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Abstract: In a high-pressure hydrogen environment, the sealing rubber material is swelled by
hydrogen, and the mechanical and tribological properties are reduced, causing various problems
in the sealing performance. The focus of this study was the effect of the filler type and content on
the tribological characteristics of rubber after exposure to high-pressure hydrogen. Acrylonitrile
butadiene rubber specimens were exposed to high-pressure hydrogen at 96.6 MPa, and the change
in the amount of wear with time after exposure was observed. The wear test was performed using
a pin-on-disc ball tip to measure the amount of wear before and after hydrogen exposure of the
materials under fixed revolutions per minute and normal load. Scanning electron microscopy was
used to observe the wear track and cross section of the specimen to examine the changes in the wear
mechanism after hydrogen exposure and to analyze the wear mechanism for each filler. The results
of this study are expected to contribute to the evaluation of the tribological properties of the sealing
materials used in hydrogen environments.

Keywords: hydrogen; acrylonitrile butadiene rubber (NBR); wear; functional fillers; pin-on-disc test;
blister; micro-pore

1. Introduction

Since the 18th century, fossil fuels, such as coal, oil, and natural gas, have been the main
energy sources for the development of automotive technology and transportation. Despite
the benefits of fossil fuels for technological development, environmental problems, such as
global warming, have arisen. At the same time, there has been growing concern about the
energy crisis caused by the depletion of fossil fuels. Hydrogen has emerged as a promising
alternative energy source to fossil fuels. Hydrogen fuel cell electric vehicles (FCEVs) are
key elements of the hydrogen economy. Compared to internal combustion engine vehicles,
FCEVs are eco-friendly vehicles that produce no pollutants, only generating water and
heat in fuel cells. In addition, FCEVs have the advantages of a faster charging speed and
a longer driving range than conventional electric vehicles. The FCEV contains a type
4 composite pressure vessel for high-pressure hydrogen storage. Unfortunately, high-
pressure containers made of metallic materials may have problems owing to the hydrogen
embrittlement phenomenon [1–3]. For a long period, many studies on the degradation of
mechanical properties (e.g., ductility loss, decrease in fracture toughness, fatigue strength,
and fatigue crack growth) have been conducted [4–7].

In hydrogen stations and FCEVs, polymer materials, such as plastic and rubber, are
used to seal the space between each component connected from the high-pressure vessel to
the fuel cell system. Rubber materials are mainly used in the form of O-rings, which are
repeatedly exposed to hydrogen (up to 87.5 MPa) and a wide temperature range of −50 to
85 ◦C, depending on their location of use. This severe condition can cause mechanical
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damage (e.g., micro-sized cracks and blisters) in the O-ring via explosive decompression
(ED). When the high-pressure gas is rapidly decompressed, ED occurs inside the O-ring,
resulting in internal fracturing [8,9]. Few reports exist on the mechanism of initiation of
blisters and the fracture caused by ED [10–13]. The size and number of blisters are affected
by not only the pressure of hydrogen, but also the types and content of the filler in the rubber
compound. According to previous research, blisters are more likely to occur in rubber
containing carbon black than silica [10,14]. The influence of fillers on the tensile properties
of hydrogen-exposed rubber showed similar results to those of blister formation [15,16].

