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Abstract: Polymer semiconductors may have the potential to fully replace silicon in next-generation 

solar cells because of their advantages such as cheap cost, lightweight, flexibility, and the ability to 

be processed for very large area applications. Despite these advantages, polymer solar cells are still 

facing a certain lack of power-conversion efficiency (PCE), which is essentially required for com-

mercialization. Recently, bulk heterojunction of PTB7:PC70BM as an active layer showed remarka-

ble performance for polymer solar cells in terms of PCE. Thus, in this paper, we developed and 

optimized a novel design using PEDOT:PSS and PFN-Br as electron and hole transport layers (ETL 

and HTL) for ITO/PEDOT:PSS/PT7B:PC70BM/PFN-Br/Ag as a polymer solar cell, with the help of 

simulation. The optimized solar cell has a short-circuit current (Isc) of 16.434 mA.cm−2, an open-

circuit voltage (Voc) of 0.731 volts, and a fill-factor of 68.055%, resulting in a maximum PCE of 

slightly above 8%. The findings of this work may contribute to the advancement of efficient bulk-

heterojunction-based polymer solar cells. 

Keywords: polymer; solar cell; bulk heterojunction; PEDOT:PSS; PTB7:PC70BM; PFN-Br;  
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1. Introduction 

Organic semiconductor-based solar cells have gained considerable popularity over 

the last few years, and some scientists believe they have the potential to completely re-

place silicon-based solar cells in the near future [1–5]. Organic semiconductors offer many 

advantages for solar cell applications such as lightweight, low cost, fabrication on various 

substrates, wide-area applications, and flexible and tunable processing at room tempera-

ture [6]. Despite these well-reported advantages, organic solar cell efficiency is far behind 

Si solar cells. It is generally believed that some combination of a proper absorber layer 

with a hole and electron may yield a high-efficiency device for next-generation solar cells 

[7–10]. 

Researchers are exploiting a variety of techniques to enhance the power-conversion 

efficiency (PCE) of organic solar cells. Some schools of thought still believe that the com-

bination of the most suited hole, electron transport, and buffer layer with a highly efficient 

bulk-heterojunction as an absorber layer may yield an excellent photovoltaic response 

[11–13]. Bulk heterojunction has attracted great interest due to various advantages such 

as low cost, tunable bandgap and electron affinity, lightweight, and most importantly ex-

cellent power conversion efficiency compared to other organic/polymer materials. The 

bulk-heterojunction layer consists of a blend of acceptor and donor materials (organic/pol-

ymer) at the nanoscale and broadly speaking donor materials are usually polymer/organic 

while fullerene derivatives (PCBM) are used as acceptor materials for bulk heterojunc-

tions layer such as P3HT:PCBM, MEH-PPV:PCBM, PCPDTBT:PCBM, and PTB7:PC70BM 

[14,15]. 
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Suitable electron and hole transport layers (ETL and HTL) for PTB7:PC70BM create 

challenges, as PTB7:PC70BM has strong binding (low dielectric constant) energy for exci-

ton with low diffusion length, and despite its heterogeneous nature most of the excitons 

are lost in recombination [11,12]. If a very thin PTB7:PC70BM layer is used, then these 

issues can be improved, but the issue of inefficient optical absorption will arise. On the 

other hand, the optimum thickness of the PTB7:PC70BM layer emphasizes the importance 

of an efficient hole and electron transport layer, which attract the required free carriers 

and also block the injection of opposite free carriers. The optical absorption spectra of 

PTB7:PCBM bulk-heterojunction polymer can be found in the reference [16]. 

For the hole transport layer, poly(3,4-ethenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) is accepted as one of the best polymers for hole transport materials and es-

pecially for inverted polymer solar cells. It has many advantages such as lightweight, high 

conductivity, low cost, and thin-film processing even at room temperature [17,18]. How-

ever, the most important reason for its success as a hole transport layer is that PEDOT:PSS 

offers not only a well-coordinated work function for HOMO (Highest Occupied Molecu-

lar Orbital) level of the donor semiconducting polymer but also offers highly matched 

work function with ITO (tin-doped indium oxide) over a glass substrate [19]. As well as 

proper work function, PEDOTT:PSS also offers excellent visible transparency as well as 

good air stability essentially required for photovoltaic applications [20]. As a result, PE-

DOT:PSS can remove holes efficiently from the semiconducting polymer layer and for-

ward them towards the cathode. Hence, in this work, we employed PEDOT:PSS as a HTL. 

