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Abstract: We combined a conducting polymer, polyaniline (PANI), with an organic semiconducting
macrocyclic (MCs) material. The macrocycles are the phthalocyanines and porphyrins used to tune
the electrical properties of the PANI, which benefits from their ability to enhance sensor response. For
this, we proceeded by a simple ultrasonically assisted reaction involving the two components, i.e., the
PANI matrix and the MCs, to achieve the synthesis of the composite nanostructure PANI/MCs. The
composite nanostructure has been characterized and deposited on interdigitated electrodes (IDEs) to
construct resistive sensor devices. The isolated nanostructured composites present good electrical
properties dominated by PANI electronic conductivity, and the characterization reveals that both
components are present in the nanostructure. The experimental results obtained under gas exposures
show that the composite nanostructures can be used as a sensing material with enhanced sensing
properties. The sensing performance under different conditions, such as ambient humidity, and the
sensor’s operating temperature are also investigated. Sensing behavior in deficient humidity levels
and their response at different temperatures revealed unusual behaviors that help to understand
the sensing mechanism. Gas sensors based on PANI/MCs demonstrate significant stability over
time, but this stability is highly reduced after experiments in lower humidity conditions and at high
temperatures.

Keywords: polyaniline; phthalocyanine; porphyrins; ammonia; resistive sensors; humidity; temperature

1. Introduction

The development of gas sensors continues to gain interest since monitoring and
detecting pollution and industrial emissions has become essential for environmental and
public health agencies. Increasing efforts and new developments have been successfully
promoted by recent progress in nanotechnology and chemical engineering. The modulation
of material properties can be achieved either by surface engineering for tuning reactivity
towards target species or by surface nano-structuration, which results in increased surface
area, and thus higher sensitivity.

In another trend related to the emergence of renewable energy technologies, the
development of sensors is more and more implemented since the production of renewable
energy can be accompanied by the release of toxic pollutant gases such as ammonia
(NH3) [1], hydrogen sulfide (H2S) [2], etc. Ammonia gas detection in this field is not only
essential in terms of security, e.g., occupational exposure to ammonia in bio-energy plants
needs to be monitored, but also in terms of production efficiency. Ammonia is a limiting
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factor for the bio-energy yield (efficiency). So, the development of ammonia sensors
especially dedicated to these areas must also be considered. In bio-energy production, high
humidity levels and temperatures are inherent factors that must be taken into consideration
when developing sensors. Such harsh operating conditions make sensor material research
in this field more challenging. If sensitivity is often the main metrological performance to
reach, sensor response stability under such conditions is even more important.

For the development of ammonia gas sensors, a wide range of materials, such as solid-
state metal oxides, conducting polymers, and nanocarbonaceous materials, has already
been investigated. Recently, hybrid materials made of these categories have emerged as
new and challenging structures for the development of innovative sensors. The frequently
used conjugated polymers for developing gas sensors are polyaniline (PANI), polypyrrole,
and polythiophene [3–5]. PANI has been investigated as a potential sensing material due to
its controllable electrical conductivity, reversible redox behavior, good sensitivity at room
temperature, good environmental stability, and relative ease of processing. PANI can be
combined with different sensing matrices, such as carbon materials [6–8]. In addition to
these combinations, PANI can serve as a sensing matrix to host metal oxides [9–13], or
functional units [14], allowing for the exploration of other application areas. The advantages
of using conducting polymers as sensitive materials compared to inorganic materials are
their natural conductivity, fast response, low cost, easy synthesis, and sensitivity at room
temperature. Polyaniline presents different oxidations states, leading to structures that are
chemically and physically different from each other. Such properties make PANI a material
suitable for gas sensing applications [4,14,15].

The combination of PANI with other additives (metal oxides, nanoparticles (NPs),
carbon nanotubes, or graphene etc.) allows for the tuning of sensing properties and,
particularly, for enhancing specificity. While examples of the combination of PANI with
metal oxides, NPs, carbon nanotubes, graphene, etc. are found in the literature, its com-
bination with organic semiconductors such as phthalocyanines and porphyrins is less
exploited [5,16–23]. Examples of these PANI-macrocycle combinations dedicated to gas sen-
sors are also rare [5,19,23]. Knowing that these MCs are potentially well documented [24]
for their capacity to enhance sensitivity, we have focused on such a combination with
PANI. Macrocycles are highly resistive materials (approaching quasi-isolating material).
Their combination with PANI can help to produce highly resistive materials, which en-
ables higher resistance variation under gas exposure. Such higher resistance variation is
beneficial for improving sensitivity. Additionally, their intercalation into the PANI matrix
will certainly limit the harmful effects that high ambient humidity or temperature can
have on the polymer. Therefore, besides achieving an improved sensitivity, we intend
to evaluate such nanostructures for their ability to withstand higher temperatures and
different humidity environments for sensing ammonia.

This article presents the combination of a conducting polymer (PANI) with an organic
semiconducting material (MCs) using a simple ultrasonically assisted reaction. The MCs
possess peripheral groups (tetra tert-butyl and phenyl), ensuring good solubility in reaction
media. The nanostructured composites developed have been deposited on interdigitated
electrodes (IDEs) and used as resistive sensors. We will focus on the electrical characteriza-
tion of the composite nanostructure PANI/MCs performed using the I–V (current–voltage)
characterization process. The sensing performance of this composite towards ammonia will
be discussed by focusing primarily on the stability and the responses in a high temperature
and high humidity environment.