As the FCEV industry has grown in recent years, research on the tribological character-
istics of polymer materials in a hydrogen environment has become increasingly undertaken.
Polymer seals can be rubbed with a metallic counter face in a high-pressure hydrogen envi-
ronment. The wear of the seal reduces the sealing performance, as the contact force of the
seal decreases with the amount of wear loss. Therefore, it is necessary to evaluate the tribo-
logical characteristics of polymer materials in a hydrogen environment. A few reports exist
on the tribological characteristics of polymer composites in hydrogen environments [17–20].
These studies contribute to the understanding of the tribological characteristics of polymers
under hydrogen gas. For elastomers, in situ tribological experiments under high-pressure
hydrogen have been actively conducted in the last few years [21–25]. Experiments on
various types of rubber have been conducted; however, only a few studies were conducted
on fillers contained in rubber [25]. In this study, we focused on the effect of the filler
type and content on the tribological characteristics of acrylonitrile-butadiene rubber (NBR)
after exposure to high-pressure hydrogen. NBR is the most commonly used rubber in a
wide range of industries due to its good resistance toward hydraulic fluids, grease, and
gas [26,27]. In the FCEV industry, various elastomers, such as NBR, ethylene propylene
diene monomer (EPDM), and fluoroelastomers (FKM) are considered for use as sealing
material that can survive in a high-pressure hydrogen environment. For the experiment,
we selected NBR as the first target prior to other elastomer candidates for hydrogen sealing
material. Carbon black and silica were used as fillers, and the contents were classified into
20, 40, and 60 phr. Tribological properties, such as the specific wear rate and wear track
morphology, were investigated depending on the type and content of the fillers before and
after exposure to high-pressure hydrogen. Hydrogen-induced internal damage appeared
differently according to the type and content of the fillers.

2. Materials and Methods
2.1. Test Materials

An acrylonitrile–butadiene rubber (NBR) plate specimen was obtained from the Ko-
rean Institute of Footwear & Leather Technology (Busan, Korea). The main component of
neat NBR consists of KNB 35 L with an acrylonitrile content of 34 wt% made by Kumho
petrochemical group (Seoul, Korea). Non-filled NBR, N330 carbon-black-filled NBR, and
silica-filled NBR were prepared for the test. The size of the primary particle of the N330
carbon black was 28–36 nm. Specific grade Zeosil® 175 silica produced by Solvay (Brussel,
Belgium) was used, having a specific surface area of 175 m2/g. Each filler was added to the
NBR at 20, 40, and 60 phr. The components of NBR, including the filler content, are shown
in Table 1.

To prepare the NBR composite, a two-stage mixture was employed using two banbury
rotos and an inner mixer with two 8-inch open roll mills. In the first step of mixing
(masterbatch), the NBR rubber was pounded and reinforced with fillers, such as carbon
black and precipitated silica, and processing aids, such as ZnO, and stearic acid were added
to the internal mixer (3 L kneaders, Moriyama Co., Tokyo, Japan). The filling factor was
fixed at 0.8, and the starting operating temperature of the Kneader was set to 80 ◦C. The
rotor speed was set to 30 rpm. The NBR rubber was added to a 3 L kneader and masticated
for 3 min. Then, the reinforcing filler and the processing aids were incorporated for 10 min.
In the second step of mixing, curing agents and accelerating agents were added to the
master batch composite, using an open roll mill. The mixer was set to a 3 mm nip opening
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between rolls. The master batch was added to the roller and mixed for 1 min. Sulfur and
TBBS were added in to the batch and mixed for 2 min. The mixing time was same for all
composites. Vulcanizate sheets of the composites were prepared by compression molding
in a hydraulic press at 150 ◦C [28].

Table 1. Chemical composition of NBR compounds. (Unit: part per hundred resin (phr).)

Materials Non-Filled CB-20 CB-40 CB-60 SC-20 SC-40 SC-60

KBR 35 L 100 100 100 100 100 100 100
ZnO 3.0 3.0 3.0 3.0 3.0 3.0 3.0

St/A (1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
N330 20 40 60
Silica 20 40 60
Si-69 1.6 3.2 4.8

PEG (2) 0.8 1.6 2.4
S 1.5 1.5 1.5 1.5 1.5 1.5 1.5

TBBS (3) 0.7 0.7 0.7 0.7 0.7 0.7 0.7
(1) St/A: Stearic acid. (2) PEG: Polyethylene glycol; (3) TBBS: N-tert-butyl-2-benzothiazole sulfonamide.

2.2. Test Methods
2.2.1. High-Pressure Hydrogen Exposure Test

A high-pressure hydrogen autoclave at the Korea Research Institute of Standard and
Science (Daejeon, Korea) was used for hydrogen exposure. For high-pressure hydrogen
exposure, the pressure vessel was purged with argon gas at 5 MPa three times and then
filled with hydrogen at a rate of approximately 5 MPa/min to a pressure of 96.6 MPa. The
specimens were soaked in high-pressure hydrogen for 24 h. After 24 h, the chamber was
decompressed at a rate of approximately 5 MPa/s.

