 °C, with the presence of K2CO3 as a base in the NMP medium, 
even for chloroarenes. Herein, electron withdrawing substituents (such as NO2 or 
C(=O)OMe) in both arylhalide and alkene favored the improved catalytic activity and, 
therefore, to the maximum reaction yields. Pd-G3-PAMAM-g-MWCNTs revealed the 
best stability at recycling, and no decrease in the catalyst performance was observed 
during six cycles [372]. 

3.2. Convergent Dendrimer Grafting 
The convergent approach, implying the covalent attachment of the already synthe-

sized dendrimers or dendrons to the preliminary functionalized carrier, escapes the de-
fects resulting from irregular dendrimer coatings, which are inevitable for multi-step 
divergent synthesis due to diffusion limitations increasing with the increase in the den-
dron generation [92,146,147,252,339,349,350,364,368,381]. The anchoring of readily pre-
pared dendrimers of the appropriate generation can be performed in one stage, thus 
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providing an atom-economical strategy and, as a consequence, much higher yields of the 
dendronized hybrid support [382]. 

3.2.1. Convergent Dendrimer Grafting to Carbon-Based Supports 
Giacalone, Gruttadauria, and Prato have developed materials, based on PAMAM 

dendrons of the 2.5th and 3rd generations, covalently attached to single wall carbon 
nanotubes (SWCNT) in one step (Scheme 34) [10,64,382]. Initial PAMAM dendrimers 
with a disulfide core underwent radical cleavage on S–S bonds, easily grafting after to 
non-functionalized pristine nanotubes [380]. The subsequent treatment with Na2PdCl4 
aqueous solution followed by NaBH4 reduction resulted in well dispersed palladium 
nanoparticles with mean sizes of 3.4 and 1.6 nm for G2.5- and G3-based catalysts, re-
spectively. 

S N

NH

NH

N

N N
H

N

NH

N

NH

N

H
N N

R

R

R R

R R

R

AO

O

O

O

O

O

O

O

O
O

O

O
O

O

SN

HN

HN

N

N
H
NN

HN

N

HN

N

N
HN

R

R

RR

RR

R

R O

O

O

O

O

O

O

O

O
O

O

O
O

O

S N

NH

NH

N

N N
H

N

NH

N

NH

N

H
N N

R

R

R R

R
R

R

RO

O

O

O

O

O

O

O

O
O

O

O
O

O

SWCNTs

(AIBN for R = NHCH2CH2NH2)
PhMe/MeOH, reflux, 72 h.

1) Na2PdCl4, H2O, r.t., 16 h.

2) NaBH4, H2O, r.t., 6 h.

R = OMe (G2.5) or NHCH2CH2NH2 (G3)

S N

NH

NH

N

N

HN N

NH

N

NH

N

HN N

R

R

R R

R R

R

R

O

O

O

O

O

O

O

O

OO

O

O O

O

 
Scheme 34. The synthesis of PAMAM dendron-functionalized single wall carbon nanotubes via 
convergent strategy and subsequent Pd nanoparticles encapsulation [380,382]. 

The catalysts obtained, based on dendrons of the 3rd generation, revealed extremely 
high activity in Suzuki and Heck cross-coupling reactions, providing quantitative yields 
within 5–22 h under moderate conditions (Suzuki coupling: ArBr, Ar’B(OH)2, K2CO3, 
EtOH/H2O (1:1), 50 °C, 5–22 h; Heck coupling: ArI, H2C=CH–C(=O)OMe, NEt3, DMF/H2O 
(4:1), 90 °C, 5–16 h) (Scheme 35) [382]. Herein, in Suzuki coupling, the maximum reaction 
rate and highest product yields were observed for unsubstituted phenylboronic acid and 
arylbromides with EWG substituents in para-position; moreover, a 
SWCNT-PAMAM-G3-Pd catalyst appeared to be able to promote coupling for aryldi-
bromides and even for arylchlorides. Heck coupling of methyl acrylate in the presence of 
a SWCNT-PAMAM-G3-Pd catalyst proceeded similarly for aryliodides with different 
substituents (in para and meta positions, +I, +M, –M), giving yields of 96–99% within 5 
h—except 4-nitrophenyliodide, for which an 85% yield was achieved only after 16 h. 
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Scheme 35. Cross-coupling reactions in the presence of SWCNT-PAMAM-Pd catalysts [382]: (a) 
Suzuki; (b) Heck. 
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The catalyst SWCNT-PAMAM-G2.5-Pd, based on the ester-terminated dendrons of 
the 2nd generation, appeared much less active and much more sensitive to substrate 
structure and electron properties, providing the yields of 97–97% only after 22 h, which 
authors attributed to the worst stabilization of Pd nanoparticles by ester groups in com-
parison with amino groups [382]. Under microwave conditions at 120 °C in the presence 
of the SWCNT-PAMAM-G3-Pd catalyst, it was possible to reach the quantitative yields 
already within 5 min, thus providing TOF values up to 550,000 h–1. This extremely high 
catalyst activity was explained in terms of the “release and catch” mechanism (Scheme 
36) [382–384] according to that Pd species, interacting with substrate molecules, leached 
from the nanoparticle surface, and, therefore, the catalytic cycle partly proceeded in the 
homogeneous phase; on the other hand, the released Pd species can be captured by the 
dendron moieties, forming nanoparticles again, but of a larger size (3.5 nm). Nonetheless, 
in spite of partial Pd leaching in the process, the catalyst SWCNT-PAMAM-G3-Pd could 
be easily recovered and maintain its efficiency in cross-coupling reactions, thus provid-
ing yields as high as 99% during 6 cycles at least [382]. 
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Scheme 36. Conception of “release and catch” mechanism on the example Suzuki cross-coupling 
reaction, catalyzed by PAMAM dendrimer-encapsulated nanoparticles, immobilized on SWNT 
[10,64,382]. Adapted with permission of American Chemical Society, from: Giacalone, F.; Campis-
ciano, V.; Calabrese, C.; La Parola, V.; Syrgiannis, Z.; Prato, M.; Gruttadauria, M. Single-Walled 
Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS Nano 
2016, 10, 4627–4636 [382]. Copyright American Chemical Society, 2016. 

Earlier, the anchoring of poly(aryl ether) Fréchet type dendrons to preliminary oxi-
dized multiwall carbon nanotubes (Scheme 37) [86,385] and poly(ester amide) Newkome 
type dendrons (Scheme 38) to single-wall carbon nanotubes [25,62,386] were described. 
In the last case, the material obtained was used for immobilization of CdS nanoparticles 
as small as 1.4 nm in diameter to develop very stable quantum dots (QD), maintaining 
their UV absorption behavior more than 3 months—in contrast to CdS nanoparticles, 
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stabilized by ungrafted dendrons and, therefore, tend towards aggregation and precipi-
tation [25,386–388]. 
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Scheme 37. Surface modification of multiwalled carbon nanotubes with poly(oxymethylpyrogallol) 
dendrons [86,385]. 
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Scheme 38. The anchoring of poly(ester amide) dendron of the 3rd generation to single-wall carbon 
nanotube and subsequent CdS nanoparticle impregnation [25,62,386]. 

Bimetallic PtRu nanoparticles of 2.6 nm in diameter, prepared by co-complexation 
method and encapsulated into PAMAM dendrimers covalently grafted to oxidized car-
bon nanofiber (CNF, Scheme 39), proved their efficacy in the electrocatalytic methanol 
oxidation, demonstrating a sufficiently better performance in comparison with commer-
cial PtRu/C catalyst [389]. 
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Scheme 39. The synthesis of PAMAM dendrimer-encapsulated PtRu nanoparticles, immobilized 
on carbon nanofiber [389]. Adapted with permission of Springer Nature, from: Maiyalagan, T. Pt–
Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite cata-
lysts and their application to methanol oxidation. J. Solid State Electrochem. 2009, 13, 1561–1566 [389]. 
Copyright Springer, 2008. 

Another strategy was developed for the anchoring of PPI dendrimers to the inner 
walls of the ordered mesoporous resins (OMR) [362,390]. The latter are carbon materials 
of SBA-15 or MCM-41 type, obtained by a soft-template method from the polymerization 
of phenol and formaldehyde in the presence of a poly(ethylene gly-
col)-block-poly(propylene glycol)-block-poly(ethylene glycol) template (Pluronic P123 or 
F127) [391]. Anchoring was conducted through the chloromethylation stage for the acti-
vation of the carrier surface (Scheme 40) [362,390]. Further deposition of Pd nanoparticles 
was performed in two-stage method, typical for PAMAM and PPI dendrimers and in-
cluding complexation with Pd2+ ions, followed by reduction in the presence of NaBH4 
[362,390]. The mean size was 3.7 nm, which was consistent with the pore size of 
MPF-PPI-G3 material (Figure 21) [362,390]. 
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Figure 21. TEM image (left) and particle size distribution (right) of the MPF-PPI-G3-Pd catalyst 
[362,390]. Reprinted with permission of John Wiley and Sons, from: Boronoev, M. P.; Zolotukhina, 
A. V.; Ignatyeva, V. I.; Terenina, M. V.; Maximov, A. L.; Karakhanov, E. A. Palladium Catalysts 
Based on Mesoporous Organic Materials in Semihydrogenation of Alkynes. Macromol. Symp. 2016, 
363, 57–63 [390]. Copyright 2016, John Wiley and Sons. 

Thus, obtained hybrid OMR-PPI-G3-Pd catalyst revealed a good performance in the 
hydrogenation of naphthalene (400 °C, 50 atm. of H2, 5 h, hexane) [362] and phenyla-
cetylene (80 °C, 10 atm. of H2, 15–60 min, solventless) [362], and an excellent one in the 
hydrogenation of 1-octyne, 4-octyne and 1-hexyne (80 °C, 10 atm. of H2, 15–120 min, 
solventless) [390]. Hydrogenation of octynes proceed with a quantitative conversion al-
ready within 15 min, giving TOF values up to 2000 min–1 (~120,000 h–1) and total selec-
tivity on alkenes of ~98%, with the isomerization portion for octenes not exceeding 10–
15% [390]. Replacement of 1-octyne for tinier 1-hexyne resulted in a noticeable decrease 
in both catalyst activity and selectivity (conversion of 99% within 60 min, total selectivity 
on alkenes of <90%, TOF ~ 1500 min–1/90,840 h–1), which authors attributed to the worse 
adsorption of 1-hexyne [392]. Replacement of linear alkynes by bulky phenylacetylene 
required 2 h for quantitative conversion (TOF ~1000 min–1/61,920 h–1), while selectivity on 
styrene was 92% [362]. 