2. Materials and Methods
2.1. Materials and Solvents

Acetonitrile, methanol, and chloroform were purchased from Aldrich (Lyon, France)
and used as solvents. Aniline, sulphuric acid [H2SO4 (0.5M)], ammonium peroxodisulfate
[(NH4)2S2O8], and copper (II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (purity



Polymers 2022, 14, 891 3 of 20

97%) and 5,10,15,20-tetraphenyl-21H,23H-porphine (purity 97%), denoted as CuPctBu and
TPPH2, respectively, were obtained from Aldrich and used without further purification.

2.2. Materials Preparation
2.2.1. PANI Synthesis

For the preparation of the conducting polymer, we used a previously reported pro-
cedure [25] to obtain acid-doped conducting PANI. According to this synthesis process,
the oxidative polymerization method based on ammonium persulfate and sulphuric acid
(H2SO4) as a dopant is used to prepare polyaniline. In an example of synthesis, 25 mL
of a diluted H2SO4 (0.25 M) solution was added to 10 mL of aniline under stirring and
cooled using an ice bath (0 ◦C), which gave rise to a white, salt-like mixture. This mixture
was dropwise added to an acidic solution of ammonium persulfate (31.26 g in 30 mL
H2SO4). The white dispersion turned brown after the first drop and ended up with a green
coloration at the end of the process. The resulting mixture was allowed to remain under
stirring for 24 h. The mixture was then filtered and washed with acidic water (100 mL
H2O + 50 mL H2SO4 0.5 M) before being stored at room temperature. The resulting PANI
powder could be re-dispersed in acetonitrile for the coating process.

2.2.2. PANI/MCs Nanostructured Composite Preparation

To prepare the nanostructured composite (MCs/PANI), we adapted the prepara-
tion method developed for the non-covalent functionalization of carbon material already
published [24]. In this process, conducted at room temperature, we dispersed PANI in
acetonitrile (2 mg/mL, preparation based on 5 mL) by employing an ultrasonic bath for
5 min. We added a chloroform solution of the macrocycle (0.8, 1.6, 2.4 mg/mL), still
under ultrasonic treatment, and performed an additional treatment for 10 min. Decanta-
tion overnight allowed the material to become sedimentary, and the resulting solids were
washed thoroughly and redispersed in acetonitrile before deposition on IDEs.

2.3. Characterization Methods

Unless otherwise stated, all characterizations were conducted at room temperature.
UV-visible spectra were recorded on a Lambda 2S Perkin-Elmer spectrometer. For the
UV-vis spectra recording, a 1 cm path length glass cell was used, and the nanostructured
composite concentrations were adjusted to 0.0005 mM with acetonitrile as a solvent. Raman
spectra were recorded with a Jobin Yvon T64000 spectrometer with a charge-coupled device
multichannel detector. Raman spectra were acquired at room temperature using an argon
laser’s excitation wavelength of 514 nm.

Electron microscopy (SEM) micrographs were obtained from a JEOL 6060 low vacuum
operating at 5 kV. The samples were prepared by drop-casting the composites on copper
substrates, followed by drying at room temperature.

For the electrical characterization (I–V curves), the current (I) versus applied voltage
(V) measurements were performed in ambient air employing a Keithley 2636 System
Source Meter, which is controlled by LabVIEW software (version 2021). Generally, the
electrical measurements were recorded under room temperature conditions in a two-point
configuration. The I–V curves were obtained within a −1 to 1 V range (for a higher
range, see Supporting Information) at a step voltage of 0.01 V. Temperature-dependence
measurements of the sensor devices were carried out by adapting the measurement chamber
with a cryostat device (filled with liquid nitrogen), enabling operating temperatures from
100 to 500 K.

2.3.1. Sensor Devices and Sensor Preparation

The resistive sensor transducer consisted of interdigitated electrodes screen-printed onto
an alumina substrate. The electrodes were made of platinum and presented 5 mm × 3 mm
(length × width) geometry, with an interelectrode distance of 125 µm. The IDEs were
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also equipped on their backside with a meander made of platinum to ensure heating for
operating the sensor at higher temperatures.

For the elaboration of the resistive sensors, IDE substrates were installed on a hot
plate set at 80 ◦C to ensure rapid solvent evaporation. Then, 5–10 µL of the material was
deposited on the IDEs, which were connected to an electrical measurement set-up that used
a digital multimeter (Keithley model 2000) apparatus to follow resistance evolution during
layer formation.

2.3.2. Gas Sensing Experiments

The gas exposure experiments were performed using a dilution bench, which consisted
of pollutant sources, the exposure chamber, and a computer-assisted data acquisition and
monitoring program through LabVIEW. The gas source (gas cylinders) was diluted with dry
air (relative humidity (RH) ~3–5%) to obtain the desired concentration range for a typical
experiment. For the temperature experiment, the heating-controlled devices connected
to the backside of the IDEs allowed for operating the sensors at the desired temperature.
A humidity control unit was adapted to the test bench to provide a controlled RH that
could range between 10% and 70%. We used a digital multimeter (Keithley model 2700)
for monitoring the sensor resistance variation under gas exposure and recovery steps. If
not otherwise indicated, exposure sequences were 15 min and recovery was 45 min, with
sensors operated at room temperature, which was found to be in the 25–28 ◦C range. The
experimental bench is displayed in Figure S1 (see Supporting Information).