Similarly, for an electron transport layer, [6, 6]-phenyl C60 butyric acid methyl ester 

(PC60BM) is another common material for inverted (p-i-n) polymer solar cells. It facilitates 

the electron-transport process and has very high electron-affinity which helps to extract 

the electron efficiently [21]. However, it has some limitations which cause degradation to 

the PCE of polymer solar cells. Some of these limitations are low electron mobility, high 

leakage current, and recombination at interfaces [5]. On the other hand, a polyfluorene 

derivative such as PFN-Br is reported to show excellent electron extraction and transport 

behavior [22]. Figure 1 shows the overall architecture of the novel ITO/PE-

DOT:PSS/PTB7:PC70BM/PFN-Br/Ag photovoltaic device proposed for this study. The 

photovoltaic response of the solar cell described above was numerically simulated in or-

der to identify the optimal doping density and thickness of ETL, HTL, and the absorber 

layer. 

 

Figure 1. Shows the schematic view of the proposed ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag 

photovoltaic device for simulation. 
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2. Simulation Methods and Physical Parameters 

2.1. Simulation Software 

Simulation of a photovoltaic response for an organic solar cell is a highly mature field 

and has already played a vital to overall improving the PCE of the solar cell. In industry, 

various types of software are available for the simulation of photovoltaic response. 

Among simulation software, SCAPS-1D is very attractive as open-source, simple, highly 

reliable, and provides comprehensive tools for simulations. Similarly, SCAPS-1D software 

also offers high consistency between simulation and experimental results [23–25]. On the 

other hand, various simulation results for organic/polymer materials as absorbers or 

transport layers for different solar cells have already been reported in the literature [26–

28]. Therefore, SCAPS 1D software (SCAPS 3.8, ELIS-University of Gent, Gent, Belgium) 

was chosen for the simulation study of the proposed solar cell. 

2.2. Simulation Method 

SCAPS 1D simultaneously solves many fundamental semiconductor photovoltaic 

equations for both electron and hole separately such as (i) continuity equation, (ii) Poisson 

equations, (iii) charge transport equations, (iv) diffusivity equations, and (v) optical ab-

sorption equations. The following reference [29,30] contains in-depth information on these 

fundamental equations These equations are driven by physical and geometrical parame-

ters associated with each layer and lead to the overall photovoltaic response of the given 

solar cell. These equations are listed as 
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�
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Here ∅(�), q, ∈�, ∈�,  ��,  ��, NA, ND, p(x), n(x), G, R, JP, Jn, and J, are the electrostatic 

potential, electrical charge, absolute permittivity of vacuum, relative permittivity of a 

semiconductor, hole defect density, electron defect density, shallow acceptor doping den-

sity, shallow donor doping density, hole carrier density as a function of the thickness (x), 

electron carrier density as a function of the thickness (x), carrier generation rate of free 

carriers, total carrier recombination rate, hole current density, and electron current den-

sity, total current density, respectively. Similarly, Dp, Dn, µp, and µn are the free hole diffu-

sion coefficient, free electron diffusion coefficient, free hole carrier mobility, and free-elec-

tron carrier mobility, respectively. Finally, h, α (λ), Eg, and � are the plank constant, ab-

sorption coefficient, energy bandgap, optical frequency, and few arbitrary constant, re-

spectively. 

The simulation of the proposed solar cell is divided into six-well defined steps, these 

simulation steps are summarized as a flowchart in Figure 2. Firstly, the hole transport 

layers’ thickness and doping density are optimized and then the electron transport layers’ 

thickness and doping density are optimized. Similarly, in the next step, the absorber layer 
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thickness is optimized, while in the second last and last step the final photovoltaic re-

sponse of the optimized device is determined. 

 

Figure 2. The steps of the methods followed in this work to optimize the proposed ITO/PE-

DOT:PSS/PTB7:PCBM/PFN-Br/Ag solar cell. 

2.3. Physical Parameters 

The physical parameters for each transport and absorber layer required by the soft-

ware are the backbone of the simulation, special attention was paid to the selection of 

these parameters. These parameters are selected from the published results and are listed 

in Table 1. As organic semiconductor is considered disordered material, it inherently of-

fers a high density of traps [31–34]. The photovoltaic performances of solar cells are seri-

ously affected by the existence of both shallow and deep traps. Therefore, high traps den-

sity (1015 cm−3) is introduced in both bulk and layer interface for the hole/electron transport 

layer and absorber layer, as shown in Table 1. Similarly, all calculations were performed 

at an ambient temperature environment of 300 K with 100 mW/cm2 of power spectral den-

sity as a 1.5 AM solar radiation light source. 

