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Abstract: A refractive index of dielectrics was modified by several methods and was known to have
direct influence on optical forces in nanophotonic structures. The present contribution shows that
isomerization of photoswitching molecules can be used to regulate refractive index of dielectrics
in-situ. In particular, spectroscopic study of a polydimethylsiloxane–arylazopyrazole (PDMS–AAP)
composite revealed that refractive index of the composite shifts from 2.0 to 1.65 in trans and cis
states, respectively, of the embedded AAP. Based on this, a proposition is made for a waveguide
structure, in which external UV/Vis source reversibly regulates the conformation of the PDMS–AAP
core. Computational study is performed using Maxwell’s equations on buried waveguide structure.
The simulation, implemented in PYTHON, sequentially utilizes empirical refractive indices of the
composite in the isomeric states in lieu of regulation by a source. The simulation revealed highly
confined wave propagations for injected signals of 340 and 450 nm wavelengths. It is observed
that the cis state suppresses higher order mode when propagating UV wavelength but allows it
for visible light. This modal tuning demonstrated that single mode can be selectively excited with
appropriate waveguide dimensions. Further impact of the tuning is seen in the optical force between
waveguide pair where the forces shift between attractive and repulsive in relation to the isomeric
state of the PDMS–AAP core. These effects which stem from the adjustment of refractive index by
photoisomerization suggests that in-situ regulation of index is achievable by successful integration of
photoswitching molecules in host materials, and the current PDMS–AAP composites investigated in
this study can potentially enhance nanophotonic and opto-mechanical platforms.

Keywords: arylazopyrazole; polydimethylsiloxane; waveguide; optical force

1. Introduction

The progress of modern technology rests exclusively on the properties of artificial
materials. The interaction of light with electronic and mechanical characteristics of such
materials pushes efforts in guided optics, optoelectronics, and optofluidic platforms. Light-
related phenomena in materials such as bandgap, photoconductivity, wave confinement,
etc., very well depend on the refractive index, such that control of the latter is one means to
modify phenomena of interest. Moreover, correlation of refractive index and frequencies
has a general interpretation in the Kramer–Kronig (KK) relation [1]. In a recent study of
hemoglobin solution where the refractive index depended on hemoglobin concentration, it
was demonstrated that KK relation can be transformed in terms of wavelength [2], while
Kim et.al showed that the relation is also differentiable, which is suitable for practical
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measurement without the knowledge of the imaginary part of the index [3]. These reports
imply that refractive index of a material for a set range of wavelengths can be interpreted
by a power series, whose coefficients consist of derivatives of the KK relations to accom-
modate nonmonotonic variations that may exist. Enhancement of index is important in
nanophotonics, where wave confinement is central and revived interest in optical forces
between photonic channels [4,5]. Due to their pivotal role in photonic devices, polymeric
materials, besides other dielectrics, draw efforts in the manipulation of refractive indices.
Adjustments were achieved via introduction of co-polymers, organic rings, and metal
and semiconducting nanoparticles [6–9]. Also, at synthesis level, index modification was
attained by dopant-controlled polymerization [10,11]. Consequently, there is simultaneous
investigation of waveguide structures of these materials [12,13] and waveguide–waveguide
or waveguide–substrate interaction forces [14,15]. As demonstrated by Povinelli [16], the
force can be positive (repulsive) or negative (attractive), and this is due to evanescent
coupling, i.e., by the attenuated wave in the clad. Thus, phenomenological description of
the force can be in the form, F(x) = ±F(0)e−σx, corresponding to zero evanescent coupling
wave when the separation x → ∞ . F(0) is the value at zero separation of the structures,
and σ is a constant. Rigorous considerations showed this force to depend on refractive
index, while the attribute and strength can be tuned respectively by phase difference and
mode of waves propagating in the channels [4,17]. Since refractive index is crucial to the in-
teraction force, it makes sense to consider that if index can be modified in-situ, it potentially
can provide another means to control the force and different kinds of applications. One
way to explore this is by introducing photoswitching molecules into the primary dielectric
host that constitute, for example, the waveguide core.