For the resistive sensor analysis, sensor responses are represented by either ∆R or
∆R/R0 values, using the following formula:

∆R/R0 = (RGas − R0)/R0 where ∆R = RGas − R0 (1)

with resistance under purified air (R0) and resistance under gas (RGas).
It is worth noting that this ∆R/R0 value can also be expressed as a percentage by

multiplying it by a factor of 100.
The sensitivity (S) of the sensors is defined as the sensor response per unit concentra-

tion (ppm), as given in the following formula: S = ∆R/R0 (%)/Concentration (ppm).
The sensitivity can be, therefore, expressed in %/ppm. Response time (τresp) and

recovery time (τrec) are the times needed to reach 90% of the maximum response magnitude
and recover 90% of the background signal, respectively.

3. Results
3.1. Materials Characterization
3.1.1. Effect of the Functionalization on the Electrical Characteristics

In the first experiment, we tried to find a relationship between the degree of function-
alization and electrical characteristic. We performed an experiment in which the amount of
PANI was fixed while varying the concentration of macrocycles. For a typical case, 0.8 mg,
1.6 mg, and 2.4 mg of macrocycles in chloroform (1 mL) were added to a dispersion of
PANI (2 mg/mL based on 5 mL solution), and an ultrasonic procedure similar to that devel-
oped for the preparation of the composite (explained above) was applied. The I–V curves
for the three resulting devices (denoted PANI/MCs 1, PANI/MCs 2, and PANI/MCs 3,
corresponding to the addition of 0.8 mg, 1.6 mg, and 2.4 mg, respectively) are presented
below in Figure 1. The exact amount of dispersion (10 µL) was used in each case to ensure
repeatable results. This volume is relatively high compared to what we usually employ
to prepare resistive sensors. Indeed, thicker sensing layers lead to mechanical instability
and lower resistance. But in this case, it was necessary to use such thick layers for the
characterization.
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Figure 1. Current-voltage characteristics of the PANI/CuPctBu (A) and PANI/TPPH2 (B) composites
at different MCs concentration.

The electrical characteristics (for PANI/CuPctBu and PANI/TPPH2) show a linear and
ohmic behavior (Figure 1). The results are correlated with the degree of functionalization.
The more the functional moieties (concentration), the higher the slope of the I–V curve,
i.e., the less resistive are the devices. This result is not surprising since the MCs are highly
resistive materials (quasi-insulating) and can lower the global resistance when wrapped or
mixed with conducting PANI. The I–V characterization was also performed in the higher
voltage range (Figure S2). Still, the tendency was identical, showing that the resistance is
tunable by adding and wrapping the PCs around PANI. We can use these methods to build
highly resistive PANI-based nanostructures.

In sensing films, the kinetic parameters are often diffusion dependent. Therefore, it is
essential to develop thin layers to get more reliable responses, since thicker layers often
experience diffusion phenomena or instability. In the case of these insulating macrocycles
wrapped on the PANI, the situation is different since they can, themselves, serve as a
binding agent and ensure a compact structure. Therefore, more material is needed to
achieve good resistance variation for the preparation of the resistive sensors.

3.1.2. UV-Vis Spectroscopy Characterization

The UV-Vis spectra of PANI composites (PANI/MCs) are compared to that of PANI
and presented in Figure 2. For PANI/CuPctBu, the spectrum shows a typical Soret band
around 337 nm, corresponding to the π→ π* transition of the metal phthalocyanines, and
two bands located at 602 nm and 673 nm corresponding to the so-called Q bands illustrating
the metal phthalocyanine signature [24]. The shoulder around 428 nm is typically observed
in PANI-based derivatives and is attributed to transitions involving polaron states. The
additional broad peak at 700–900 nm, also attributed to PANI, is due to the high doping
level [19,26]. Finally, the peak at 330 nm in PANI/CuPctBu is attributed to PANI.

For the PANI /TPPH2 composite, the same conclusion can be drawn: peaks at 419 nm
(B bands) and 515, 550, 592, and 641 nm (Q bands) are attributed to the TPPH2 [24] and the
other to PANI. The shoulder located at 421 nm in PANI does not appear in PANI/TTPH2.
This is presumably due to it having been enveloped into the intense Soret (at 419 nm) band
of the TPPH2.
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Figure 2. Normalized UV-Vis spectra of the different PANI composites. For clarity, the spectrum of
PANI is also presented.

The UV-Vis spectra clearly established the presence of both components (PANI and
MCs), thus confirming the formation of the nanostructure composites. In many given
literature examples, the peak at 420 nm provides an indication that the PANI is in salt
form (doped) since this peak shows the formation of the conducting state [26]. These
observations are in accordance with the conductive form of the prepared samples.

3.1.3. Raman Characterization

For a better comparison, the Raman spectrum of the PANI matrix has been added to
the study, as presented in Figure 3. In the Raman spectrum of PANI, mainly two major
peaks are identified: the Raman broad peak positioned at 1590 cm−1 is assigned C–C
vibrations of the pyrrole chemical group, whereas the broad peaks located at 1360 cm−1 can
be assigned to isoindole moieties. The first signal (1590 cm−1) is attributed to the stretching
vibration from the quinoïd ring. It is essentially due to the protonation of the polymer
backbone and the semiquinonoid ring formation [27]. However, the signal at 1336 cm−1 is
attributed to the vibration mode of the delocalized polaron structure. In PANI/CuPctBu
and PANI/TPPH2, the previous peaks are overlapped with peaks essentially coming from
the CuPctBu and TPPH2. The peaks at 1367 cm−1 and 1401 cm−1 in PANI/CuPctBu indicate
C–N isoindole ring stretching [28] and are superimposed with stretching vibration from
the PANI quinoïd ring. The peak at 579 cm−1 indicates the out-of-plane bending vibration
of the CuPctBu [29].