Hydrogenation of naphthalene, in the presence of the same catalyst, resulted in the 
preferential decalin formation with the selectivity of 81% at a conversion of 90% within 5 
h (TOF ~ 220 min–1/13320 h–1) [362]. The major product of guaiacol hydrogenation was 
2-methoxycyclohexanol with the selectivity of 90–97% (100 °C, 50 atm. of H2, 1–5 h, H2O) 
[393]. Addition of sulfuric acid to the said catalytic system, as well as prolongation of the 
reaction time, favored the increased portion hydrodeoxygenation products, such as 
methylcyclohexane, methoxycyclohexane, and cyclohexanol, with the total selectivity 
being up to 98% at 100% guaiacol conversion, thus significantly exceeding those for a 
conventional Pd/C catalyst [394]. The OMR-PPI-G3-Pd catalyst did not lose its activity 
and selectivity at recycling in the 1-octyne hydrogenation [390], maintaining a conversion 
of more than 95% during 6 runs; however, it appeared unstable under the conditions of 
guaiacol [394] and, especially, of naphthalene hydrogenation [362]. 

Another interesting example of a “graft-to” convergent strategy was dendronized 
polymer material, bearing as side chains the alternating Fréchet type poly(aryl ether) and 
Newkome type poly(aliphatic ester) dendrons of the 3rd generation [75,392]. The syn-
thesis was performed via orthogonal double-click alkyne-azide cycloaddition and 
Diels-Alder reaction between poly(aryl ether) and poly(aliphatic ester) dendrons con-
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taining alkyne and furan-protected maleimide groups at their focal points, respectively, 
with linear polystyrene carrying azide and anthracene moieties in alternating blocks 
(Figure 22) [392]. 
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Figure 22. The synthesis of dendronized alternating block-co-polymer via double-click al-
kyne-azide and Diels-Alder cycloaddition [75,392]. Reprinted with permission of John Wiley and 
Sons, from: Tonga, M.; Yesilbag Tonga, G.; Seber, G.; Gok, O.; Sanyal, A. Dendronized Polystyrene 
via Orthogonal Double-Click Reactions. J. Polym. Sci. A: Polym. Chem. 2013, 51, 5029–5037 [392]. 
Copyright 2013, John Wiley and Sons. 

3.2.2. Convergent Dendrimer Grafting to Silica-Based Supports 
Rhee and Chung suggested the grafting of ready synthesized PAMAM dendrimers 

to amorphous silica via the reaction with (3-glycidoxypropyl)trimethoxysilane (GPTMS), 
followed by post-modification with chiral moieties on periphery (Scheme 41) [92]. The 
materials obtained exhibited a noticeable negative dendritic effect in the enantioselective 
addition of diethylzinc to benzaldehyde; conversion and enantiomeric excess did not 
exceed 80% and 20%, respectively and decreased with the increase in the dendrimer 
generation [92]. 



Polymers 2022, 14, 981 58 of 113 
 

 

Si O O
O

O
OSi

O
2OH

OH
OHSi

O
2

Si O O
O

O
O

PhMe, reflux, 3 h.
Si O

O

O
OSi

O
2

N
H

OH

Gn

MeOH, reflux, 4 h.

Si O
O

O
OSi

O
2

N
H

OH

Si O
O

O
OSi

O
2

N
H

OH

hexane, reflux, 3 h.

O

Ph

, MeOH, 500C 4 h., 3 d.1)
O

OMe

2)

3)

, MeOH, 500C 4 h., 3 d.NH2
H2N

O

Ph , hexane, reflux, 3 h.

N

HN
NHNH

HN

O

O

Gn

∗

∗

∗

∗

HO

OH

N

HN

NH

O

O

∗
NH

Gn+1

HN ∗

∗
OH

∗HO

 
Scheme 41. Covalent immobilization of PAMAM dendrimers on silica and subsequent 
post-modification with chiral capping [92]. 

Insertion of spacers between the dendrimer and chiral groups (Scheme 41) resulted 
in a slight increase in conversion and enantiomeric excess due to the better access of 
substrates to catalytic centers and weakening of multiple interactions among the chiral 
groups on the dendrimer surface [92]. The maximum conversions (up to 85%) and enan-
tiomeric excess (up to 37%) were found for the catalysts based on dendrimers of the 3rd 
and 4th generations. However, such catalysts gradually lose their activity at recycling 
[92]. 

The similar approach was applied for immobilization of G3 PAMAM dendrimers on 
the inner surface of titania nanotubes (TiO2 NT) [73]. It was discovered that anchoring of 
PAMAM dendrimers enhanced drug loading capacity and drug release properties of 
TiO2 NT, simultaneously decreasing the cytotoxicity of the latter. 

Vallet-Regí et al. offered the immobilization of PPI dendrimers of different genera-
tions in the pores of the ordered SBA-15 material, using preliminary dendrimer modifi-
cation by (3-isocyanatopropyl)triethoxysilane (Scheme 42) [74]. The composites synthe-
sized appeared as prospective drug deliverers, with the drug dosage directly controlled 
by the dendrimer generation via electrostatic and host–guest interactions [74]. 
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Scheme 42. Post-immobilization of PPI dendrimers in the SBA-15 channels via urethane bridge 
interactions [74]. 

Jayaraman and co-workers developed a heterogeneous Pd complex catalyst, based 
on a phosphine-terminated PETIM dendrimer of the 1st generation, anchored to amor-
phous silica, modified with (3-chloropropyl)trimethoxysilane (Scheme 43) [102]. Thus, a 
synthesized hybrid SiO2-PETIM-PPh2-Pd catalyst appeared highly active in the hydro-
genation of various olefins under the ambient conditions (25 °C, 1 atm. of H2, AcOEt). The 
yields of 94–100% were achieved within 1–5 h. The catalyst activity and reaction rate 
were strongly affected by the negative dendritic effect and decreased for sterically hin-
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dered substrates, especially with the internal C=C double bonds; maximum reaction rates 
were observed for styrenes with terminal C=C double bonds, while C=O double bonds 
and phenyl rings in the substrate structure remained untouched [102]. The catalyst 
SiO2-PETIM-PPh2-Pd demonstrated extremely high stability at reuse and storage, main-
taining 100% of styrene during 10 reaction cycles (25 °C, 1 atm. of H2, 1 h, AcOEt) [102]. 
Moreover, under the reaction conditions at recycling, full reduction of Pd2+ to Pd0 took 
place, and Pd nanoparticles of 2–4 nm in diameter were formed in situ without any Pd 
leaching or particle agglomeration observed [102]. 
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Scheme 43. Convergent grafting of phosphine-terminated PETIM dendrimer to silica and subse-
quent Pd nanoparticle and complex formation [102]. 

Maximov and Karakhanov suggested the grafting of PPI dendrimers of the 3rd 
generation to silica-polyamine composites (SPC) [395] via the Mannich reaction (Scheme 
44) [171]. Such hybrid organo-inorganic PPI dendrimer-containing material was further 
applied as a carrier for both mono- and bimetallic nanoparticles [171,393]. Two-step im-
pregnation of Pd(OAc)2, followed by reduction in the presence of NaBH4, resulted in 
well-dispersed Pd nanoparticles with a  mean particle size of ~2 nm, stabilized by both 
anchored PPI dendrimers and poly(allyl amine), simultaneously [171]. 
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Scheme 44. Immobilization of PPI dendrimers in the silica-polyamine composite and subsequent 
Pd nanoparticle deposition [167]. 

The synthesized SPC-PPI-G3-Pd catalyst demonstrated very high activity in the 
hydrogenation of styrene, phenylacetylene, and conjugated dienes (70 °C, 10–30 atm. of 
H2, 15–60 min, benzene or toluene as solvent) with TOF values reaching 100,000–230,000 
h–1, and thus rather exceeding those for SPC-Pd catalysts without grafted dendrimers in 
the structure [171]. The separate hydrogenations of styrene and phenylacetylene in the 
presence of a SPC-PPI-G3-Pd catalyst proceeded with similar rates; nonetheless, by 
carefully adjusting the reaction conditions (the reaction time, hydrogen pressure, and 
substrate/Pd ratio) it was possible to selectively convert phenylacetylene to styrene with 
a yield of ~82%. 

The product distribution in the hydrogenation of dienes was significantly depend-
ent on the intermediate stability [288,289] and C=C double bond accessibility in both the 
substrate and alkenes formed. The total selectivity on alkenes reached 93–99%, even at 
quantitative and near to quantitative diene conversions and hydrogen pressured of 30 
atm. (Scheme 45) [171], which rather exceeded that for Alper’s catalysts, based on PA-
MAM dendrons applied under much milder ambient conditions (25 °C, 1 atm. of H2, 
MeOH) [148]. Herein, the products of hydrogen trans-1,4-addition were predominant, in 
contrast to Pd nanocatalysts based on PAMAM or aryl-cored 
poly(carbosilane/triazol/aryl ether) dendrimers [148,150]. The SPC-PPI-G3-Pd catalyst 
proved its recyclability and could be reused several times with a slight decrease in activ-
ity due the mechanical losses [171]. 