2.2.2. Pin-on-Disc Test (ASTM G99)

A wear test was performed, using a custom-made pin-on-disc tester (Figure 1) with
reference to the ASTM G99 standard. The ASTM G99 standard is based on metallic materials.
Therefore, the preparation and testing conditions of the specimens were changed for NBR
materials. In this study, through the wear test, the wear loss and morphology of the wear
tracks were measured before and after the exposure to high-pressure hydrogen for 24 h.
Each test was repeated three times for each test condition. The wear loss was calculated as
the difference in the specimen weights before and after the wear test. Before weighing the
specimen with an electronic balance, the specimens were stored in a desiccator for more
than 24 h. They were then measured. In the case of the specimens exposed to high-pressure
hydrogen, the final weight was determined one week after decompression. The weight of
the specimen was obtained five times, and the average value was used. We compared the
wear characteristics and wear resistance of seven types of NBR with the amount of wear
loss, friction force, and coefficient of friction derived from the wear test.

For other mechanical property tests, including tensile and hardness tests, a quick
measurement was possible before a large amount of hydrogen escaped from the NBR.
However, in the case of the wear test, a certain friction distance or time was required to
obtain a sufficient amount of wear loss for a comparison between NBR specimens. At
the same time, to evaluate the effect of hydrogen, a wear test had to be conducted while
hydrogen was sufficiently present in the specimen.

Depending on the type of filler, even if the same content was included in the specimen,
there was a large difference in wear loss. The reinforcing effect of the filler tended to
increase as the filler content increased. Nevertheless, the degree of the reinforcing effect
depended on the filler type. If the normal load is large, a sufficient amount of wear can be
obtained to evaluate the entire specimen type, even in a short-distance wear test. However,
in the case of a material with poor wear resistance, the wear may exceed the thickness of
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the specimen, which may cause problems in the evaluation. Therefore, in this study, 5 N
was selected as the final normal load through preliminary experiments.

Figure 1. Schematics of the pin-on-disc wear apparatus.

The rotation speed and total friction distance were the main parameters used to
control the testing time. It was necessary to obtain a sufficient amount of wear loss while
considering the degassing of hydrogen from the specimen. If a single test requires a long
time, only a small amount of hydrogen remains in the specimen. It is thus difficult to
determine the effect of hydrogen on the tribological properties. The ball tip used in the
wear test was 5 mm from the rotational center. From the preliminary wear tests, the final
wear testing conditions were a normal load of 5 N, 300 rpm, and a total sliding distance of
500 m.

To create a uniform contact surface under the specimen, a thin base plate was placed
under the specimen and situated on a rotating disc. A customized jig was used to fix
the specimen to the rotating disc. When tightening the bolt, a torque of 0.3 kgf·cm was
implemented with a torque driver. It was important to use an appropriate torque to
prevent bulging at the center, which occurs when the torque implemented at the edge of
the specimen is too high. The surfaces of the specimens and ball tips were cleaned with
ethanol. After the wear test, the wear particles were collected, and residual small particles
on the wear track were removed with a blower. The specimens were stored in a desiccator
for at least two weeks until there was no weight change.

2.2.3. Morphology Analysis

After high-pressure hydrogen exposure, numerous pores and cracks were created
inside the NBR specimens. A scanning electron microscope (JSM-7100F) from JEOL (Tokyo,
Japan) was used to observe the wear track and cross section of the NBR specimens. NBR
specimens were cut by a razor blade rinsed with isopropyl alcohol. The perimeter of the
pores observed in the SEM images was manually marked for pore detection. The centroid,
cross-sectional area, and number of pores were counted using free, open-source ImageJ
image analysis software. The schematics of morphology analysis were shown in Figure 2.
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Figure 2. Summary of sample preparation and pore counting procedures after hydrogen exposure
via ImageJ.