In the case of PANI/TPPH2, the spectrum also shows an additional peak attributed
to the TPPH2. These peaks are situated at 1540 cm−1 and 1478 cm−1, corresponding to
the C–C vibration of pyrrole groups [30,31], while the peak positioned at 1011 cm−1 is
attributed to the pyrrole C–N breathing mode [30]. All this information indicates the
formation of the composite structure made of PANI and MCs.
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3.1.4. Scanning Electron Microscopy (SEM) Characterization

SEM characterization for PANI/CuPctBu and PANI/TPPH2 showed fiber-like nanos-
tructures, as displayed in Figure 4. The PANI revealed fibrous structures, whereas the
macrocycles are differently organized, depending on their type. The images also show that
such a fibrous nature potentially allowed the formation of a porous structure, as seen in the
higher magnification images.
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As highlighted at higher magnification (Figure 4D,E), the CuPctBu are wrapped
around the PANI fibers and form a wire-like network linking the PANI fibers, while the
TPPH2 is revealed to be aggregate-like (Figure S3), forming a less compacted structure.
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The analysis of these images shows a compact design where the macrocycles work as a
binding agent within the films. Figure 4D,E reveals the interconnected, fiber-like chains
with the presence of both intra- and inter-chains. These interlaced structures suggest that
conductivity will be governed by both intra- and inter-chain conductivity.

3.1.5. Electrical Characterization

We performed temperature-dependent current–voltage measurements to analyze the
conduction mechanism in PANI/MCs composites by recording the resistance variation
(Figure 5). As in the case of PANI [25], the characterization of the nanostructured composites
presents both positive and negative temperature coefficient resistance (TCR) [32,33]. The
temperature-dependent current–voltage measurements for PANI are presented in Figure S4
for comparison. In the case of PANI/CuPctBu, the negative TCR occurs within the 150 to
300 K range, while in PANI/TPPH2 this occurs between 150 and 275 K. In the lower
temperature range, the composite films show negative dR/dT, indicative of nonmetallic
behavior, while in the higher temperature range, a positive dR/dT indicative of metallic
behavior is observed. Even a slight decrease (negative dR/dT) is observed in the 350–450 K
range. This behavior has already been observed and explained as a mix of different
conduction states [33,34].
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In the present case of PANI/MCs, we can also expect a mix of metallic and nonmetallic
conduction mechanisms. This mixed conduction mechanism would be responsible for
such resistance evolution inversion (positive and negative evolution). This confirmation
of mixed metallic-nonmetallic character in terms of conductivity is expected since, in
the nanostructured composites, PANI governs conductivity. This observation shows that
even by inducing a higher resistance in the composites, the macrocycles do not alter the
conduction mechanism in the composite.

3.2. Gas Sensing Performance
3.2.1. Typical Sensor Response toward Ammonia Exposure

Figure 6A presents the typical response–recovery characteristics measured at room
temperature for PANI-based nanostructured composites. The study has been conducted
with sensors prepared from the PANI/MCs 2 (see the experimental section) dispersion
preparation. These sensors have been exposed to different concentrations of ammonia
ranging from 100 to 400 ppm. For clarity, the response of PANI is also added for comparison.
Both sensors, PANI/CuPctBu and PANI/TPPH2, showed a relatively high response and
reversible characteristics, concomitant with the ammonia exposure leading to resistance
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increase due to deprotonation. At the same time, recovery in air follows the reverse
reaction (protonation in air). Apart from the first exposure cycle of PANI/CuPctBu, which
presents an unusual trend (steady state is not achieved), all exposure/recovery cycles are
reversible. However, the sensor layers show a slight baseline up-drift, which is more critical
in PANI/CuPctBu than in PANI/TPPH2. The incomplete desorption during the cleaning
periods can explain this result after ammonia exposure. Based on the calibration curves, we
can see that the addition of the MCs into the PANI matrix improves the sensing behavior.
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temperature.

Figure 6B presents the calibration curve, calculated from Figure 6A and represented
by ∆R/R0 using the formula given in the experimental part. A linear trend is observed
with PANI/CuPctBu, presenting the slightly lower sensitivity, even with a higher response
than seen in PANI/TPPH2. The sensitivities extracted from the calibration curves are
0.54%/ppm for PANI/TPPH2 and 0.49%/ppm for PANI/CuPctBu (almost identical), with
the PANI/TPPH2 presenting the better trend as attested by its R2 value of 0.99 compared
to 0.97 for PANI/CuPctBu. Overall, the sensitivity of the PANI/MCs is better than that of
PANI (0.41%/ppm) itself, illustrating an improvement in the sensing performance. These
results show that wrapping the PANI with macrocycles that are insulating in nature has no
limiting effect on the conductivity of the matrix.

Response time and recovery time are calculated from the dynamic response curves
based on the definitions given in the experimental part. The response times are measured
to be 510 s for PANI/CuPctBu, and 480 s for PANI/TPPH2, while the recovery times are
measured to be 990 s and 1080 s for PANI/CuPctBu and PANI/TPPH2, respectively. The
responses times are slightly longer than in the case of PANI itself (420 s). This can be
attributed to the presence of the MCs that do not favor rapid kinetics within the structure.
The recovery time is, however, slightly longer in the case of PANI (1200 s) compared to the
PANI/MCs. The faster desorption observed in composites relies on the lower reactivity of
the PANI/MCs structures, which are more compact than PANI, as seen in the SEM images.