H2, SPC-PPI-G3-Pd
+

87−90% 10−13%

H2, SPC-PPI-G3-Pd + + +
9−22% 1−9% 22−64% 25−58%

H2, SPC-PPI-G3-Pd
+ + +

28% < 0.5% 9.5% 62.5%  
Scheme 45. Selectivities in the hydrogenation of phenylacetylene and conjugated dienes at con-
versions higher than 90% in the presence of SPC-PPI-G3-Pd catalyst [171]. 
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Silver addition to palladium, supported on an SPC-PPI-G3 hybrid carrier, by the 
co-complexation method resulted in a drastic decrease in the catalyst activity and TOF 
values, not exceeding 30,000 h−1, but also in the noticeable increase in the selectivity on 
styrene in the phenylacetylene hydrogenation (80 °C, 10–30 atm. of H2, 15–60 min, sol-
ventless) [393]. By carefully adjusting the reaction conditions (the reaction time, hydro-
gen pressure, substrate/Pd and Pd/Ag ratios) it was possible to achieve a styrene yield as 
high as 89–93%. 

Hydrogenation of 1-octyne in the presence of SPC-PPI-G3-Pd/Ag catalysts under the 
said conditions was accompanied by the isomerization of C=C double bond in 1-octene 
formed that was typical for Pd-containing catalysts [116,124]. It should be noted that 
1-octyne and resultant octenes easily underwent hydrogenation compared with phe-
nylacetylene, and total yield of octenes did not exceed 83%, with the selectivity on 
1-octene not exceeding 77% among the other hydrogenation products [393]. Nonetheless, 
the hybrid bimetallic dendritic SPC-PPI-G3-Pd/Ag catalysts appeared highly stable and 
were recycled several times without any loss in activity and selectivity. 

Another approach for the synthesis of hybrid organo-silica ready den-
drimer-containing materials consisted in the co-hydrolysis in situ of Si(OEt)4 with PPI or 
PAMAM dendrimers, peripherally modified with (3-glycidoxy)propyltrimethoxysilane 
(Scheme 46) [396]. The silica channels were constructed around the dendrimer templates 
via the sol-gel-method, resulting in microporous material with a pore size of 1–2 nm 
(Figure 23a). Co-hydrolysis in the presence of additional polymer templates, such as 
Pluronic P123, favored the formation of SBA-15 type mesoporous material with pore 
diameters of 5.5–7.5 nm (Scheme 47, Figure 23b) [396]. In the presence of the polymer 
template, but in the absence of Si(OEt)4, it was possible to obtain a mesoporous den-
drimer network with the silanol groups in the node’s lack of the silica matrix (Scheme 48) 
[193]. It should be noted that, previously, the sol-gel-method via co-hydrolysis in situ was 
developed for organo-silica materials of SBA-15 and MCM-41 types, containing aromatic 
[397,398], bipyridyl [399] and chiral tartamide moieties in the matrix structure [400]. 
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Scheme 46. The synthesis of hybrid SiO2-PPI-G3 material [396]. 
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(a) (b) 

Figure 23. TEM images of SiO2-PPI-G3 (a) and meso-SiO2-PPI-G2 materials (b) [396]. 
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Scheme 47. The synthesis of hybrid meso-SiO2-PPI-G2 material [396]. 
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Scheme 48. The synthesis of hybrid meso-PPI-G2-Si material [193]. 

Thus, synthesized organo-silica dendrimer-based materials were applied as carriers 
for Pd and Ru nanoparticles, whose mean size and distribution appeared to be signifi-
cantly dependent on the carrier structure and dendrimer generation [193,396]. Herein, Ru 
nanoparticles mostly formed as dendrimer-encapsulated, with the mean particle sizes of 
1.0 and 1.3 nm for SiO2-PPI-G3-Ru and meso-SiO2-PPI-G2-Ru, respectively (Figure 24) 
[396], whereas Pd nanoparticles preferentially formed as dendrimer-stabilized with the 
mean particle sizes of 2.7–3.3 nm (Figure 25) [193]. Moreover, the shape of particle size 
distribution for the microporous catalyst SiO2-PPI-G3-Pd appeared similar to the pore 
size distribution of the initial carrier (Figure 25b) [193]. 
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Figure 24. TEM images of catalysts: (a) meso-SiO2-PPI-G2-Ru and (b) SiO2-PPI-G3-Ru [396]. 

  
(a) (b) 

Figure 25. TEM images of catalysts: (a) meso-SiO2-PPI-G2-Pd and (b) SiO2-PPI-G3-Pd [193]. 

Dendrimer-based organo-silica Pd-containing catalysts were studied in the hydro-
genation of various styrenes, alkynes, and dienes (80 °C, 10–30 atm. of H2, 15–60 min) 
[193]. In a whole, the catalytic behavior of meso-SiO2-PPI-G2-Pd and SiO2-PPI-G3-Pd was 
very similar to that for SPC-PPI-G3-Pd [171], and by carefully adjusting the reaction 
conditions (the reaction time, hydrogen pressure and substrate/Pd ratio) it was possible 
to achieve total alkene yields of 83–98% in the hydrogenation of alkynes and dienes [193]. 
Herein, the mesoporous meso-SiO2-PPI-G2-Pd catalyst appeared to be the maximum ac-
tivity in the hydrogenation of styrenes, including bulky and rigid trans-stilbene, 
4-phenylstyrene, and 1,1-diphenylethylene—in spite of clear-cut negative dendritic effect 
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(Figure 26)—with TOF values exceeding 231,000 h–1 for styrene [193], which was similar 
to those reached in the presence of the SPC-PPI-G3-Pd catalyst [171]. 
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Figure 26. Hydrogenation of styrenes in the presence of dendrimer-based organo-silica palladium 
nanocatalysts [193]. 

The highest conversions and total alkene selectivities of up to 99% in the hydro-
genation of terminal alkynes, tiny and flexible conjugated dienes, as well as of 
+I-substituted 4-tert-butylstyrene, were found for the microporous catalyst 
SiO2-PPI-G3-Pd, based on dendrimers of the 3rd generation and, therefore, providing a 
larger amount of donor amino groups, increasing electron density on Pd nanoparticles 
and thus facilitating the desorption of alkene formed [128,171,193,285]. Hence, the com-
petition between steric and electron factors took place, and maximum TOF values 
reaching up to 400,000 h–1 (Figure 27) were achieved for 1-hexyne, isoprene, and 
2,4-dimethyl-2,4-hexadiene [193]. The catalyst meso-PPI-G2-Si-Pd, obtained without silica 
matrix formation, was significantly inferior in performance both to meso-SiO2-PPI-G2-Pd 
and meso-SiO2-PPI-G2-Pd; nonetheless, it was the only catalyst providing the 
trans-cyclooctene formation with selectivity of 90–95% [193]. 
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Figure 27. Hydrogenation of alkynes (a) and dienes (b) in the presence of dendrimer-based or-
gano-silica palladium nanocatalysts [193]. 

Ru nanoparticles containing catalysts based on PPI dendrimers immobilized in silica 
pores by co-hydrolysis in situ were studied in the hydrogenation of alkylphenols, le-
vulinic acid, and its esters in water medium [396,401]. The main reaction products of 
phenol hydrogenation (70–85 °C, 10–30 atm. of H2, H2O, 0.5–6 h, water) were corre-
sponding cyclohexanols with total yield up to 98% [396]. Herein, cis-alkylcyclohexanols 
were predominant (up to 70% selectivity) at less reaction times (0.5–2 h), especially for 
bulky and/or ortho-substituted phenols (e.g., o-allylphenol or p-tert-butylphenol), while 
prolongation of reaction time (up to 6 h) resulted in the increased portion of 
trans-alkylcyclohexanols (up to 90%) due to the impact of basic dendrimer amino groups, 
stabilizing the intermediate enol form and thus facilitating its rotation [396,402,403]. A 
hydrogenolysis, the typical feature of Ru-based catalysts [1], was observed; its portion 
reached 20–30% among the reaction products, gradually decreasing from cresols to 
p-tert-butylphenol [396]. 

Hydrogenation of levulinic acid and its esters mostly proceeded through the pref-
erential cyclization to intermediate angelica-lactones, followed by reduction to 
γ-valerolactone (GVL) (Scheme 49), which was the major and desired reaction product 
(80–120 °C, 30 atm. of H2, H2O, 2–6 h, water) [401]. Basic PPI dendrimer amino groups, 
being able to deprotonate the levulinic acid molecules or to catalyze levulinic ester hy-
drolysis, were assumed to be responsible for the said reaction pathway (Scheme 50). 
Hence, for the SiO2-PPI-G3-Ru catalyst, based on dendrimers of the 3rd generation with 
the larger amount of basic amino groups, the selectivity on γ-valerolactone exceeded 90% 
even at conversions of 10–50% [401]. 
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Scheme 49. Possible reaction pathways for hydrogenation of levulinic acid and its esters [401]. 
Reprinted with permission of John Wiley and Sons, from: Maximov, A. L.; Zolotukhina, A. V.; 
Mamedli, A. A.; Kulikov, L. A.; Karakhanov, E. A. Selective Levulinic Acid Hydrogenation in the 
Presence of Hybrid Dendrimer-Based Catalysts. Part I: Monometallic. ChemCatChem 2018, 10, 222–
233 [401]. Copyright 2017, John Wiley and Sons. 
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Scheme 50. Hydrogenation of levulinic acid in the presence of PPI dendrimer-stabilized or den-
drimer-encapsulated Ru nanoparticles in water medium [401]. Reprinted with permission of John 
Wiley and Sons, from: Maximov, A. L.; Zolotukhina, A. V.; Mamedli, A. A.; Kulikov, L. A.; Ka-
rakhanov, E. A. Selective Levulinic Acid Hydrogenation in the Presence of Hybrid Den-
drimer-Based Catalysts. Part I: Monometallic. ChemCatChem 2018, 10, 222–233 [401]. Copyright 
2017, John Wiley and Sons. 
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For hydrogenation of both phenols and levulinic acid and its esters, the strong neg-
ative dendritic effect and competition between steric and electron factors took place, and 
mesoporous and a sterically less hindered meso-SiO2-PPI-G2-Ru catalyst appeared much 
more active than a microporous, sterically more hindered SiO2-PPI-G3-Ru catalyst, 
reaching TOF values up to 6000 h–1 versus 1800 h–1 for phenols [396] and 1830 h–1 versus 
930 h–1 for levulinic acid and its esters [401]. The increase in the substrate size resulted, on 
the one hand, in the respective decrease in activity for both catalysts, and on the other 
hand, it was surpassed by the sufficient +I-effect of substituent in the substrate, such as in 
o-allylphenol, p-tert-butylphenol, or ethyl levulinate, resulting in the increased activity 
for both catalysts (Figure 28) [396,401]. 
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Figure 28. Hydrogenation of phenols (a) and levulinic acid and its esters (b) in the presence of 
dendrimer-based organo-silica ruthenium nanocatalysts [396,401]. Reprinted with permission 
from: Maximov, A. L.; Zolotukhina, A. V.; Mamedli, A. A.; Kulikov, L. A.; Karakhanov, E. A. Se-
lective Levulinic Acid Hydrogenation in the Presence of Hybrid Dendrimer-Based Catalysts. Part I: 
Monometallic. ChemCatChem 2018, 10, 222–233 [401]. Copyright 2017, John Wiley and Sons. 