Photoswitchable molecules are organic chains that reversibly change chemical struc-
ture from trans-to-cis on exposure to lights of certain wavelengths. They were used to
achieve mechanical actuation and energy storage [18–20]. If successfully integrated into a
host that promises stoichiometric freedom, not only can a photoswitch induce a new set of
indices in the material, but it can also reversibly switch the value through photoisomeriza-
tion. Among several photoswitches, aryazopyrazole (AAP) was successfully embedded
into polydimethylsiloxane (PDMS) [21,22]. The PDMS–AAP composite exhibited actuation,
high index (≈2.0), and regulation of same via isomerization. We note that AAPs have
thermal stability and half-life of 1000 days, unlike ubiquitous azobenzene, and they attain
high switching efficiency [23]. In particular, the AAP derivative reported in [21,22] achieved
≈ 100% efficiency in solid matrix over repeated switching. It is then logical to examine
suitability of this composite for nanophotonic circuits.

In this paper, we propose a waveguide consisting of PDMS–AAP core where the
index may be regulated in-situ by alternative exposure to UV and visible light. We utilized
buried geometry in which the core is surrounded by PDMS clad known to be transparent
to UV and visible lights. A semiempirical simulation of electric field, in transverse electric
field (TE) mode, of a signal injected into the core is carried out via a program to examine
wave confinement and the effect of changing the index in-place. The practical alternating
exposure of the core to UV/Visible source is ensured by sequential implementation of the
empirical refractive indices of the core materials in the solutions to Maxwell’s equations
for invariant design parameters. In addition, optical force between a pair of such guides is
investigated in relation to the isomeric states of the embedded AAP. In what follows, we
describe the simulations that are based on existing literature and analyze the results for
practical feasibility.

2. Materials and Methods
2.1. Materials

Commercially available reagents were utilized for the synthesis of the AAP photo-
molecule and PDMS–AAP composite films. N-methylhydrazine, 1-bromo-6-hexanol, ethyl
acetate, Na2SO4, K2CO3, acetone, potassium iodide, 4-aminophenol, 2,4-pentanedione,
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dichloromethane, and polydimethylsiloxane (elastomer and curer) were procured from
Sigma–Aldrich, St. Louis, MO, USA and used as received.

2.2. Characterization

The optical characterizations were carried out using a Shimazu 3600 spectrophotome-
ter (Tokyo, Japan) in 300–800 nm. Light-induced reversible switching was performed by
irradiating with 365 nm UV light for trans-to-cis isomerization (trans state), and green light
525 nm cis-to-trans isomerization (cis state).

2.3. Synthesis of Molecular Switch

The arylazopyrazole (AAP) molecular switch was synthesized following procedures
developed in our previous studies using commercially available aniline [21,22].

2.4. Synthesis of PDMS–AAP Composite

Polydimethylsiloxane–arylazopyrazole (PDMS–AAP) composite was fabricated by
spin-coating PDMS elastomer-curer gel doped with 0.02M of AAP on glass substrate and
curing at 150 ◦C for 22 min as described in our previous work [21].

3. Results and Discussions
3.1. Photoisomerization Properties

The photoisomerization behavior of the pure AAP and PDMS–AAP composite was
investigated by UV/Vis spectroscopy with regard to switching behavior and absorbance
maxima of the trans and cis-isomers. Both the pure AAP molecular switch and the PDMS–
AAP composite showed distinct behavior upon irradiation with UV light (λ = 365 nm) for
the trans-to-cis isomerization (trans state) and green light (λ = 525 nm) for the cis-to-trans
isomerization (cis state). An irradiation with green light of the PDMS–AAP composite
resulted in the original absorbance spectrum of the trans state being retrieved with almost
100% of the original intensity. This distinct behavior is due to the efficient reversible
isomerization the AAP unit embedded in the PDMS matrix [21,22]. Comparison of the
index of refraction in the trans and cis states as well as that of pure PDMS of the same
thickness were described in our recently reported studies [21].