3. Test Results and Discussion
3.1. Hydrogen-Induced Internal Damage
3.1.1. Density Change and Blister Formation

The mass of a specimen before and after hydrogen exposure is measured by employing
the electronic balance with the resolution of 10 µg under the environments in which both
temperature and humidity are well maintained. The volume before and after hydrogen
exposure is measured by the calibrated micrometer under the same environments. Thus, the
density is determined by dividing the mass by the volume of specimen. The measured value
after hydrogen exposure was taken as the measured one at one hour after decompression
started. The density of NBR increased with the filler content, and the density of the carbon-
black-filled NBR was slightly higher than that of the silica-filled NBR. After decompression,
the NBR began to swell because the dissolved hydrogen molecules aggregate to form small
bubbles inside the specimen [29]. Therefore, the density of NBR decreased, depending
on the filler content and type (Figure 3a). In some cases of non-filled NBR, severe blisters
occurred, as shown in Figure 3b. There was swelling and whitening in the silica-filled
NBR, although blisters were not observed on the surface. On the other hand, blisters and
surface deformations were observed on the surface of carbon-black-filled NBRs. Because of
the small blisters inside the specimen, the flat surface of the unexposed specimen became
bumpy and wobbly (Figure 3).

3.1.2. Micro-Pores in Non-Filled NBR

Blister initiation was categorized for three different cases: blisters formed at a micro-
size defect (case 1), blisters formed at the filler agglomerate (case 2), and blisters formed
without defects in the rubber matrix (case 3) [13]. In the case of the NBR used in this study,
the number and size of bubble formation differed, depending on the type and content of
the filler. After decompression, the non-filled NBR had large bubbles on the surface of the
specimen. In the cross-sectional area, cracks due to large bubbles were observed. When
the additives were aggregated, the gap between the interfaces enlarged, incorporating
case 1 and case 2 types of damage. Meanwhile, there was considerable case 3 damage in
which no filler agglomerates were observed inside the blister (Figure 4).
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Figure 3. Summary of density changes and blister formation of NBR after hydrogen exposure.

Figure 4. SEM images of non-filled NBR before and after hydrogen exposure.
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To quantify the pores found above, the distribution of pores in the area, including
the specimen thickness, was measured. Approximately 2080 pores were found in the
cross-sectional area of 6.77 mm2. The cross-sectional area between 30 and 40 µm2 included
a large portion, as shown in Figure 5a. The pores were counted within a section divided by
100 µm along the thickness of the specimen. The pores were distributed predominantly in
the middle of the specimen thickness. As shown in Figure 5b, the average diameter of the
pores was calculated from the pores located in the same section. The cross section of NBR
containing carbon black and silica was also quantitatively analyzed for hydrogen-induced
damage in the same manner.

Figure 5. Formation and distribution of pores of non-filled NBR specimen.

3.1.3. Micro-pores in Carbon-Black-Filled NBR

The number, cross-sectional area, and distribution of pores per unit area were mea-
sured based on the thickness direction of the carbon-black-filled specimen, as shown in
Figure 6. In the CB-filled NBR, pores of similar sizes were formed regardless of the filler
content. There were approximately 330 pores per 1 mm2 in CB-20, 546 pores in CB-40, and
62 pores in CB-60. The areas of pores per 1 mm2 were 0.0014, 0.0018, and 0.0002 mm, and
less than 0.2% of the total area was empty as pores. From the CB content of 20 to 40 phr, the
number of pores per unit area slightly increased; however, the number decreased signifi-
cantly at 60 phr. The average diameters of the pores were measured to be 2.33, 2.03 and
2.19 µm, respectively. The carbon black content had a minimal effect on the size of the
pores, and the reinforcing effect of carbon black by their content seemed to suppress pore
formation. In Figure 7, the distributions of observed pores of carbon-black-filled NBR
are summarized.

Figure 6. Formation of pores in the cross-sectional area of carbon-black-filled NBR.
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Figure 7. Formation and distribution of pores of carbon-black-filled NBR.