Table 1 summarizes the reported examples close to our case, since comparable and
reliable models are hard to find. These examples concern literature data on PANI and
related composites approaching our sensors.
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Table 1. The sensing performances of PANI and PANI-based composites for ammonia, as reported in
the literature.

Materials Preparation Range
(ppm) Response (at xx ppm) Response

Time
Recovery

Time Ref.

PANI/NiTSPc Electrodeposition 5–2500 2.75 at 100 ppm 10 s 46 s [35]
PANI/Poysiloxane in situ polymerization 5–100 2.5 * (at 50 ppm) 208 s 263 s [36]

Pyrolle/CoPc/CNTs Drop casting 0.05–500 26.2% (at 50 ppm) 11.7 s 91.8 s [37]
PA6/PANI Paste 50–250 125% (at 200 ppm) 27 s NA [38]

PANI/ZnTPP Electrodeposition 50–500 205.18% (at 500 ppm) 108 s 450 s [39]
PANI/RGO Spin coating 5–600 250% (at 100 ppm) 97 s 680 s [40]

Nanostructured PANI Spin coating 3–990 219% (at 990 ppm) NA NA [41]
PANI/CuPctbu Drop casting 5–500 529% (at 200 ppm) 510 s 990 s This work
PANI/TPPH2 Drop casting 5–500 360% (at 200 ppm) 480 s 1080 s This work

* Response = Rg/Ra (25% RH).

From this table, it is clear that our sensors provide a better response (with ∆R/R0 > 300%)
than the others reported in Table 1. But, in terms of response and recovery times, our
sensors present longer times than the reported ones. This observation can be stated as an
opportunity to improve synthesis and favor rapid kinetics. It is also worth noting that
exposure times are relatively short in some of these examples, meaning that the steady
state is sometimes not achieved [39]. The short response times reported by some studies
in Table 1 are explained by either the ultra-thin film structure [35], the combination of
the different elements of the composites [37], or the synergetic effect of the protonation
process [40].

3.2.2. Sensing Performances toward Ammonia Exposure: Effect of the Exposure Time

In this experiment, sensor layers have been exposed to a fixed ammonia concentra-
tion (300 ppm) while varying the exposure time. This experience will permit us to state
whether the exposure time affects the response dynamics and diffusion into the layers.
The secondary objective is to see whether or not the response time and recovery time are
independent of the exposure time. The sensors were exposed to ammonia for 5, 10, 15,
20, and 30 min to perform this experiment, while keeping a fixed recovery time (set to
45 min) in dry air. The curves are presented in Figure 7. The figure shows the results
for PANI/CuPctBu in Figure 7A, but the same behavior is observed for PANI/TPPH2 in
Figure 7B.
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300 ppm ammonia at different exposure times.

One can see that the sensor displays a stable response variation between 10–30 min of
exposure and relatively identical kinetics of adsorption–desorption. The sensors respond
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to ammonia quickly, and the steady state is rapidly obtained. This result shows that even if
the sensing layers are pretty thick, diffusion into the layers is limited.

3.2.3. Sensing Performances toward Ammonia Exposure: Effect of Humidity

Ammonia sensing with materials such as PANI is known to often experience the
inconvenience of humidity as a limiting sensitivity factor. In fact, this is inherent to how
ammonia sensing on the PANI layer is working. It is worth noting that PANI always
contains some water molecules, even after drying [42]. The interaction mechanism with
ammonia involves protonation and deprotonation, which can be affected by the presence
of water. Consequently, humidity levels that are too high or too low can significantly affect
the response.

Figure 8 displays the responses of the sensing devices exposed to 100 ppm of ammonia
at different relative humidity levels. For RH between 15% and 70%, the responses of the
PANI composites show almost the same tendency: the response continuously increases
from 15% to 45% of RH and then decreases from 45% to 70%. For PANI/CuPctBu, the
decrease in the response is relatively low, while PANI/TPPH2 shows a drastically reduced
response when humidity increases. Such results can be explained by the behavior of
humidity, which is a doping agent at a low water-concentration level and a structural
reorganizing agent at a high water-concentration level.
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Figure 8. The sensor response of PANI/CuPctBu and PANI/TPPH2 exposed to 300 ppm ammonia at
room temperature and different humidity levels.

The effect of humidity on ammonia gas sensing based on PANI blends or composites is
a long-standing debate that has been discussed several times. This discussion is reasonable,
since it is well known that PANI always contains water [43] (even after drying), and
the conductivity of PANI increases in the presence of water vapor [44–49]. Apart from
rare reported cases where PANI derivatives are not sensitive to humidity (via plasma
treatment) [50], usually, the conductivity of PANI is affected by the presence of water vapor.
It is also well accepted that polyaniline can be used as a sensitive film in a humidity sensor,
and it allows measuring a wide range of humidity levels [46,48,49,51,52].

In many cases, the decrease of the resistance of polyaniline structures in either film,
pellets, fibers, or blends when exposed to water vapor is overall observed [46,52,53]. In our
case, the PANI is in a composite matrix where macrocycles surround the PANI and build a
compact structure. It is expected that because of this compact structure, the layers of the
sensor do not experience significant changes since the macrocycles used in this study are
hydrophobic.
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For PANI-based structures, the conductivity evolution with humidity is commonly
attributed to the presence of water vapor, which acts as a proton donor and follows a
proton transfer mechanism [45,48,53] and/or swelling [44,53,54]. Similar behavior has been
observed for PANI-blend polymer films exposed to ammonia in humid environments where
competitive sorption occurs [44]. For this study [44], it was reported that morphology also
played a role. Such behavior has also been reported in cases where PANI nanostructures
are exposed to only humidity [48].