3.2. Refractive Index of PDMS–AAP

Refractive indices of the PDMS–AAP composite in comparison with pure PDMS is de-
scribed in Figure 1 with a significant response to the structural state of embedded AAP. The
indices were determined from the well-known relation R = (n− 1)2 + κ2/(n + 1)2 + κ2.
Where R is reflectance and κ is extinction coefficient. The trans state (Figure 1a) caused
index maxima of 2.00 at 340 nm while the cis state (Figure 1b) caused a drop to 1.65 at this
wavelength and a maximum at 450 nm with index of 1.67.

Figure 1. Refractive indices of polydimethylsiloxane–arylazopyrazole (PDMS–AAP) composite at
(a) trans state and (b) cis state; (c) pure PDMS.



Polymers 2022, 14, 896 4 of 11

In both cases, the presence of localized maxima puts the index–wavelength response
outside the domain of common index models (Sellmeier, Cauchy, etc.) that rather describe
monotonic decreasing response. Therefore, we interpret the index–wavelength response
with a Taylor series center on lowest wavelength, λ1:

n(λ1) +
N

∑
s=1

f (s)(λ1)

s!
(λ− λ1)

s (1)

where f (s)(λ1) is s-order derivative of KK relation in wavelength range outside of the
singularity point. We found a six-term series to be a good fit with the composite index
shown in Figure 1. Scaling factors can be introduced to the coefficients of Equation (1)
to reduce the number of terms needed for convergence without violating convergence
conditions. Figure 1 shows that the indices of PDMS–AAP composite are well above that of
pure PDMS at both isomeric states. One of the implications is that a waveguide structure
consisting of both materials will be a high-contrast channel.

3.3. Wave Confinement

We considered buried waveguide of square cross-section in which PDMS–AAP com-
posite form the core and PDMS clad/substrate with the 365/525 nm regulating sources
assumed positioned outside but near the structure (Figure 2). We note that PDMS is trans-
parent to UV and visible light, thus the radiations from the regulating sources reach the
core with minimal attenuation. The regulating sources are analogous to the setup used for
optical characterization of the PDMS–AAP composite. Then, to assess wave confinement
in the waveguide, it suffices to represent the “on/off” switching of the sources with the
refractive indices at trans and cis states. Wave confinement for 340 nm ultraviolent and 450
nm visible light were investigated. The wavelengths were chosen to better illustrate the
system’s behavior since the refractive indices of the composite peaked at these wavelengths
during reversible isomerization. High index of the composite in either of the isomeric states
in the 300–450 nm wavelength range can serve the same purpose as well. However, beyond
450nm, composite index is about the same as that of pure PDMS.

Figure 2. Buried waveguide structure. Gold-colored region represents PDMS–AAP composite.
UV-Vis regulating source is assumed external and in proximity to waveguide.

As effective index method [24] translates any waveguide structure to the planar geom-
etry, we utilize the solution to the structure in Figure 3 for a wave Ey = Eo(x, y)ei(βz−ωt)

propagating in z-direction and polarized in the y-direction. Then,
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∂2Ey

∂x2 + k2
xEy = 0 (2)

describes the transverse electric field (TE) and is solvable with different constraints. Based
on empirical indices (see Figure 1), we imposed high contrast condition, ncore − nclad � 0
and the solution:

Ey(x) =


C exp(γ2x), x < −a

A cos(kxx + θ), −a ≤ x ≤ a

S exp(−γ3x), x > a

(3)

Figure 3. (a) Planar waveguide geometry. n is refractive index of clad, core, and substrate.
(b) Effective index scheme implemented to simulated electric filed profile.