3.1.4. Micropores in Silica-Filled NBR

The number, cross-sectional area, and distribution of pores per unit area were mea-
sured based on the thickness direction of the silica-filled specimen, as shown in Figure 8.
From SC-20 to 60, there were approximately 288, 414, and 745 pores per 1 mm2, respec-
tively. The area of pores per 1 mm2 was 0.0163 mm2 in SC-20, 0.0132 mm2 in SC-40, and
0.0017 mm2 in SC-60; less than 0.2% of the total area comprised pores. The average diam-
eters of the pores were measured to be 8.5, 6.37 and 1.69 µm, respectively. As the silica
content increased, the size of the pores decreased, and the number of pores increased.
Silica is considered to be the cause of pore formation; nonetheless, a large amount of silica
inhibited the pore size from growing, owing to the reinforcing effect of silica. In Figure 9,
the distributions of observed pores of silica-filled NBR are summarized.

Figure 8. Formation of pores in the cross-sectional area of silica-filled NBR.
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Figure 9. Formation and distribution of pores of silica-filled NBR.

3.2. Ex-Situ Wear Test
3.2.1. Wear Loss

According to the research on the effect of hydrogen exposure on mechanical properties,
mechanical properties such as tensile strength, elongation at break, and hardness were
impaired regardless of filler type and content. The relative change in tensile strength at 1 h
after hydrogen exposure was inconsistent with seven types of NBR. The relative change
in hardness showed the lowest value at 40 phr, regardless of filler type. The results of
mechanical property change indicate that mechanical properties of NBR deteriorate after
exposure to high-pressure hydrogen. However, these results are not suitable for evaluating
the effect of high-pressure hydrogen due to the inconsistency of the relative change in
mechanical properties [30]. Therefore, as the specific wear rate and pore density showed
distinguishable change after the specimen was exposed to high-pressure hydrogen, it could
serve as alternative criteria for the evaluation of hydrogen effects on NBR.

After decompression, a wear test was conducted on seven types of NBR. The NBR
specimens containing filler were tested at a load of 5 N; however, for the non-filled NBR,
a wear test was performed at a load of 3 N due to poor wear resistance. Compared to
the unexposed specimen, the wear loss of the exposed non-filled NBR increased from
234 to 245 mg. Carbon black showed better reinforcement than silica with the same content.
It also seemed that wear resistance roughly recovered over time, although some of the
SC-filled silica did not recover to unexposed wear loss, even after 14 days (Figure 10). This
can be interpreted as hydrogen exposure causing a permanent change in the tribological
properties of the material.
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Figure 10. The amount of wear loss measured by elapsed time after decompression.

In the case of CB-20 and CB-40, roll formation occurred on the surface. However,
in the wear track of CB-60, roll formation of the material did not occur easily, and the
wear particles were fused to the surface as shown in Figure 11. The silica-filled NBR also
exhibited a similar wear mechanism on the surface. As the silica content increased, the size
and length of the roll formation decreased as shown in Figure 12. The filler content of more
than 60 phr made the material harder and tough so that abrasion did not readily occur, and
the wear particles did not effectively aggregate.

Figure 11. Morphology of the wear track of carbon-black-filled NBR before and after hydrogen exposure.
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Figure 12. Morphology of the wear track of silica-filled NBR before and after hydrogen exposure.

3.2.2. Coefficient of Friction

Table 2 shows the average coefficient of friction (CoF) derived from the mean cen-
tered line of the plateau region of the CoF curve from a sliding distance of approximately
200–400 m. CoF data between 0 and 100 m were excluded because CoF fluctuated sig-
nificantly due to the uneven wear track. The CoF of all the specimens slightly increased
after hydrogen exposure (Figure 13). The CoF of CB-40 and CB-60 increased by almost
1.5 to 2 times the CoF before hydrogen exposure. The CB-filled NBR showed higher CoF,
compared with the SC-filled NBR.

Table 2. Averaged coefficient of friction after decompression.

Coefficient of Friction CB-20 CB-40 CB-60 SC-20 SC-40 SC-60

Before hydrogen exposure 1.191 1.856 1.530 1.112 1.032 0.892
1 h after decompression 1.060 0.834 0.985 1.150 1.122 1.089

Figure 13. Cont.
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Figure 13. Coefficient of friction before and after hydrogen exposure.