Dendrimer-based organo-silica was easily recoverable and proved their recyclability 
in the repeated hydrogenation of various substrates (styrene, 1,3-cyclohexadiene, and 
2,5-dimethyl-2,4-hexadiene for Pd catalysts [193]; phenol and levulinic acid for Ru cata-
lysts [396,401]) with just a slight decrease in activity due to the mechanical losses. 

4. Dendrimer Cross-Linking 
Dendrimer cross-linking, resulting in three-dimensional network formation, is one 

of the simplest approaches for the synthesis of heterogeneous dendrimer-based catalysts, 
not requiring the special carrier. It can be performed in two different ways. The first is the 
complex formation with transition metal ions, which are able to bind dendrimer end 
groups and thus provide the one-step synthesis of the recoverable network dendritic 
catalysts presenting as coordination polymers [124]. The second way implies the covalent 
dendrimer cross-linking, using various bi- or polyfunctional agents (diepoxides, diiso-
cyanates, polycarboxylic anhydrides, etc.) [241]. Both of these methods are further con-
sidered in the present review. 
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4.1. Coordination Dendritic Network Polymers 
In 2009, Maximov and Karakhanov reported the in situ formation of the heteroge-

neous dendritic coordination network during the Wacker oxidation of linear C6–C12 al-
kenes in the presence of CN-terminated PPI dendrimers and 
2,2’-biquinoline-4,4’-dicarboxylic acid N,N’-bis(3,3’-iminodipropionitrile)diamide 
(BQC-IPN) (PdSO4/CuSO4, 80 °C, 5 atm. of O2, H2O/EtOH, 1 h) [124,241]. It was estab-
lished that, initially, the homogeneous catalytic system precipitated quickly in the be-
ginning of the reaction, forming agglomerates of 50–200 nm in size, containing small 
particles of 1.5–2 nm, which were attributed to contracted dendrimer molecules (Figure 
29) [124]. 

 
Figure 29. TEM images of heterogeneous coordination dendritic catalyst PdII/CuII/DAB(CN)16 
formed in situ [124]. Reprinted with permission of Elsevier, from: Karakhanov, E. A.; Maximov, A. 
L.; Tarasevich, B. N.; Skorkin, V. A. Dendrimer-based catalysts in Wacker-oxidation: Unexpected 
selectivity to terminal double bonds. J. Mol. Catal. A: Chem. 2009, 297, 73–79 [124]. Copyright 2008, 
Elsevier. 

It was assumed that Pd2+ ions mostly coordinated on the dendrimer terminal C≡N 
groups, whereas Cu2+ ions did so on the internal tertiary amino groups or bipyridyl 
moieties, resulting in the sterically hindered dendritic network acting as nanoreactors for 
the selective oxidation of terminal alkenes (Figure 30) [124,241]. An increase in the den-
drimer generation and, therefore, in the CN/Pd ratio, led to the decrease in the reaction 
rate (negative dendritic effect), but favored the selective methylketone formation, reach-
ing 94% and 90% at 1-octene conversions of 37% and 27% for catalysts 
PdII/CuII/DAB(CN)16 and PdII/CuII/BQC-IPN, respectively [241]. Moreover, the use of 
simple, low-molecular nitrile ligands (CH3CN or PhCN) instead of high molecular regu-
lar branched dendrimers at the same CN/Pd ratio only retarded the reaction, but did not 
suppres the oxidation of isomeric alkenes, and inevitably formed in the presence of Pd 
catalysts [124,241]. 
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Figure 30. Formation of dendritic coordination networks and selective Wacker-oxidation of ter-
minal alkenes in their presence [124]. Adapted with permission of Elsevier, from: Karakhanov, 
E.A.; Maximov, A. L.; Tarasevich, B. N.; Skorkin, V.A. Dendrimer-based catalysts in Wack-
er-oxidation: Unexpected selectivity to terminal double bonds. J. Mol. Catal. A: Chem. 2009, 297, 73–
79 [124]. Copyright 2008, Elsevier. 

Reetz and Giebel developed heterogeneous Lewis acid catalysts based on tri-
flate-terminated PPI dendrimers of the 4th generation, cross-linked with scandium ions 
(Scheme 51) [404]. The synthesized material revealed the high activity and 
chemo-selectivity in the Mikayama, Diels-Alder, and Friedel-Crafts reactions, giving 
yields of target product up to 90% (Scheme 52), which authors explained in terms of the 
dendritic matrix swelling in water and, as a consequence, the facilitated substrate access 
to the inner catalytic centers [404]. The catalyst appeared easily recoverable and main-
tained its efficacy in several repeated cycles. 
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Scheme 51. The synthesis of networks, based on PPI dendrimers, cross-linked with Sc3+ ions [404]. 
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dendrimers, cross-linked with Sc3+ ions [404]. 

Majoral and Caminade suggested the coordination network catalyst, based on 
phosphazene-cored arylphosphite dendrimers, modified by 15-membered triolefinic 
triaza-macrocycles on periphery (Scheme 53) [405]. Neutral Pd species and clusters 
originated from Pd2(dba)4 (where dba was dibenzylidene acetone) or Pd(PPh3)4 coordi-
nated on C=C double bonds of macrocycles on the dendrimer periphery, thus bonding 
neighboring dendrimers (Figure 31). Additionally, S=P arising dendrons could form na-
noparticle-cored micelles (Figure 31). Hence, there were ensembles obtained typical for 
other coordination dendrimer-based materials (Figure 32) [124,405]. 
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Scheme 53. Modification of aryl phosphite dendrimers and subsequent synthesis of Pd complex 
catalyst precursor [405]. 
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Figure 31. A speculative representation aryl phosphite dendrimer binding to the coordination 
polymeric ensembles through the interaction of Pd (0) species or clusters with 15-membered tri-
olefinic triaza-macrocycles on the dendrimer periphery [405]. 

  
  

Figure 32. TEM images of Pd nanocatalysts, based on Caminade/Majoral dendrimers of the 0th 
generation, terminated by 15-membered triolefinic triaza-macrocycles [405]. Reprinted with per-
mission of American Chemical Society, from: Badetti, E.; Caminade, A.-M.; Majoral, J.-P.; More-
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no-Mañas, M.; Sebastián, R. M. Palladium (0) Nanoparticles Stabilized by Phosphorus Dendrimers 
Containing Coordinating 15-Membered Triolefinic Macrocycles in Periphery. Langmuir 2008, 24, 
2090–2101 [405]. Copyright 2008, American Chemical Society. 

Depending on the synthesis conditions and certain structure of dendrimer used, 
both metal complex and nanoparticle (2–5 nm) catalysts were obtained, which were fur-
ther tested in the Heck cross-coupling reaction between iodobenzene and butyl acrylate 
(Bu3N, THF, 60 °C, 24 h) [405]. In spite of the fact that all catalyst samples were initially 
isolated and could be recovered as solids, due to the low binding density, most of them 
behaved as homogeneous catalysts in the process. 

The best results with the yield of butyl cinnamate up to 96% were achieved for ho-
mogeneous catalysts: metal complex and Pd7 cluster. Also, these catalysts appeared eas-
ily recoverable and were recycled five times without any loss in activity [405]. This might 
be due to the well retention of Pd (0) species and small Pd7 clusters by the den-
drimer-appended macrocycle moieties, and suitable in size. The heterogeneous catalyst 
was inferior in activity to the homogeneous metal complex and cluster catalysts, giving a 
yield of butyl cinnamate not exceeding 89%. 

A strong negative dendritic effect was revealed: increase in the dendrimer genera-
tion from 0th to 4th, as a consequence in the size of Pd particles, resulted in the crucial 
decrease in conversion and subsequent Pd leaching at catalyst recycling [405]. Pd nano-
particles, located in the inner dendrimer cavities, appeared hardly accessible for substrate 
due to the multiple steric hindrances arising from the structure of 4th generation den-
drimer [405]. Moreover, in the case of aryl phosphite dendrimers, there was possible 
migration of nanoparticles from the dendrimer inner cavities to the outer surface, and, 
further, to the reaction medium [406]. 

4.2. Covalent Cross-Linked Dendrimer Networks 
Crooks and Bergbreiter, for the first time, used networks based on PPI or PAMAM 

dendrimers cross-linked with poly(3-methylthiophene) or poly(maleic anhy-
dride)-alt-poly(methyl vinylether) copolymer for developing thin films (4–43 nm), ap-
pearing to be thermo- and pH-responsive and have electroconductive and selective 
permeability properties, depending on the treatment conditions [314,407]. 