However, when exposed to humidity and ammonia, the situation is different. In
fact, instead of a monotonically decreasing response, we observed, as given in Figure 8,
a bimodal response change, i.e., an increase of the response in the lower humidity range
(up to 40% RH), and a decrease is observed within the higher humidity range (from
40% to 80% RH). Zeng et al. [45] even showed that this bimodal response change under
humidity depends on the sensing layer morphology and found a correlation between PANI
morphology (fibers or films) and the bimodal response confirmed by IR studies.

3.2.4. Sensor Behavior at Lower Humidity Level: On/Off State

We explained above that ammonia sensing with PANI materials often needs humidity.
However, we wanted to probe the sensing behavior towards lower humidity (<1% relative
humidity). In this experiment, very dried zero-grade air is used, and we keep the measured
humidity between 0.3–0.6%. Figure 9 shows the results of the sensors under such low
humidity conditions.
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Figure 9. The room temperature sensor response of PANI/CuPctBu (A) and PANI/TPPH2 (B) ex-
posed to 50–500 ppm ammonia (step of 50 ppm) at the lowest humidity level (<1% RH). Note:
dashed lines represent the limit of the electrical device used to measure the resistance and is typically
recorded for insulating materials.

Both the PANI/MCs presented unusual behavior after beginning to respond to ammo-
nia in the first exposure cycles, and then after some exposure/recovery cycles, they showed
on/off states. The “ON” state represents the lower resistance value and the “OFF” the
highest resistance value (here 1 × 1038 ohms). This off state is simply a high value of resis-
tance that the electrical devices (Keithley) cannot measure. This off is, in fact, an isolating
state. So, it seems that the PANI/MCs layers are conducting before the exposure, but once
the ammonia enters the chamber, they become insulating. Overall, we can depict that the
resistance under dry conditions is higher and the response is relatively higher. The situation
is almost identical whatever the concentration. This result confirms the sensing mechanism
as being humidity-dependent and is mainly attributed to the effect of the MCs on the PANI
layers. After this experiment, we reran the same experiment to check the memory effect.
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The results are represented in Figure S5A (Supporting Information file) and illustrate the
same tendency. We previously mentioned that wrapping the PANI with macrocycles that
are insulating in nature has not had a limiting effect on the conductivity of the matrix.
However, macrocycles potentially have an impact if measurements are performed at lower
humidity levels. Considering that MCs are hydrophobic, they cannot ensure the role of
the humidity reservoir to feed the PANI layer when operated in too-dry conditions. It is
worth noting that the PANI layers experienced this lower humidity experiment without any
on/off behavior (see Figure S5A in Supporting Information file); however, this response
was higher compared to the PANI result at RH = 5%.

3.2.5. Sensor Behavior at Different Operating Temperatures

The effect of operating temperature on PANI blends or composites-based sensors
dedicated to ammonia sensing can be a subject of concern since the temperature can also
influence global resistance. Figure 10 represents the typical response–recovery charac-
teristics recorded at different temperatures for PANI-based nanostructured composites
exposed to 300 ppm ammonia. As stated previously, the study has been performed with
sensors prepared from the PANI/MCs 2 dispersion preparation. Figure 10 shows that both
sensors, PANI/CuPctBu and PANI/TPPH2, showed continuous decreasing responses over
operating temperature.
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Figure 10. The sensor response of PANI/TPPH2 exposed to 300 ppm ammonia at different tempera-
tures (A), and the corresponding response plotted as ∆R/R0 for PANI/CuPctBu and PANI/TPPH2
exposed to 300 ppm ammonia at different temperatures (B).

We can explain the lower response by relying on the deprotonation/protonation
mechanism. In fact, according to this mechanism, protonation leads to resistance decrease
while deprotonation leads to resistance increase.

Yoshikawa et al. [55] have shown that temperature affects electronic properties by
lowering the conductivity of the PANI composite. Kukla et al. [56], have conducted a
similar study on electrochemically deposited PANI sensors and showed that response to
ammonia monotonically decreases with temperature in the range of 25–80 ◦C.

3.2.6. Cross-Sensitivity Experiment: Effect of the Interfering Gases

Since the PANI is combined with aromatic macrocycles that can interact with VOCs
such as benzene, toluene, and xylenes, the composites have been also exposed to VOCs
(BTX) and other interfering gases. The relative responses of sensors towards NH3 as well as
other interfering gases are reported in Figure 11. Although such macrocycles (CuPctBu and
TPPH2) have shown potential as sensing materials for detecting VOCs, hybrid PANI/MCS
are relatively insensitive to these analytes. The reason for such behavior can be attributed to
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the weak accessibility of the MCs in these composites for gas adsorption. Additionally, the
low conductivity of these macrocycles and the lack of electronic charge transfer between
VOCs and hybrid materials can be also limiting factors regarding the chemoresistive
transduction of PANI/MCs nanostructures.
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(20 ppm), H2S (60 ppm), SO2 (60 ppm), benzene (>2000 ppm), toluene (>2000 ppm), xylene (1500 ppm),
and O3 (1300 ppb).