3.2.3. Modified Specific Wear Rate

The wear resistance of the material was compared using the specific wear rates before
and after hydrogen exposure. Equation (1) is the specific wear rate, which is the wear
volume divided by the product of the applied load and distance. In this study, the wear
resistance of each material was compared using Equation (2), which is the wear volume
divided by the product of the generated frictional force and the distance. Despite the
same wear testing condition, after decompression, the CoF of some materials increased
significantly, while showing a low amount of wear loss. Therefore, to include the influence
of changing CoF to the equation, the normal load was substituted for the friction force
measured from the CoF.

Ws =
∆m

ρFNS
(1)

Ws
′ =

∆m
ρFf S

(2)

where ∆m is the wear mass loss, ρ is the density of the material, FN is the normal load, Ff is
the friction force calculated from the mean centered line of the coefficient of friction, and S
is the total sliding distance.

In Figure 14, the wear test results of carbon-black-filled and silica-filled NBRs for unex-
posed materials and hydrogen exposed materials with 1 h after decompression are shown.
Based on the modified specific wear rate, the wear resistance of the unexposed NBR was
ranked as follows: CB-60 > CB-40 > SC-60 > SC-40 > SC-20 > CB-20. After decompression,
rank of wear resistance changed into CB-60 > CB-40 > SC-60 > SC-40 > CB-20 > SC-20.

The coefficient of friction curves after decompression became broader and shifted
upward. In the wear mechanism of NBR, microcracks are generated and torn apart by
deformation at the surface [31]. As the exposed specimen was swollen and soft, larger
deformation and wear debris were formed in the wear track. Therefore, the CoF curve
fluctuated significantly because of the uneven surface conditions of the wear track.

According to previous research on the relationship between the hydrogen content
and types of fillers, carbon-black-filled elastomers showed higher hydrogen content than
silica-filled elastomers [14]. In this study, blisters exposed on the surface were not observed
well in the silica-filled NBR; however, numerous micro-sized pores were also formed inside
the silica-filled NBR. When the modified specific wear rate after hydrogen exposure and the
cross-sectional area occupied by micropores per unit area were compared, similar trends
were observed for all materials, except CB-20 (Figure 15). Therefore, it was apparent that
micro-sized pore damage inside the material affected the wear properties of the material
after hydrogen exposure.
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Figure 14. Modified specific wear rate of carbon-black-filled and silica-filled NBR with/without
hydrogen exposures.

Figure 15. Modified specific wear rate, compared with occupied area of pores per unit area.

4. Conclusions

In this study, an ex-situ wear test was conducted to investigate the change in wear
characteristics before and after hydrogen exposure according to the type and content of
the filler in NBR. Carbon black and silica were used as fillers, and the specimens were
compounded with the filler contents of 20, 40, and 60 phr. The results are summarized
as follows:

• The wear resistance before hydrogen exposure tended to increase in proportion to
the filler content. In addition, as the size of the filler decreased, the reinforcing effect
increased, and thus, the wear resistance increased along with the hardness. Carbon
black showed a better reinforcing effect than silica, and similar results were also shown
in the ex-situ wear test after hydrogen exposure.

• The specific wear rate and pore density can be evaluating criteria to check the effect of
hydrogen exposure on elastomers. Although relative changes of the tensile strength
and hardness after hydrogen exposure were small, the specific wear rate and pore
density showed distinguishable and permanent changes after hydrogen exposure.
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• All specimens showed a similar wear mechanism, that is, roll formation on the wear
track, except for CB-60. The wear particles of CB-60 did not separate from the surface
of the wear track but adhered to the wear track.

• After high-pressure hydrogen exposure, there were pores and cracks inside the speci-
men, owing to the high rate of decompression. The number and size of pores changed,
owing to the content and type of filler. The cross-sectional area occupied by pores
followed a trend similar to the modified specific wear rate. Therefore, it was found that
the hydrogen-induced damage was related to the tribological properties of filled NBR.
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