Table 1. The parameters of the photovoltaic device utilized in these simulations, including the initial 

estimation of the doping concentrations and thicknesses of each layer, which will be improved in 

the subsequent stages. 

Physical Parameters Symbol Unit PEDOT:PSS PTB7:PC70BM PFN-Br 

Thickness Th Nm - 250 250 

Energy Band Gap Eg eV 1.6 0.9 2.98 

Electron Affinity Χ eV 3.5 3.7 4 

Dielectric Permittivity (Relative) Ε - 3 3.9 5 

Effective Density of States at Va-

lence Band 
NV cm−3 1 × 1022 1 × 1018 1 × 1019 

Effective Density of States at Con-

duction Band 
NC cm−3 1 × 1022 1 × 1018 1 × 1019 

Hole Thermal Velocity Ve cm/s 1 × 107 1 × 107 1 × 107 

electron Thermal Velocity Vh cm/s 1 × 107 1 × 107 1 × 107 

Electron Mobility μe cm2/V.s 0.01 5.00 × 10−4 1.00 × 10−4 

Hole Mobility μh cm2/V.s 9.9 × 10−0.5 5.00 × 10−4 2.00 × 10−6 

Uniform Shallow Donor Doping Nd cm−3 0.00 1 × 1019 - 

Uniform Shallow Acceptor Doping Na cm−3 - 1 × 1019 0 

Defect Density Nt cm−3 1 × 1015 1 × 1015 1 × 1015 

References   [35] [36,37] [38] 
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3. Results and Discussion 

3.1. Thickness Optimization of PEDOT:PSS 

Thickness optimization of PEDOT:PSS as a hole transport layer is very crucial for the 

proposed solar cell because at one side PEDOT:PSS interacts with semitransparent ITO 

and on the other side it interacts with PT7B:PC70BM absorber layer. As a result, optical 

transmission, hole extraction and blocking of the electron from the absorber, hole trans-

portation, and collection to the respective ITO anode depend critically on the PEDOT:PSS 

layer thickness [39]. The thickness optimization of PEDOT:PSS was performed by deter-

mining the photovoltaic characteristics such as PCE, short-circuit current (Isc), open-cir-

cuit voltage (Voc), and fill-factor, as functions of the thickness of PEDOT:PSS, shown in 

Figure 3. Among these photovoltaic parameters, fill-factor is unique and defined as the 

percentage ratio between the actual and maximum possible power. 

The thickness range of PEDOT:PSS is selected from 50 nm to 500 nm according to 

their efficiency with the high repeatability for the photovoltaic response [40]. Figure 3 

demonstrates that both open-circuit voltage and fill-factor, as well as short-circuit current 

and efficiency, follow different trends. At almost 125 nm, the fill factor of the cell hits a 

maximum and then nearly remains constant as the thickness of PEDOT:PSS increases, 

while Voc is sharply declined with the increase in PEDOT:PSS thickness. On the other 

hand, PCE and short-circuit current is dropped from 50 nm thickness of PEDOT:PSS. Be-

cause PCE is the decisive factor, the optimal thickness of PEDOT:PSS as an HTL for the 

current solar cell is 50 nm. 

 

Figure 3. Performance characteristics such as (a) Voc, (b) fill factor, (c) Isc, and (d) PCE of the pro-

posed ITO/PEDOT:PSS/PTb7:PC70BM/PFN-Br/Ag solar cell as a function of the PEDOT:PSS (HTL) 

thickness. 
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3.2. Shallow Doping Density Optimization of PEDOT:PSS 

Another significant parameter to consider when optimizing a solar cell for efficiency 

is the doping density for PEDOT:PSS as the HTL. Doping of PEDOT:PSS as the hole 

transport layer significantly improves both charge extraction and charge transport process 

by reducing the series resistance and the establishment of ohmic contacts to the ITO elec-

trodes, which overall enhances the solar cell’s photovoltaic parameters [41]. However, the 

higher dopant concentration may cause the creation of traps, which in turn behave as 

electron–hole recombination centers for PEDOT:PSS, thus we selected the range of doping 

density from 1012 to 1020 cm−3 based on published results [42]. PEDOT:PSS doping is critical 

for the proposed solar cell to have an efficient photovoltaic response. Before beginning the 