Independently, Maximov and Karakhanov suggested the cross-linking of PPI and 
PAMAM dendrimers with diisocyanates of various size and rigidity, and they were the 
first who offered to apply the obtained cross-linked dendrimer networks as carriers for 
heterogeneous nanocatalysts (Scheme 54, Figure 33) [241]. Herein, amino, amido, and/or 
hydroxyl groups in the structure of dendritic network carriers were responsible for the 
effective binding of metal ions and, as a consequence, for immobilization of metal na-
noparticles within a three-dimensional polymeric matrix consisting of the dendrimer 
moieties in the nodes, bridged with diurethane or aminoethanol ribs. The properties of 
the resultant materials, such as mean particle size, catalyst activity, and selectivity, were 
strongly influenced by the dendrimer nature and generation, as well as by the size, ri-
gidity, and polarity of cross-linking agents, and even by the metal deposition conditions 
[122,127,128,241,287,408,409], thus making dendrimer network carriers partly similar to 
the metal-organic frameworks (MOF), whose cell parameters and, therefore, the absorp-
tion, catalytic, and transport properties were analogously dependent on both size, nature, 
and rigidity of the organic ribs and in external conditions (temperature, solvent, pres-
sure) simultaneously [410,411]. 
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M+

1. Dendrimers (PPI, PAMAM) as templates for synthesis of 
nanoparticles and metal complex catalysts

2. Binding agents                           : their size and rigidity 
define the properties of the resulting catalyst

[H]

 
Scheme 54. The synthesis of nanocatalysts based on the dendrimer networks, cross-linked with 
organic bifunctional agents [193,241,287]. 
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Figure 33. Dendrimers and linkers used for dendritic network synthesis 
[122,123,127,128,241,287,408,409,412–415]. Reprinted and adapted with permissions of Elsevier, 
from: Karakhanov, E. A.; Maximov, A. L.; Zakharyan, E. M.; Zolotukhina, A. V.; Ivanov, A. O. 
Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of un-
saturated hydrocarbons. Mol. Catal. 2017, 440, 107–119 [128]; Karakhanov, E. A.; Maximov, A. L.; 
Zolotukhina, A. V. Selective semi-hydrogenation of phenyl acetylene by Pd nanocatalysts encap-
sulated into dendrimer networks. Mol. Catal. 2019, 469, 98–110 [241]. Copyright Elsevier, 2017 and 
2019; and of Springer Nature, from: Karakhanov, E.; Maximov, A.; Zolotukhina, A.; Kardasheva, 
Yu.; Talanova, M. Thermo-responsive Ruthenium Dendrimer-based Catalysts for Hydrogenation 
of the Aromatic Compounds and Phenols. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1264−1279 
[127]. Copyright Springer, 2016. 

Thus, PPI and PAMAM dendrimer network-based catalysts were developed, con-
taining Rh, Ru, and Pd nanoparticles successfully applied for hydrogenation of phenols 
[122,127,412], aromatic [127,408,413,414], and unsaturated compounds under the mod-
erate conditions (50–90 °C, 10–30 atm. of H2) [123,128,241,287,409,415]. The main reaction 
products were the same as for dendrimer-based silica supported catalysts [193,396], and 
typical for the metal nature under the applied conditions; after hydrogenation of aro-
matic compounds and phenols in the presence of Rh and Ru containing catalysts, there 
were corresponding alkylsubstituted cyclohexanes, cyclohexanols, and dihydroxycyclo-
hexanes [1,122,127,408,413,414]. In the presence of Pd-containing catalysts, based on the 
dendrimer networks, styrenes and dienes were selectively converted to corresponding 
ethylbenzenes and monoenes with the aromatic ring or conjugated C=C or C=O double 
bonds remained untouched [123,128,241,287,409,415]. 

In particular, it was found out that Ru catalysts, based on PPI dendrimers, 
cross-linked with hexamethylene-1,6-diisocyanate (HMDI) [122], were superior to those 
of Rh, based on PAMAM dendrimers, analogously cross-linked with 1,6-hexamethylene 
diisocyanate [412], in the hydrogenation of mono- and dihydric phenols, exhibiting TOF 
values up to 240,000 h−1 (Figure 34) [122]. Analogously, Pd nanoparticles, immobilized in 
the networks of PPI dendrimers, cross-linked with 4,4′-(3,3′-dimethoxy)diphenyl diisox-
yanate (DMDPDI), revealed the efficacy and selectivity in the hydrogenation of phe-
nylacetylene, α,β-unsaturated compounds and conjugated dienes, which were higher 
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than those for Pd catalysts based on DMDPDI cross-linked PAMAM dendrimers (Figure 
35) [128,409]. At the same time, PAMAM dendrimer-based catalysts appeared as more 
active in the hydrogenation of terminal linear alkenes and styrenes (Figure 35) [123,128]. 
The substrate selectivity for Pd catalysts, based on the networks of both PPI and PAMAM 
dendrimers, should be remarked, appearing in the highly superior activity for styrenes, 
dienes, and α,β-unsaturated compounds (i.e., containing the conjugated C=C double 
bonds) in comparison with linear and cyclic alkenes (1-octene, cyclohexene, etc.) by 15–90 
times [128,241]. 
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Figure 34. Hydrogenation of phenols in the presence of dendrimer network catalysts. Reaction 
conditions are: 85 °C, H2 30 atm., H2O [122,412]. 
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Figure 35. Hydrogenation of unsaturated compounds in the presence of dendrimer network cata-
lysts. Reaction conditions are: 80 °C, H2 5–10 atm. [128,241,409]. 

As for catalysts based on PPI dendrimers and immobilized in the silica pores [396], 
and those based on the networks of PPI dendrimers exhibited a noticeable competition 
between steric and electron factors. In most cases, the catalyst activity decreased with the 
increase in the substrate size and dendrimer generation [122,128,241,408,413] or when 
passing to the dendrimer network carrier, synthesized with the use of a less expanded 
linker (e.g., toluene-2,4-diisocyanate (TDI) instead of methylene-bis(p-phenylene diioso-
cyanate) (MPDI)) (Figure 33) [241]. On the other hand, the presence of strong +I or 
+M-substituents in the substrate structure [122,408] or the latter closely fitting to the 
network matrix mesh [409,413] may enhance the catalyst activity even for bulky sub-
strates, such as 4-tert-butylphenol [122], 4-tert-butylstyrene [413], ethyl- and butylben-
zenes, etc. [408]. A positive dendritic effect appearing in the increase in the reaction rate 
and selectivity with the increase in the dendrimer generation was observed in the hy-
drogenation of styrenes and phenylacetylene in the presence of Pd catalysts based on PPI 
dendrimers cross-linked with relatively long and flexible linkers, such as hexamethylene 
diisocyanate or glycerol triglycidyl ether [287,409], which was possibly due to the better 
stabilization and higher electron saturation of Pd nanoparticles by multiple donor amino 
groups in the case of PPI dendrimers of the 3rd generation. 

The influence of donor amino groups was found to be essential for the phenol hy-
drogenation in the presence of Rh and Ru catalysts, especially with regards to hydro-
genation of dihydric phenols, such as hydroquinone and resorcinol (Figure 34) [122,412]. 
In the last case, PPI dendrimers additionally stabilized the enol form for the intermediate 
product 1,3-cyclohexanedione, making it more liable to the further hydrogenation, thus 
drastically reducing the negative dendritic effect [122]. Analogously, the higher den-
drimer content in the network carriers (40–50% vs. 15–20% for organo-silica carriers with 
the dendrimers, immobilized in the silica pores [396]) resulted in the stabilization and 
facilitation of the rotation of the adsorbed enol form of intermediate alkyl-substituted 
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cyclohexanone [396,403], thus favoring a higher portion of the corresponding trans hy-
drogenation product [122] 

The use of a polymeric template on the stage of the network carrier synthesis 
(Scheme 55) along with the bulky and rigid dimethoxydiphenyl diisoxyanate linker af-
forded to develop highly expanded matrix, favoring to the formation of larger particles (5 
nm vs. 1.5–2.5 nm, typical for Pd nanoparticles, encapsulated in the networks of PPI 
dendrimers [287,409]) and, as a consequence, changing their electron properties [128,287]. 
Thus, there a highly selective catalyst was obtained for phenyl acetylene hydrogenation, 
maintaining a high styrene yield (~95–96%) even at quantitative conversions, hydrogen 
pressure of 30 atm., and prolonged reaction times (Figure 36) [128,287]. The maximum 
TOF values reached up to 185,000 h–1 [128,287]; moreover, me-
so-DAB-PPI-G3-DMDPDI-Pd appeared as the only catalyst, maintaining its activity in 
the phenylacetylene recycling [287]. Another way to change the catalyst electron proper-
ties was applied in the development of bimetallic alloyed PdRu nanoparticles, encapsu-
lated in the network of PPI dendrimers of the 3rd generation, cross-linked with hexa-
methylene diisocyanate, revealing the enhanced activity exclusively in the benzene hy-
drogenation (Figure 37) [408]. 
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Scheme 55. The synthesis of “mesoporous” dendrimer network catalysts, using template method, 
and the activities reached in the hydrogenation compounds [128]. Reprinted with permission of 
Elsevier, from: Karakhanov, E. A.; Maximov, A. L.; Zakharyan, E. M.; Zolotukhina, A. V.; Ivanov, 
A. O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of 
unsaturated hydrocarbons. Mol. Catal. 2017, 440, 107–119 [128]. Copyright 2017, Elsevier. 
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Figure 36. Phenylacetylene hydrogenation at different temperatures in the presence of 
DAB-PPI-G3-DMDPDI-Pd catalyst. Reaction conditions are S/Pd = 12930, H2 30 atm. [128]. Re-
printed with permission of Elsevier, from: from Karakhanov, E. A.; Maximov, A. L.; Zakharyan, E. 
M.; Zolotukhina, A. V.; Ivanov, A. O. Palladium nanoparticles on dendrimer-containing supports 
as catalysts for hydrogenation of unsaturated hydrocarbons. Mol. Catal. 2017, 440, 107–119 [128]. 
Copyright 2017, Elsevier. 
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Figure 37. Hydrogenation of aromatic compounds in the presence of catalysts, based on PPI den-
drimer networks. Reaction conditions are 80 °C, H2O, H2 30 atm. [408]. 