Here,
kx = ko

√
n2

core − n2
e f f (4)

γ2,3 = ko

√
n2

e f f − n2
sub,clad (5)

and phase angle, θ = (m′ − 1)π/2. Since a waveguide is describable in terms of normalized
parameters [25], it is easy to show from Ey(x) that normalized dispersion and number of
modes are respectively:

v
√

1− b = (m− 1)π + tan−1
√

b/(1− b) + tan−1
√
(b + α)/(1− b). (6)

m′ = 1 + Int
[
π−1

(
v− tan−1√α

)]
(7)

where v is normalized frequency (v-number), b is relative index, and α is asymmetry factor.
Both equations are vital to characterizing waveguides via analytical method on which the
current work is based. The optical dispersion relation plays unique role in that v-b chart
permits extracting the relative effective index b for a chosen normalized frequency of a
design. With these values and empirical refractive indices of the involved materials, it is
easy to simulate a waveguide of any dimension that was reduced to the slab geometry
using analytical solutions and provide clear understanding of expected performance of
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fabricated counterpart. The fact that the range of b is between 0 and 1 guarantees that the
result from this approach is at par with the outcome of any numerical method but with
minimal computational time and is more intuitive since the analytical solution is a set of
familiar functions.

We considered injected wavelength of 340 nm and three modes. Then, using the trans
state as default, we determined design v-number of 7.0 and core thickness of 320 nm. The
surrounding PDMS thickness is set to 160 nm on each side, and total structure length is
640 nm. Since PDMS forms the clad and substrate, the asymmetry factor is zero. The
three-mode v-b chart is shown in Figure 4, from which we extracted the relative index b, at
v = 7.0 in trans state. This approach is repeated for 450 nm signal for the same waveguide
dimensions already determined with the design wavelength of 340 nm. In this case, we
only need to evaluate the v-number for 450 nm and extract the b parameter.

Figure 4. Relative index vs. normalized frequency chart for three modes for 320 nm-thick core in
trans state. Trans state is design default state for operating wavelengths 340 and 450 nm. b values are
marked by intersections of vertical line at v = 7.0 with mode charts.

To simulate the waveguide, the analytical solution, Ey(x), was implemented on the
buried waveguide via Effective index method using the geometric scheme of Figure 3b.
First, the solution was applied in the y-direction for each of regions I, II, and III to determine
their effective indices, N, and reduce the 3D structure to the slab geometry of Figure 3a.
A second application in x-direction utilizes these indices for the final solution for the 3D
waveguide. A sample set of propagation parameters for 340 nm injected signal is listed in
Table 1.

Table 1. Propagation parameters for guided 340 nm wave in PDMS–AAP waveguide of core thickness
320 nm.

Parameter Trans State Cis State

ncore 2.00 1.65

nclad 1.60 1.60

m′ 1, 2, 3 1

* v 7.0 2.4

* b 0.885, 0.541, 0.06 0.544

* k 0.008, 0.015, 0.021 0.005

* γ 0.020, 0.016, 0.005 0.005
* Corresponding to each mode number m′.

For operating wavelengths of 340 and 450 nm, fixed core thickness of 320 nm and
overall structure thickness and length (in z-direction) of 640 × 640 nm were used. To mimic
alternate switching “on” of 365/525 nm external regulating source, we carried out the
simulation with refractive indices of the core in the trans and cis states at the operating
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wavelengths. The result is given in Figure 5, where shaded region defines the waveguide
core in the simulation. Highly confined wave is observed for the fundamental (m = 0) and
first-order (m = 1) higher modes, where the evanescent components decay to zero in the
clad; however, in second-order higher mode (Figure 5c), the evanescent components are
very much above zero and decay slowly, which is typical of leaky confinement. So, this
mode cannot be supported in a practical waveguide with same dimensions as used in the
simulation. This is further emphasized by Equation (7), where m = m′ − 1 is substituted,
yielding only two supported modes, m = 0 and m = 1. Within the frame of computation
and simulation, the use of m′ = 1, 2, . . . elucidates all possible modes with the quality
of wave confinement, as shown in Figure 5, which is beneficial for informed practical
fabrication. Now, when the core transits to the cis state through photoisomerization, as can
be induced by the external regulating source, the accompanying adjustment of refractive
index, which suppresses higher modes, saves a fundamental mode with reduced v number.
For the current case, we have v number of 2.4, as indicated in Figure 4, and field profile as
shown in Figure 5d. Evanescent waves in the latter sharply tend to zero thereby sustaining
good wave confinement. In comparison with Figure 5a, Figure 5d indicates that the group
velocity is higher in the cis state and the wave propagates faster. The spatial spread of
guided waves for the first two allowed modes in a 640 × 640 waveguide is illustrated in
Figure 6. The PDMS–AAP core presented excellent guiding ability in both isomeric states
at the operating wavelength because of efficient internal reflection at core–clad and core–
substrate interfaces, due to high index contrast that satisfies the condition θcrit ≤ θi ≤ 90◦.
Where θcrit is critical angle of core and θi is the incidence angle at clad–core interface. If we
consider the core in trans state, Figure 3a and Snell’s law show that these angles are 54.0◦