For the other interfering gases studied, sensitivity remains relatively weak even for
high concentrations of the interfering gases compared to ammonia. The results demonstrate
the good partial selectivity to ammonia achieved. Only ozone induces a non-negligible
cross-sensitivity in PANI/CuPctBu. After several exposures to ozone, the sensors showed
higher resistance variation that can be attributed to the irreversible degradation of the
sensing layers. It is now well established that ozone involves strong chemisorption with
phthalocyanine units, leading to the break of carbon-carbon double bonds, and so to the
destructuration of gas adsorption sites.

3.2.7. Sensing Performances toward Ammonia: Repeatability on Exposure Sequences

In order to evaluate the repeatability level of the sensors, measurements were per-
formed by exposing the layers to ammonia in a low concentration range (5–20 ppm). Two
exposure sequences were applied: (a) an increasing concentration sequence from 5 to
20 ppm and, (b) a decreasing concentration sequence from 20 to 5 ppm. Thus, the effect
of exposure history could, by this way, be taken into consideration in the response. The
results depicted in Figure 12 reveal that sensors achieve repeatable responses to ammonia
whatever the exposure sequence (increasing or decreasing concentrations).

The stability of the sensors and the repeatability of their responses showed that even
though the presence of TPPH2 and CuPctBu on PANI results in a resistance increase, i.e.,
their inclusion gives rise to a more resistive structure, this goes without altering the sensing
ability and the reactivity of the sensing layers. Even if the sensing layers are thicker than
usual, a sign of mechanical instability has not been detected in the repeated exposure
sequences. Again, this is a sign that these macrocycles wrapped on the PANI can serve as
binding agents and ensure the achievement of a compact, highly durable structure.



Polymers 2022, 14, 891 15 of 20Polymers 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 12. The sensor results obtained through repeated experimental sequences for 

PANI/CuPctBu (A) and PANI/TPPH2 (B). 

4. Discussion 

In the first experiment, we tried to find a relationship between the degree of func-

tionalization and electrical characteristic. We have seen that the more the functional 

moieties (concentration), the lower the slope of the I–V curve, i.e., the higher the re-

sistance of the devices. The intermediate preparation has been used to prepare sensors 

with the intent of avoiding devices with too high a resistance (approaching isolating 

state) or with too low a resistance (approaching that of PANI itself for low functional 

moieties). The response showed that this was a good compromise if lower humidity (< 

1% RH) is excluded from the test experiment. Characterization methods confirmed the 

effectiveness of the functionalization since both UV-Vis and Raman point out the exist-

ence of the composites. The responses recorded in the exposure time study show that 

even if the sensing layers are rather thick, gas diffusion into the layers can be limited. 

In the humidity-dependent experiment, we observed bimodal behavior. In our case, 

the bimodal response can be explained as follows: in the first region (3% RH < humidity 

level < 50% RH), the response increase is mainly water adsorption on PANI since water 

acts as a proton source [48], therefore doping the conductivity. So, upon ammonia ex-

posure in this region, the PANI sensing film doped by water is more sensitive to ammo-

nia and, globally, a response increase is observed. 

Scheme 1 is given as support to explain and understand the general mechanism. 

Firstly, ammonia acts as deprotonating agent (de-doping) on conducting PANI and in-

duces a resistance increase. Under air, the reverse reaction is produced, leading to pro-

tonation (doping). This explanation is summarized in Scheme 1A. Then, it is important to 

consider that adsorption of water molecules on PANI always occurs, even after drying 

[42]. Water adsorption in PANI induces two different and complementary behaviors. 

First, water acts as a proton source [48], meaning that moisture also affects the response. 

In the presence of minimal water content, the PANI itself is doped through protonation, 

and this doping improves the conductivity of the PANI. The second effect of a small 

moisture presence is to facilitate the inter-fibers junctions. In fact, water can be involved 

in inter-chain connections via hydrogen bonding [57]. The existence of hydrogen bond-

ing, in some cases, leads to different nanostructures observed through self-assemblies 

[58,59]. If we consider the structure of PANI and PANI/MCs materials, we can easily 

understand that the resistance is a sum of the resistance of the fibers (intra) and the junc-

tion between fibers (inter) (see equation (1) in Scheme 1A). However, it is evident that in 

the case of PANI/MCs (Scheme 1B), the intercalation of the MCs affects the resistance of 

the inter-fiber junctions and the global resistance. 

Figure 12. The sensor results obtained through repeated experimental sequences for PANI/CuPctBu
(A) and PANI/TPPH2 (B).

4. Discussion

In the first experiment, we tried to find a relationship between the degree of function-
alization and electrical characteristic. We have seen that the more the functional moieties
(concentration), the lower the slope of the I–V curve, i.e., the higher the resistance of the
devices. The intermediate preparation has been used to prepare sensors with the intent of
avoiding devices with too high a resistance (approaching isolating state) or with too low
a resistance (approaching that of PANI itself for low functional moieties). The response
showed that this was a good compromise if lower humidity (<1% RH) is excluded from the
test experiment. Characterization methods confirmed the effectiveness of the functionaliza-
tion since both UV-Vis and Raman point out the existence of the composites. The responses
recorded in the exposure time study show that even if the sensing layers are rather thick,
gas diffusion into the layers can be limited.

In the humidity-dependent experiment, we observed bimodal behavior. In our case,
the bimodal response can be explained as follows: in the first region (3% RH < humidity
level < 50% RH), the response increase is mainly water adsorption on PANI since water
acts as a proton source [48], therefore doping the conductivity. So, upon ammonia exposure
in this region, the PANI sensing film doped by water is more sensitive to ammonia and,
globally, a response increase is observed.