The influence of templates on the catalyst activity can be observed in the example of 
Ru catalysts, based on the sterically more hindered PPI dendrimer networks [122], which 
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are significantly inferior to those based on PPI dendrimers, immobilized in the silica 
pores and thus providing better substrate access to Ru nanoparticles [396]. Moreover, 
sterically hindered dendritic network carriers appeared to be much more sensitive to the 
substrate shape and geometry, resulting in better activity for para-substituted positively 
induced phenols, such as p-ethylphenol or p-tert-butylphenol [122,396]. 

Not only the template, but also the reaction conditions, such as temperature and 
solvent, on the stage of nanoparticle encapsulation had a great influence on the physical 
chemical properties and, as a consequence, on the hydrogenation activity, which was 
demonstrated on the example of Ru catalysts, based on PPI dendrimers cross-linked with 
poly(ethylene glycol) (PEG) diglycidyl ether [127]. Consisting of the blocks with differing 
low critical solution temperatures (LCST) (PEG chains and PPI dendrimers), these cata-
lysts revealed different thermos-responsive properties on the hydrogenation of both 
phenol and benzene, essentially depending on the reaction conditions on the stages of 
both catalyst synthesis and subsequent hydrogenation. It was found out that the use of 
the “bad” reaction conditions in the catalyst synthesis (inappropriate, “bad” solvent, e.g., 
THF instead of water, or temperature above LCST for polymer blocks, constituting the 
network support) favored the superior activity in the hydrogenation of phenol and, es-
pecially, of benzene, but resulted in the partial or complete loss of thermo-responsive 
properties [127] similar to thin films, based on PPI or PAMAM dendrimers, cross-linked 
with poly(maleic anhydride) [314]. 

Deposition of Rh or Pd nanoparticles on the networks of PPI and PAMAM den-
drimers under the conditions of supercritical CO2 (scCO2) resulted in the extremely effi-
cient catalysts, exhibiting TOF values up to 280 s−1 (>1,000,000 h−1) and 207 s−1 (>745,000 
h−1), respectively, at the metal loadings as low as 0.01–0.29% [416]. Herein, Rh catalysts, 
based on PAMAM dendrimers, revealed the highest activity in the hydrogenation of al-
kenes, such as 1-octene and, especially, styrene, and a noticeable negative dendritic effect 
was observed for catalysts on both PAMAM and PPI dendrimers. Pd catalysts appeared 
to be the most effective in the hydrogenation of conjugated dienes [415]. 

The presence of water was found to be crucial for hydrogenation of phenols and 
aromatic compounds in the presence of Ru catalysts [122,408,413]. Simultaneously, the 
dendritic matrix, cross-linked with diisocyanates, was subjected to Ru-catalyzed hy-
drolysis [122]. Nonetheless, the catalysts, based on the dendritic networks, can be suc-
cessfully reused several times without a significant loss in activity and selectivity under 
both aqueous (Ru, Rh) and non-aqueous conditions (Pd) [122,128,287]. 

Moreover, the network matrices, based on PPI dendrimers, appeared to be a suitable 
carrier for Ni-W sulfide catalysts, and successfully applied for the hydrogenation of 
naphthalene (350–400 °C, 50 atm. of H2, 5 h) [414]. The catalyst efficiency was found to be 
dependent on the synthesis conditions (ex situ or in situ), process temperature, and sul-
fidizing agent, and the best results (55% selectivity on decalins and 45% selectivity on 
tetralin at 98% conversion of naphthalene) were reached at 380 °C using the catalyst 
synthesized in situ and elemental sulfur as the sulfidizing agent [414]. It should be noted 
that PPI dendrimers may undergo retro-Michael addition under hydrogenation condi-
tions even at temperatures below 100 °C [61]; as a consequence, dendrimer network car-
riers, at least, were partially decomposed at 350–400 °C and 50 atm. of H2, under which 
the process was performed [394]. This might be an additional reason as to why in situ 
catalysts appeared more efficient. 

Ogasawara and Kato developed a mesoporous polymer Tailor-made catalyst based 
on PAMAM dendrimer-encapsulated nanoparticles [417]. This approach suggested the 
formation of small dendrimer-encapsulated Pd nanoparticles (~2 nm) in situ, simulta-
neously with the synthesis of the cross-linked polymeric matrix, outside the cavities, 
formed by PAMAM dendrimers (Scheme 56). The catalyst synthesized revealed high ac-
tivity in the Suzuki cross-coupling between phenylboronic acid and 
4-bromoacetophenone (80 °C, K2CO3, H2O), giving a quantitative conversion within 4 h 
with TOF values up to 2500 h–1 [417]. Replacement of the –M-acceptor acetyl group by the 
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C≡N group, possessing with the strong coordination effect, or by +M-donor OH or OCH3 
groups, resulted in a noticeable decrease in the catalyst activity. The catalyst exhibited 
good resistance to metal leaching and can be recycled eight times, maintaining the yield 
of cross-coupling target product of more than 90% [417]. 

Pd(OAc)2, AIBN

O
O

O

O

Microporous polymer

Pd NPs

PAMAM dendrimer  
Scheme 56. The synthesis of PAMAM dendrimer-encapsulated Pd nanoparticles, in situ immobi-
lized in the cross-linked polymer matrix [26,417]. Reprinted by permission of Springer Nature, 
from: Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A.V.; Kardasheva, Yu. S. Hydrogenation 
catalysts based on metal nanoparticles stabilized by organic ligand. Russ. Chem. Bull. Int. Ed. 2013, 
62, 1465−1492 [26]. Copyright 2014, Springer. 

The similar approach was applied by Nabavinia, Kanjilal, and Noshadi for the syn-
thesis of PEI dendrimer-encapsulated palladium nanoparticles, encaged into the resor-
cinol formaldehyde micro/mesoporous resin polymer network (MPR) in situ in the ab-
sence of the polymer template (Scheme 57) [416]. The catalyst activity and recyclability in 
the Suzuki cross-coupling reaction between phenylboronic acid and toluilhalide was 
found to be strongly dependent on the conditions of both catalyst synthesis (the solvent 
used) and cross-coupling reaction (arylhalide nature, temperature, solvent). The maxi-
mum efficacy was observed for the catalyst synthesized in water-ethanol medium, and 
the quantitative conversions for 4-iodotoluene were observed already within 30–50 min 
at 85 °C using water-ethanol medium again and K2CO3 as a base. For 4-bromotoluene, the 
conversion of about 80% was reached within 5–6 h at 110 °C using water-DMF medium 
and K2CO3 as a base. The synthesized PEI-MPR-Pd catalysts revealed high thermal sta-
bility and good resistance to metal leaching and thus can be recycled several times 
without a noticeable loss in activity and used in the continuous-flow micro set-up, with 
conversion reaching 62% at 85 °C and a flow rate of 0.2 μL/min [416]. 
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Scheme 57. The synthesis of PEI dendrimer-encapsulated Pd nanoparticles, in situ immobilized in 
the resorcinol-formaldehyde polymer network [416]. 

5. Magnetically Separable Heterogeneous Dendrimer-Based Catalysts 
The use of nanoparticles and carriers possessing ferromagnetic properties, opens the 

way for versatile design of the easily and effectively recoverable catalysts, essentially 
diminishing the metal losses and, therefore, the cost of the process and target products 
[10,62,64,418,419]. Moreover, the presence of iron or nickel oxide in the nanoparticle core 
provides not only the easy catalyst separation, but also is able to enhance the catalytic 
activity selectivity, and even to change the reaction pathway [418] that has been demon-
strated on the examples of Ru-catalyzed nitrobenzene hydrogenation [420], Zn-catalyzed 
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methanol synthesis from syngas [421], selective Ru-catalyzed hydrogenolysis of cellulose 
to ethylene glycol in water [422], and zeolite ZSM-5 catalyzed selective methanol con-
version to C5–C8 and C9–C11 hydrocarbons (MTH) [423]. 

With respect to dendrimer-based materials, magnetic separation can be applied to 
both homogeneous and heterogeneous catalysts [10,62,64,419]. In the first case, it is real-
ized through the dendrimer-encapsulated mono- or bimetallic core-shell nanoparticles, 
where the core is magnetically active metal or metal oxide (Fe, Co, Ni) and the shell is a 
catalytically active metal (Ru, Pt, Pd, Rh etc.) (Figure 38, left); on the other side, there can 
be a synthesized nanoparticle-cored dendrimer, where there is magnetically active metal 
or metal oxide again, while catalytic centeres are located elsewhere in the dendron moi-
ety (Figure 38, right) [419,424,425]. Thus, the iron oxide (Fe2O3) nanoparticle cored mel-
amine dendrimer, functionalized with Pd phosphine complexes on the termini (Figure 
39), proved its efficacy in the Suzuki cross-coupling reaction between various arylhalide 
and meta-substituted arylboronic acids (K2CO3, CH2Cl2/DMF, 12 h), giving yields of 72–
81%, depending on the halide and substituent nature [425]. In spite of the occurrence as 
homogeneous catalyst, this hybrid material appeared easily recoverable under the ex-
ternal magnetic field and was used in the subsequent reaction cycles without any loss in 
activity [425]. 

Fe3O4Fe3O4

Dendrimer-encapsulated magnetic nanoparticle

Dendrimer core
magnetic nanoparticle

 
Figure 38. Dendrimer-encapsulated (left) and dendrimer core magnetically active nanoparticles 
(right), which may be used as homogeneous catalysts or their precursors [62,419,424,425]. 
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Figure 39. The typical structure of heterogeneous magnetically separable dendrimer-based catalyst 
in the example of iron oxide nanoparticle-cored melamine dendrimer [419,425]. 

Heterogeneous dendrimer-based magnetically separable catalysts can be synthe-
sized in different ways [419]. Nonetheless, in the structure of such catalysts there can be 
distinguished the following main constituents (Figure 39) [419,425]: (1) the magnetic core 
(Fe2O3, Fe3O4, Co, Ni), which may be additionally coated with silica or polymer; (2) den-
drimers or dendrons, immobilized on the magnetic core using covalent attachment 
(convergent or divergent), π–π interactions, or hydrogen bonds; (3) catalytic centers 
(metal complexes or nanoparticles), located inside or outside the dendrimer moiety. 
Several examples for the synthesis and application of magnetically separable dendritic 
catalysts are further considered in the present review.  