doping simulation, the optimized PEDOT:PSS thickness was updated in the software, and 

then photovoltaic parameters, such as Voc, fill factor, Isc, and PCE, as functions of shallow 

acceptor doping of PEDOT:PSS. The layer was simulated as shown in Figure 4. The figure 

depicts similar trends for all photovoltaic parameters except open-circuit voltage, which 

increases sharply and reaches a maximum at 1016 cm−3 and then starts to decrease. While 

other photovoltaic parameters also increase at early doping density with a slow rate, 

sharply rise to 1018 cm−3, and then slightly increase up to 1020 cm−3, which is the typical 

behavior of trapped space charge, limited current behavior was also observed for many 

organic/polymer semiconductors [43–45]. Consequently, the optimal doping density for 

the PEDOTPSS (HTL) in the proposed solar cell is inferred to be 1020 cm−3. 

 

Figure 4. Performance characteristics such as (a) Voc, (b) fill factor, (c) Isc, and (d) PCE of the pro-

posed ITO/PEDOT:PSS/PTb7:PC70BM/PFN-Br/Ag solar cell as a function of the PEDOT:PSS (HTL) 

doping density. 

3.3. Electron Transport Layer Thickness Optimization 
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The optimal thickness of PFN-Br as an ETL is obtained in the third step of the simu-

lation. Just like PEDOT:PSS as the HTL, the thickness of PFN-Br as ETL is also very im-

portant for electron extraction from PT7B-PC70BM, electron transport, and collection of 

electrons at the Ag cathode. The thickness optimization of PFN-Br was performed by de-

termining the photovoltaic characteristics such as Voc, fill factor, Isc, and PCE as functions 

of PFN-Br thickness, shown in Figure 5. The Voc and Isc response of the current solar cell 

are degraded when the thickness of PFN-Br increases, while fill-factor is slightly increased 

up to 125 nm and then remains nearly constant. The efficiency is also degraded but at a 

very slow rate. The figures clearly show that the optimal thickness of PFN-Br as an ETL is 

50 nm. Therefore, it can be inferred that the 50 nm thickness of PFN-Br provides the bal-

ance trade-off between electron–hole recombination, electron extraction, and blocking of 

the hole from the absorber, electron transportation, and hence collection to the respective 

Ag cathode.  

 

Figure 5. Performance characteristics such as (a) Voc, (b) fill factor, (c) Isc, and (d) PCE of the pro-

posed ITO/PEDOT:PSS/PTb7:PC70BM/PFN-Br/Ag solar cell as a function of PFN-Br (ETL) thick-

ness. 

3.4. Shallow Doping Density Optimization of the PFN-Br 

In the fourth step of the simulation, the optimum doping density of PFN-Br as an 

electron transport layer is determined. The optimized donor doping of PFN-Br can be at-

tributed to the efficient electron extraction and good ohmic contact between Ag cathode 

and the active PTB7:PC70BM layer. The optimized donor doping PFN-Br was estimated 

by determining the photovoltaic parameters, such as Voc, fill factor, Isc, and PCE, by al-

tering the shallow donor doping of PFN-Br from 1012 to 1020 cm−3, as shown in Figure 6. 

According to the Figure, it can be seen that higher doping of PFN-Br causes the open-

circuit voltage response to degrade, which may be due to the creation of extra traps den-

sity at higher doping and the relaxation of the free carriers at these traps may cause to 

reduce the open-circuit voltage [46]. While PCE, fill-factor, and short-circuit current are 
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increased with doping, PCE performed well, reaching the maximum at 1018 cm−3 doping 

and then starting to degrade. Thus, on the basis of these results, it can be concluded that 

the most optimal doping for PFN-Br as an ETL is 1018 cm−3. 

 

Figure 6. Performance characteristics such as (a) Voc, (b) fill factor, (c) Isc, and (d) PCE of the pro-

posed ITO/PEDOT:PSS/PTb7:PC70BM/PFN-Br/Ag solar cell as a function of PFN-Br (electron-

transport layer) doping density. 