and 78.2◦, respectively.

Figure 5. Normalized transverse electric field (TEm) profiles in PDMS/PDMS–AAP/PDMS buried
waveguide for 340 nm wavelength in trans state of core: (a) fundamental mode, m = 0, (b) m = 1 and
(c) m = 2. Cis state: (d) m = 0, all modes shift down to this fundamental mode with normalized wave
frequency of 2.4. Shaded region is waveguide core.
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Figure 6. Spatial distribution of TE field in PDMS/PDMS–AAP/PDMS buried waveguide for
λ = 340 nm. (a,b) m = 0, 1, respectively, with core in trans state. (c) m = 0, core in cis state; all higher
modes shift down to this mode due to change in refractive index induced by photoisomerization.

Guided wave also manifested for 450 nm visible light. In this case, the waveguide
permitted only single mode, the fundamental mode, in trans and cis states with v numbers
of 1.6 and 2.0 respectively (Figure 7). Interestingly, setting the core thickness to 1.19 µm
supported two modes (m = 0 and m = 1) in trans state while also permitting a second-order
higher mode (m = 2) in cis state. Here, the v numbers are 5.90 in trans and 7.9 in cis
states, a reversal of the behavior in the propagation of 340 nm in which cis state suppresses
higher-order mode.

Figure 7. 3D normalized electric field profiles in PDMS–AAP buried waveguide of λ = 450 nm.
Trans (a) and cis (b) support only single mode in 320 nm-thick core. Field remained invariant, but
v number scaled up to 2.0 in cis state.

The simulations highlight two important results: first, guided propagation is achieved
in the PDMS–AAP core; and second, isomerization to cis state suppresses (permits) higher
modes for ultraviolet (visible) light propagation. Consequently, single mode propagation
can be obtained in cis state with appropriate choice of core thickness. It implies that one
can selectively excite just the fundamental mode in an PDMS–AAP-based waveguide.
This interesting characteristic may impact practical applications since multiple modes
usually exist in dielectric waveguides [17] and may exist with other azo-based composites.
These results indicate that in practice, the mode of propagation is tunable by changing the
refractive index through photoisomerization prior to or during signal injection. Because
AAP has long half-life and thermal stability, a particular isomeric state can be maintained for
a significant period until otherwise stimulated. The importance of this result with regard to
nanophotonics is obvious, especially in opto-mechanical and microfluidic devices utilizing
optical force. The strength of the latter is dependent on the mode, while the attribute
(attractive or repulsive) may be tuned by phase difference between a pair of waveguides.
The in-situ regulation of index as demonstrated here can introduce a second-level regulation
of the force that can potentially extend applications of the force.
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3.4. Optical Force

Following up on the potential impact on optical force, the forces of interaction between
a pair of PDMS–AAP cores in a common medium separated by distance x was investigated
with respect to isomeric states (Figure 8).

Figure 8. PDMS–AAP waveguide pair coupled via evanescent field in intervening space. Arrow
heads’ directions indicate attractive and repulsive forces of even and odd parity modes.