5.1. Ferrous Oxide Core Magnetically Separable Dendritic Catalysts 
Bronstein et al. developed hybrid magnetically sensitive material Den-Fe3O4 based 

on Müllen-type polyphenylene pyridyl-terminanated dendrons of the 1st generation, 
covalently attached to iron oxide nanoparticles of 18–25 nm in size (Scheme 58) [426–428]. 
Subsequent impregnation with Pd2+ ions, coordination on pyridyl moieties, followed by 
molecular hydrogen reduction, resulted in well dispersed Pd nanoparticles of 0.9–1.9 nm 
in diameter, uniformly distributed on the surface of iron oxide (Figure 40) [426–429]. 
Herein Pd species functioned as peculiar linking nods between dendrimer-coated iron 
oxide nanoparticles—similar to Pd2+, Cu2+ and Sc3+ ions in the dendrimer coordination 
network catalysts [124,241,404]—thus facilitating the catalyst aggregation and separation 
under the magnetic field [426]. 
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Scheme 58. The synthesis of Pd nanoparticles, encapsulated in polyphenylenepyridyl dendrons, 
covalently attached to magnetic Fe3O4 core [426–428]. 

  
  

Figure 40. TEM image of Den-Fe3O4 magnetic-sensitive dendronized carrier (left) [428] and 
HRTEM image of Pd-Den-Fe3O4 catalyst (right) [426]. Reprinted by permission of Royal Society of 
Chemistry, from: Yuzik-Klimova, E. Y.; Kuchkina, N. V.; Sorokina, S. A.; Morgan, D. G.; Boris, B.; 
Nikoshvili, L.Zh.; Lyubimova, N. A.; Matveeva, V. G.; Sulman, E. M.; Stein, B. D.; Mahmoud, W. E.; 
Al-Ghamdi, A. A.; Kostopoulou, A.; Lappas, A.; Shifrina, Z.B.; Bronstein, L. M. Magnetically Re-
coverable Catalysts Based on Polyphenylenepyridyl Dendrons and Dendrimers. RSC Adv. 2014, 4, 
23271–23280 [428]. Copyright 2014, Royal Society of Chemistry. 

The synthesized catalyst Pd-Den-Fe3O4 proved its efficacy in the Suzuki 
cross-coupling reaction between phenylboronic acid and various 4-bromoarenes 
[426,427] and semi-hydrogenation of dimethylethynylcarbinol (DMEC) to dimethylvi-
nylcarbinol (DMVC) [428,429]. In the last case, the yields of target product and TOF val-
ues as high as 90–98% and 5760–33,480 h–1, respectively, were reached already after 0.5–1 
h at 90 °C and atmospheric hydrogen pressure (Scheme 59a) [428,429]. Moreover, tha 
Pd-Den-Fe3O4 catalyst maintained its activity and highest selectivity on dimethylvinyl-
carbinol in several repeated cycles [428,429]. 
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Scheme 59. Reactions, catalyzed by Pd-Den-Fe3O4 nanoparticles [426–429].  

The best yields as high as 90% in the Suzuki cross-coupling reaction between phe-
nylboronic acid and 4-bromoanisole were reached after 1 h at 70 °C, using K2CO3 as a 
base and dioxane/water mixture as a reaction medium [426]. The use of hyperbranched 
pyridylphenylene polymer (PPP), cross-linked with diphenyl ether moieties and 
Pd(OAc)2, supported on magnetic silica (MS), allowed it to reach quantitative yields in 
Suzuki cross-coupling with electron withdrawing substrates (4-bromobenzaldehyde, 
4-bromonitrobenzene) already within 3–15 min with TOF values up to 23,500 h–1 
(H2O/EtOH, Na2CO3, 60 °C) [427]. 

Moreover, the catalyst Pd-Den-Fe3O4 appeared suitable for the process proceeding 
in the continuous-flow microreactor where catalyst beds were immobilized, using the 
constant magnetic field (Scheme 59b) [426]. The best results (conversion of 17–18% and 
selectivity of 53–55% on 4-phenylanisole) were achieved at 70 °C, flow rate of 0.2 mL/min, 
and pressure of 5 atm. for double-sided glass reactor and at 90 °C, flow rate of 0.2 
mL/min, and pressure of 10 atm. for double-sided stainless-steel reactor, respectively. 
Herein, no Pd leaching was observed in the eluate after storing the samples for 1 week 
[426]. 

Rosario-Amorin, Nlate, and Heuzé suggested the Pd complex catalysts based on 
bis(aminomethyl-P,P-dialkylphosphine) terminated poly(alkyl aryl ether) dendrons co-
valently grafted to γ-Fe2O3 nanoparticles of 300 nm in diameter, coated with polycar-
boxylic acid (Figure 41) [430]. These catalysts revealed a noticeable positive dendritic ef-
fect in the Suzuki cross-coupling reaction between arylbromides and phenylboronic acid 
at 65 °C, using NaOH a base and THF/triton X405/water as a reaction medium (Scheme 
60). The maximum yields, as high as 100% within 0.5–1 h, were achieved for arylbro-
mides with strong –M-para-substituents (-C(=O)H, -NO2), whereas +I-substituents, espe-
cially in ortho-position to Br or B(OH)2 group in the substrate, vice versa, retarded the 
reaction. Nonetheless, all of the synthesized hydride dendritic catalysts appeared easily 
recoverable by means of magnetic separation and successfully reused in 25 reaction cy-
cles with just a slight decrease in conversion (100% → 95%) [430]. 
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Figure 41. Palladium complex catalyst, based on poly(alkyl aryl ether) dendrons, covalently at-
tached to magnetic Fe2O3 core coated with carboxylic polymer [430]. Adapted with permission of 
John Wiley and Sons, from: Rosario-Amorin, D.; Gaboyard, M.; Clérac, R.; Vellutini, L.; Nlate, S.; 
Heuzé, K. Metallodendritic Grafted Core–Shell γ-Fe2O3 Nanoparticles Used as Recoverable Cata-
lysts in Suzuki C–C Coupling Reactions. Chem. Eur. J. 2012, 18, 3305–3315 [430]. Copyright John 
Wiley and Sons, 2012. 
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Scheme 60. Suzuki cross-coupling in the presence of heterogeneous dendronized magnetic nano-
catalysts [430]. 

Astruc and co-workers have designed well-recoverable materials based on 
PEG-terminated poly(carbosilane/triazol/aryl ether) dendrimers and dendrons, both co-
valently attached (Figure 42) and immobilized by means of hydrogen bonds on the sur-
face of silica coating Fe3O4 or Fe2O3 nanoparticles (Scheme 61), called superparamagnetic 
iron oxide nanoparticles (SPIONs) [10,64,431–433]. Impregnated with Pd nanoparticles 
with a mean size of 1.5–3 nm, these catalysts appeared very effective in the various 
cross-coupling and alcohol oxidation reactions under moderate conditions (Scheme 62), 
giving the quantitative yields after 24 h at 60–100 °C and TOF values up to 920 h–1 
[432,433]. A strong positive dendritic effect on the catalyst activity and stability was re-
vealed, making possible a successful recovery under the magnetic field and subsequent 
repeated use up to 10 times [432,433], thus significantly surpassing nondendritic mag-
netically separable catalysts with γ-Fe2O3@SiO2 core [431]. Herein, bulk dendritic frag-
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ments afforded the localization of Pd nanoparticles near the SPION core surface, thus 
making the catalyst more robust and stable [431]. 
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Figure 42. PEG-terminated poly(carbosilane/triazol/aryl ether) dendrons, covalently attached to 
γ-Fe2O3 superparamagnetic nanoparticle coated with silica [431,432]. Reprinted and adapted with 
permission of John Wiley and Sons, from: Wang, D.; Deraedt, C.; Salmon, L.; Labrugère, C.; 
Etienne, L.; Ruiz, J.; Astruc D. Efficient and Magnetically Recoverable “Click” PEGylated γ-Fe2O3–
Pd Nanoparticle Catalysts for Suzuki–Miyaura, Sonogashira, and Heck Reactions with Positive 
Dendritic Effects. Chem. Eur. J. 2015, 21, 1508−1519 [432]. Copyright 2014, John Wiley and Sons. 
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Scheme 61. The synthesis of Pd nanoparticles, stabilized by PEG-terminated triazol arene-cored 
dendrimers, immobilized on silica-coated γ-Fe2O3 superparamagnetic core by means of hydrogen 
bonds [431,433]. Adapted with permission of John Wiley and Sons, from: Deraedt, C.; Wang, D.; 
Salmon, L.; Etienne, L.; Labrugère, C.; Ruiz, J.; Astruc, D. Robust, efficient, and recyclable catalyst 
by impregnation of dendritically preformed Pd nanoparticles on magnetic support. ChemCatChem 
2015, 7, 303−308 [433]. Copyright 2014, John Wiley and Sons. 
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Scheme 62. Reactions, catalyzed by Pd nanoparticles, immobilized on γ-Fe2O3/SiO2 core support, 
coated with PEGylated poly(carbosilane/triazol/aryl ether) dendrimers and dendrons [10,432,433]. 

Alper at al. suggested well recoverable Rh-containing catalysts, based on PAMAM 
dendrons covalently attached to silica coated iron oxide Fe3O4 (Figure 43) using a diver-
gent strategy for styrene hydroformylation [419,434]. The quantitative conversions and 
branched/linear ratios of more than 40:1 after 16–20 h were reached at 40–50 °C, 70 atm. of 
CO/H2 (1:1), using CH2Cl2 as a reaction medium, and the highest branched product yield 
of up to 99% were obtained for the substrates with –M substituents (e.g., 4-vinylbenzoic 
acid). An increase in the dendron generation influenced slightly negatively on the 
branched/linear ratio (44:1 for G1 and 40:1 for G3), but rather positively on the catalyst 
stability, and conversions of 98–100% maintained during 5 reaction cycles [434]. 