3.5. Thickness Optimization of PTB7-PC70BM 

Thickness optimization of bulk-heterojunction polymer absorber layer (e.g., PTB7-

PC70BM) is one of the main challenging tasks because it depends on many inter-related 

processes such as strong optical absorption, generation of electron–hole pairs, conversion 

of bounded electron–hole pairs into free carriers, reducing carrier recombination losses, 

efficient charge transportation to the respective transport layers, mechanical and environ-

mental stability. All these factors required different thicknesses of the absorber layer for 

their efficient individual response and a compromise between these processes is required 

for an efficient photovoltaic response [47–49]. In literature, various thicknesses of bulk 

heterojunction absorber layer for organic/polymer solar cells are reported [50–52]. There-

fore, we varied the thickness of PTB7:PC70BM from 50 to 500 nm for simulation. Conse-

quently, the thickness optimization of bulk heterojunction PTB7:PC70BM absorber layer 

was performed by simulating the photovoltaic characteristics such as Voc, fill factor, Isc, 

and PCE by altering the thickness of absorber layer and the results are shown in Figure 7. 

Both Voc and fill-factor decrease with thickness, while PCE and short-circuit current, ini-

tially, slightly increase up and reached the maximum at nearly 100 nm thickness, then 

they gradually decrease. Hence, based on the simulation results, it can justify that the 100 

nm thickness of the PTB7:PC70BM is the optimum thickness of the current solar cell. 
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Figure 7. Performance characteristics such as (a) Voc, (b) fill factor, (c) Isc and (d) PCE of the pro-

posed ITO/PEDOT:PSS/PTb7:PC70BM/PFN-Br/Ag solar cell as a function of PTB7:PC70BM (ab-

sorber layer) thickness. 

3.6. Photo Current–Voltage Response of Proposed Solar Cell 

The final phase of the simulation was to combine all of the optimum doping density 

and thickness for the PEDOT:PSS, PFB-Br, and PTB7:PC70BM layers and determine the 

current solar cell’s overall photocurrent–voltage response, as shown in Figure 8. 

 

Figure 8. The simulated photocurrent–voltage response at AM 1.5 for the proposed ITO/PE-

DOT:PSS/PT7:PC70BM/PFN-Br/Ag solar cell. 
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The proposed solar cell’s photovoltaic parameters are shown in Figure 8. The opti-

mized ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag solar cell has an Isc of 16.434 mA.cm−2, 

Voc of 0.731 volts, a fill-factor of 68.055%, and a PCE of 8.18%. The higher value of short-

circuit current may be due to the commutative effects of wider optical absorption, exciton 

generation, efficient exciton dissociation leads to the free carrier generation, and then 

transportation at their respective transport layer before collection at electrodes [53]. The 

proposed solar cell’s open-circuit voltage still has space for future improvement. 

On the other hand, lower PCE compared to the other reported simulation of bulk-

hybrid solar cells is maybe due to the incorporation of a higher density of traps [38]. It is 

experimentally evident that polymers are full of traps, and these traps may be presented 

due to many factors such as humidity, structural defects, distortion, impurity, and/or any 

other known or unknown reasons. However, these traps act as the recombination centers 

and cause severely degrade the overall photovoltaic response. Therefore, a high density 

of traps in each layer is introduced in order to make the simulation more realistic and 

comparable to the experimental results, which in turn show the lower PCE. 

4. Conclusions 

In conclusion, we have efficiently designed and optimized a polymer-based novel 

bulk heterojunction solar cell as ITO/PEDOT:PSS/PTB7:PC70BM/PFN-Br/Ag through 

SCAPS 1D simulations. For this purpose PEDOT:PSS, PFN-Br, and PT7B:PC70BM layers 

were selected as a HTL, ETL, and bulk-heterojunction absorber layers, respectively, and 

sandwiched between transparent ITO and Ag electrodes. Doping density and thickness 

of both PEDOT:PSS and PFN-Br were optimized and then PT7B:PC70BM is investigated 

for an efficient photovoltaic response. The proposed ITO/PE-

DOT:PSS/PTB7:PC70BM/PFN-Br/Ag solar cells yield an Isc of 16.434 mA.cm-2, a Voc of 

0.731 volts, and a fill factor of 68.055%, resulting in a PCE of just over 8 %. Similarly, it is 

also indicated that all photovoltaic parameters are considerably affected by the doping 

density as well as the layer thickness of both ETL and HTL, and the bulk-heterojunction 

absorber layer. The higher short circuit current may the result of efficient optical absorp-

tion, exciton generation, exciton dissociation, free carrier generation, and then transporta-

tion at their respective transport layers before collection at the electrodes. As it is accepted 

that polymers are full of traps, we introduced a high density of traps in each layer in order 

to make the simulation more realistic, which in turn shows the lower PCE. Additionally, 

the proposed solar cell’s open-circuit voltage still has room for improvement. 
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