The force was described in terms of effective index [1,12] as f = P
c

∂ne f f
∂x , which can be

solved numerically. Nonetheless, because our waveguide is solvable in the first dimension,
the 1-dimensional closed form [1], described as follows, is adequate for the current case:

f = ∓P
c

(
n2

c − n2
e f f

)(
n2

e f f − n2
m

)
(n2

c − n2
m)

(
d + k−1

o

(
n2

e f f − n2
m

)−0.5
)

ne f f

e−σx (8)

where P and c are power of signal in the waveguides and speed of light, respectively.
The variation factor σ may be taken from closed forms for ne f f , which were variously
demonstrated but share the same form [4,17]. We favor the Pernice et al. [17] interpreta-
tion, ne f f (x) = n0 + n1e−σx, where no,1 are effective indices of isolated waveguide and
coupling coefficient, respectively. Both Equation (8) and ne f f (x) agree with the earlier
stated phenomenological form. Now, a salient factor in determining σ in [12] is the tangent
of transvers wavevector of free waveguide. We find tan(kx) ≈ 0 in our case, so that the
expression in [17] reduces to:

σ ≈ 2γ ln(2) (9)

We substituted wavevector in the medium for the original constant since that constant
tends to γ as x → ∞ . This is a reasonable approximation on the basis that coupling is
achieved through evanescent wave. To maintain electric field profiles and parameters
determined for the isolated waveguide, we reduced the core thickness to 218 nm in the
surrounding medium of refractive index 1.0.

Guided wave simulation shows that the parity of the wave alternates with mode index,
i.e., m = 0 indicates even parity, while m = 1 is odd parity. Even and odd parities precipitate
attractive (−)and repulsive (+) interactions, respectively [4,16]. Figure 9 illustrates the
optical forces between a waveguide pair with respect to isomeric states of the core for
propagated 340 nm wave.

The force is within the same order of magnitude as those of similar dielectrics in
literature [4,14,17]. However, the trans–cis conformation adjusts both the strength and
attribute in-situ due to change of refractive indices of the core. Force tuning is expected be-
cause of modal tuning of propagated waves in Figure 6. The full impact manifests in higher
modes where, for example, 340 nm isomerization to cis state constrains all modes to a fun-
damental mode, leading to even parity attractive force of Figure 9c. Optical forces induce
deformation in paired structures [16], which on account of the present contribution, may be
regulated by photoisomerization for structure consisting of PDMS–AAP materials and sim-
ilar hybrids. Furthermore, mechanical actuation was recorded in free-standing PDMS–AAP
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materials [22] and can enhance optical force-induced deformations. Thus, integrating the
material on nanophotonic chips will provide a different level of controlled displacement.

Figure 9. Waveguide pair interaction forces for propagating 340 nm wave. In trans state: (a) m = 0,
even parity attractive force, and (b) m = 2, odd parity repulsive force. In cis state: (c) m = 0 supported
only. Quality of force is significantly moderated by trans and cis states via changes in refractive
indices of core.

4. Conclusions

We presented experimental results of in-situ reversible change of refractive index and
data simulations indicating the potential of using organic photoswitching molecules within
a solid host matrix, for controlling the refractive index for advanced nanophotonic applica-
tions. Considering this, we proposed a waveguide where the core is a polydimethylsiloxane–
arylazopyrazole (PDMS–AAP) composite. Empirical refractive indices of the material in
the trans and cis states were used to simulate buried waveguide structure. The simula-
tion revealed well-confined waves due to the high-index-contrast and the tuning of the
mode by the reversible trans-to-cis isomerization. Consequently, the calculated optical
force between parallel waveguides reflected similar tuning, where the force transits from
attractive to repulsive depending on the isomeric states. Our simulations suggest that
harnessing the PDMS–AAP on optical chips will potentially lead to a new level of control
due to in-situ change of refractive indices caused by photoisomerization of the embedded
arylazopyrazole molecules.
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