  



Polymers 2022, 14, 981 92 of 113 
 

 

O

O

O

Si N

NH

NH
O

O
N

N

Fe3O4

SiO2

SiO2

P

RhP

P Rh

P

Cl

Cl

O OH O OH

O

+

O OH

O

> 99 : 1

Rh magnetic dendritic catalyst
CO/H2 (1:1) 70 atm., CH2Cl2, 50 0C, 16 h.

 
Figure 43. Rhodium complex catalyst, based on PAMAM dendrons, covalently attached to sili-
ca-coated magnetic Fe3O4 core [434]. Reprinted (adapted) with permission of American Chemical 
Society, from: Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M. L. Metal Supported on Dendronized 
Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc. 2006, 128, 
5279–5282 [434]. Copyright 2006, American Chemical Society. 

Os (VI) heterogenized metal complex catalysts, based on the tetraalkylammonium 
salts, covalently attached to silica coated iron oxide Fe3O4 via 
(3-aminopropyl)tetraoxysilane bridge and additionally stabilized by poly(aryl ether) 
dendrons, where the latter one of the substituents at quaternary nitrogens (Figure 44) 
were successfully applied in the dihydroxylation of both linear and cyclic olefins (Scheme 
63) [435]. The diol yields of 87–97% were achieved after 2–9 h under mild conditions 
(methylmorpholine N-oxide (NMO) as an oxidant, room temperature, acetone/water as a 
reaction medium), thus being significantly superior to the control catalyst, giving a yield 
of 85% after 5 h (Figure 44). The positive dendritic effect on both the reaction rate and 
catalyst stability was found, and the catalyst, based on the dendron of the 2nd generation, 
proves its reusability in the oxidation of various alkenes, maintaining the diol yields of 
90–97% during 5 cycles at least [435]. 
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Figure 44. Heterogeneous magnetically recoverable Os-containing catalysts for alkene dihydrox-
ylation: control non-dendritic catalyst (left) and dendron-doped (right) [435]. 
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Scheme 63. Dihydroxylation of olefins in the presence of Os catalysts [435]. 

5.2. Co Core Magnetically Separable Dendritic Catalysts 
Caminade, Majoral, and Ouali developed magnetically separable Pd complex cata-

lysts, formed in situ by the interaction of palladium (II) acetate with diphe-
nylphosphite-terminated polyphosphazene dendrimers [436]. The catalyst heterogeniza-
tion was accomplished using pyrene moiety at the dendron focal point via π–π interac-
tions with graphene-coated cobalt magnetic nanoparticle (Co MNP) (Scheme 64) [419]. 
Thus, synthesized catalysts were successfully applied in the Suzuki cross-coupling reac-
tion (Scheme 65). The quantitative conversions were reached for –M (-C(=O)CH3, 
(-C(=O)OH) para-substituted arylbromide, coupled with unsubstituted phenylboronic 
acid, after 15 h at 60 °C, using Na2CO3 as a base, H2O/THF mixture as a reaction medium, 
and zero generation dendrons as a stabilizing ligand [436]. During the reaction, the cat-
alyst immobilized and turned to a homogeneous form and was easily recovered under 
the external magnetic field by the temperature cooling down to 20–25 °C, thus resulting 
in the π–π interactions renewal [419,436]. Hence, using this release and catch strategy, 
the catalyst can be successfully reused up to 12 times without any loss in activity 
[419,436]. 
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Scheme 65. Suzuki-cross-coupling reaction in the presence of pyrene-tagged polyphosphazene 
dendrimers and Co magnetic nanoparticles [436]. 

6. Conclusions 
Dendrimers are a unique class of organic compounds. Due to their branched, regular 

structure, and a variety of types and possibilities for modification, dendrimers have 
found  wide applications in nanomedicine, chemical engineering, light and electron 
sensing devices, and, especially, in nanocatalysis. The present review has compiled the 
common methods for the synthesis and application of the dendritic catalysts, especially 
emphasizing the advances in design of the heterogeneous dendrimer-based materials 
during the last two decades. As one can overview, in spite of the variety of the synthetic 
routes, developed for heterogeneous dendritic catalyst, most of them can be narrowed 
down to three main approaches. 

The simplest is the wetness impregnation of various heterogeneous carriers, such as 
ordered mesoporous silica, carbon black, carbon nanotubes, or graphite with the colloidal 
solution of dendrimer-encapsulated nanoparticles. The resistance to metal leaching and, 
therefore, the catalyst recyclability are provided, and on the one hand, by hydrogen 
bonds or π–π interactions between dendrimer molecules and carrier, and, on the other 
hand, by the retention of metal nanoparticles inside the cavities of higher generation 
dendrimers—similar to homogeneous dendritic catalysts. Thus, synthesized catalysts 
appeared suitable for the severe industrial conditions and processes, such as hydrocar-
bon hydrogenation, dehydrogenation, ring-opening, isomerization, oxidation, etc. 

The second approach is the covalent grafting of dendrimers or dendrons to hetero-
geneous carriers (amorphous and mesoporous silica, polystyrene, carbon nanotubes), 
thus stabilizing the dendritic ligand. This strategy can be realized both in convergent and 
divergent ways; the convergent way, using ready-prepared dendrimers and dendrons, 
seems to be advantageous, enhancing the coating yield and diminishing the defects in the 
structure of future material. Herein, the certain synthetic route strongly depends on both 
the dendrimer and carrier nature. Dendrimer anchoring to silica-based supports results 
in the hybrid organic-inorganic, or organo-silica materials. 

The third approach implies the synthesis of dendrimer networks carriers. Den-
drimers can be bound here by transition metal ions, such as Pd, Cu, Sc, etc., forming co-
ordination polymer networks, acting as acid-bases and metal complex catalysts. Behavior 
of such catalysts is strongly dependent on the dendrimer nature. Thus, sterically hin-
dered PPI dendrimer of higher generations (3rd and 4th) are able to provide the best re-
action yield and selectivity. Vice versa, phosphazene-cored aryl phosphite dendrimers 
are much more effective at zeroth generation. Otherwise, dendrimers can be cross-linked 
with diepoxides, diisocyanates, etc., thus resulting in fully organic heterogeneous carri-
ers, which can be speculated as a peculiar analogue of metal-organic frameworks. The 
properties of these materials and their behavior in catalysis are strongly dependent on 
the dendrimer nature and generation, on the one side, and on linker size, rigidity, and 
polarity, on the other side. 

Finally, magnetically separable materials can be synthesized, using both weak in-
teractions (hydrogen bonds, π–π interactions) and covalent grafting between dendrimer 
or dendron and magnetic cores, often coated with silica, carbon, or polymer shell. 

Metal appending for both grafted dendritic materials and dendrimer networks is 
conducted similar to procedures for the synthesis of homogeneous dendrimer-based 
catalysts, and complex formation between the dendrimer functional node and/or end 
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groups and metal ions or low-molecular complexes is the driving force for the metal im-
pregnation inside the dendritic carrier. Both monometallic and bi- or polymetallic het-
erogeneous dendritic catalysts can be synthesized in this way. Among others, polyamine 
dendrimers (PAMAM, PPI, PETIM, PEI) are characterized by commercial ability, rela-
tively simple synthetic procedure and, first of all, the large amount of donor groups able 
to catch metal and complex formation; hence, the overwhelming majority of the catalyst 
examples, illustrated in the review, refers to dendrimers of the said types. 

Heterogenized dendrimer-based catalysts are obtained and stored as sol-
ids/powders similar to conventional heterogeneous catalysts. Nonetheless, various ex-
amples in hydrogenation, hydroformylation, oxidation, cross-coupling reactions, etc. 
have revealed them not only to maintain their efficacy at recycling, being easily recov-
erable, but also to exhibit performance, often superior to analogous homogeneous cata-
lysts, with TOF values reaching up to 400,000 h–1. Herein, dendrimer moieties acted as 
nanoreactors, preventing nanoparticle agglomeration and metal leaching and providing 
a high reaction rate and selectivity. Reaction in these nanoreactors may proceed in a 
pseudo-homogeneous way on small nanoparticles and clusters (nanoheterogeneous ca-
talysis) or on the metal complex centers, attached to heterogenized dendrimers or den-
drons. The “Release and catch mechanism, suggesting the temporary process transition 
to homogeneous phase, can also take place. Moreover, polyamine dendrimers (PPI, 
PAMAM, PETIM) in water medium may act as acid-base catalysts, thus additionally in-
creasing the reaction rate and directing the reaction pathway. 

Depending on both dendrimer and reaction type, as well as on the substrate elec-
tronic properties, together influencing the stability and accessibility of catalytically active 
species, a positive or negative dendritic effect can take place. In some cases, e.g., 
semi-hydrogenation of alkynes or conjugated dienes or hydrogenation of phenols, the 
selectivity can be affected by both the dendrimer type—similar to homogeneous den-
drimer-based catalysts—and the dendrimer portion in the carrier. 

The catalysts, based on the dendrimer networks, should be especially remarked, as 
their properties (mean particle size and distribution, thermoresponsivity, efficacy and 
selectivity) have appeared to be directly influenced by several factors simultaneously. 
Those are the dendrimer type and generation; linker size, rigidity, and polarity; reaction 
conditions for the network synthesis and metal deposition (temperature below or above 
LCST, “good” or “bad” solvent, the presence or absence of polymeric template, super-
critical medium etc.). Varying these parameters, one can obtain the efficient catalysts for 
hydrogenation of linear alkenes to alkanes or, vice versa, of phenylacetylene to sty-
rene—even at quantitative substrate conversions. 

Hence, heterogeneous dendrimer-based catalysts have proved their efficacy and 
recyclability in various chemical processes. In spite of many advances in this field, the 
design of heterogeneous dendritic catalysts is still developing, featuring versatile ap-
proaches. 
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