Scheme 1 is given as support to explain and understand the general mechanism.
Firstly, ammonia acts as deprotonating agent (de-doping) on conducting PANI and induces
a resistance increase. Under air, the reverse reaction is produced, leading to protonation
(doping). This explanation is summarized in Scheme 1A. Then, it is important to consider
that adsorption of water molecules on PANI always occurs, even after drying [42]. Water
adsorption in PANI induces two different and complementary behaviors. First, water acts
as a proton source [48], meaning that moisture also affects the response. In the presence
of minimal water content, the PANI itself is doped through protonation, and this doping
improves the conductivity of the PANI. The second effect of a small moisture presence
is to facilitate the inter-fibers junctions. In fact, water can be involved in inter-chain
connections via hydrogen bonding [57]. The existence of hydrogen bonding, in some
cases, leads to different nanostructures observed through self-assemblies [58,59]. If we
consider the structure of PANI and PANI/MCs materials, we can easily understand that
the resistance is a sum of the resistance of the fibers (intra) and the junction between fibers
(inter) (see Equation (1) in Scheme 1A). However, it is evident that in the case of PANI/MCs
(Scheme 1B), the intercalation of the MCs affects the resistance of the inter-fiber junctions
and the global resistance.
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In the cases of PANI/MCs, water molecules enhance the conductivity of the fibers
(intra) through proton doping. Still, they can hardly facilitate the fiber-fiber (inter) junction
due to the presence of the MCs (hydrophobic) that prevent the formation of connections or
conducting paths. This case holds at relative humidity levels < 50%. In comparison, for
higher relative humidity levels (>50%), the sensing film can absorb the ambient humidity,
and the occurrence of the swelling phenomenon is accompanied by competitive sorption
between water and ammonia.

As a consequence of this swelling, the inter-chain conductivity is affected and the
global conductivity decreases, resulting in a decrease in the response when exposed to
ammonia. However, one can easily imagine that the swelling phenomenon is limited
in the presence of MCs in the PANI/MCs composites. Still, the competitive sorption
limits the available adsorption sites and produces a decreasing tendency in the response.
Araghi et al. [60] observed the same tendency upon studying the effect of humidity on the
PANI/phthalocyanine composite used for the detection of CO2. They also pointed out the
competitive sorption between water and CO2.

In the very low relative humidity regime (RH < 1%), the lack of water molecules can
limit the doping action of water, giving rise to higher resistance. The action of ammonia to
this structure is more drastic since it completely reacts with the few available sites through
de-doping. This reaction gives rise to an extremely high film resistance (quasi-isolating
state of the PANI/MCs (Scheme 1C)).

Wang et al. [47] showed that the resistance of PANI gradually increases with time,
even if the relative humidity is kept constant. Moreover, this increase seems to be more
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important at higher RH levels. This result shows again that the swelling is a slow kinetic
mechanism.

After exposure to higher humidity levels (the experiment performed in the 60–80%
RH), the PANI/MCs sensitivity is lower than in the first exposure at 4–5% of RH. This result
reveals that after swelling, desorption of moisture is a low kinetics mechanism. So, this
result can be seen as a drawback when such sensors are exposed to higher humidity levels
with time, affecting long-term sensitivity. This will be the subject of our next investigation.

In the experiment of ammonia exposure at different operating temperatures, we
observed a continuous decrease in response from RT to 100 ◦C. We consider that heating
the layer induces a loss of water molecules, and that humidity can act as a proton source.
The temperature can also affect the polymer chain doping or reorganization [55]. So,
heating the layers leads to a resistance decrease, as seen in the baseline resistance values
(Figure 10). Zampetti et al. [61] conducted studies where the camphor-sulfonic acid-doped
PANI composites showed a baseline current of increasing and then decreasing behavior
when operating temperature was raised. However, they observed that the composites could
be destroyed at high operating temperatures depending on the hosting polymer, leading to
such a current decrease. In our case, the temperature experiments were performed in the RT
to 100 ◦C range. In this range, the loss of dopant is essentially the significant contribution
to conductivity [42]. This loss of dopant then explains the lower response observed when
heating.

5. Conclusions

The combination of PANI with phthalocyanines and porphyrins has been achieved by
an ultrasonic preparation method. The revealed composites present a compact structure
with electrical behavior close to that of PANI, as given by the temperature-dependent
electrical characteristics. The MCs seem to improve sensing performance while providing a
partial selectivity towards other interfering gases. Their sensing performance is negatively
affected at low humidity levels or after repeated high temperature exposure experiments.
This is probably due to the presence of macrocycles, which are not good proton/water
reservoirs. Overall, sensor performance is improved under normal humidity conditions
(averaging 40–50% RH, in our lab) at room temperature. Highly resistive sensors can be
fabricated with this method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14050891/s1, Figure S1: Experimental test bench used for the ammonia sensing
experiment, Figure S2: Current–voltage characteristics of the PANI/MCs composites at different
MCs concentration and different voltage ranges, Figure S3: SEM image of PANI/TTPH2 showing
some aggregates of TPPH2, Figure S4: Sensor response of: (A) PANI/CuPctBu (recorded after the
first exposure cycles) and PANI (B) exposed to 50–500 ppm ammonia (step of 50 ppm) at the lowest
humidity level (<1% RH).
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