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Abstract: As new fluorescent materials, light wavelength conversion materials (light conversion
agents) have attracted increasing attention from scientific researchers and agricultural materials
companies due to their potential advantages in efficiently utilizing solar energy and increasing
crop yield. According to the material properties, the light conversion agents can be divided into
fluorescent dyes, organic rare-earth complexes, and inorganic rare-earth complexes. The current
researches indicates that the fluorescent dyes have relatively high production costs, poor light
stability, difficult degradation processes, and easily cause pollution to the ecological environment. The
organic rare-earth complexes have short luminescence times, high production costs, and suffer from
rapid decreases in luminescence intensity. Compared with fluorescent dyes and organic rare-earth
complexes, although rare-earth inorganic complexes have high luminous efficiency, stable chemical
properties, and better spectral matching performance, the existing inorganic light conversion agents
have relatively poor dispersibility in agricultural films. According to the research on light conversion
agents at home and abroad in recent years, this paper first introduces the three common light
conversion agents, namely fluorescent dyes, organic rare-earth complexes, and inorganic rare-earth
complexes, as well as their uses in agricultural films and their mechanisms of light conversion. At the
same time, the preparation methods, advantages, disadvantages, and existing problems of various
light conversion agents are classified and explained. Finally, we predict the development trends for
light conversion agents in the future by considering six aspects, namely efficiency, cost, compatibility
with greenhouse films, light matching, and light transmittance, in order to provide a reference for the
preparation of stable and efficient light conversion agent materials.

Keywords: light conversion; agricultural film; luminescent materials; agricultural optics; optical
modulation

1. Introduction

Agricultural films are polymer materials, such as polyethylene (PE), polyvinyl chloride
(PVC), Poly-(butylene adipate-co-terephthalate) (PBAT), Ethylene-vinyl acetate copolymer
(EVA), etc. Pure polymer materials have many limitations in practical application, so
improving the properties of polymer materials has always been the direction of interest
for researchers or agricultural materials companies. Three common light wavelength con-
version materials (light conversion agents), namely fluorescent dyes, organic rare-earth
complexes, and inorganic rare-earth complexes, have potential advantages in potential ad-
vantages in efficiently utilizing solar energy and increasing crop yield, so their combination
with agricultural film is an inevitable development trend. However, whereas there are still
many deficiencies in six aspects: efficiency, cost, compatibility with greenhouse films, light
matching, and light transmittance, and this greatly limits the application of multifunctional
agricultural film. Therefore, the research on agricultural film with polymer as carrier and its
ideal added components is a cause worthy of full-time investment of scientific researchers.
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Else, Functionalization has always been an important research direction of polymer
materials. The organic combination of light conversion agent and polymer materials
realizes the effective regulation of polymer materials on the solar spectrum, which is an
important means to realize the optical functionalization of normal polymer materials like
PE, PP, PVC, PBAT and so on.

Solar energy is an important energy source and is a necessary condition for plant
photosynthesis. The scientific literature shows that the blue-violet (400–480 nm) and
red-orange light (600–700 nm) in sunlight can promote the growth and development of
crops. The blue-violet light is beneficial in increasing the protein content of crops, while
the red-orange light increases the synthesis of crop carbohydrates [1–10]. However, the
emission of the ultraviolet light (280–390 nm) is not only unfavorable to the growth of
plants, but also increases plant diseases and insect pests. Some sunlight will be reflected
when it is emitted to the surface of the earth due to the presence of the atmosphere, which
leads to this part of the sunlight being wasted. In recent years, the research in the field of
agricultural film materials has mainly focused on the development of agricultural films
with high-efficiency light conversion performance in order to make greater use of sunlight.
The high-efficiency light conversion performance of agricultural film materials is mainly
achieved using light conversion agents. A light conversion agent is a fluorescent material
that can convert UV light into blue-violet light or red-orange light. In recent years, it
has attracted extensive attention and has been actively developed. An agricultural film
added with a light conversion agent is called a light conversion film, which can convert
the lower active wavelength band in photosynthesis to the higher active wavelength band
(400–700 nm), in turn changing the ultraviolet (280–380 nm) and yellow green (510–580 nm)
wavelengths of sunlight into the blue-violet (400–480 nm) and red-orange (600–700 nm)
wavelengths required for plant photosynthesis, improving crop yield and quality [11–20].
Therefore, based on the research on light conversion agents at home and abroad in recent
years, this paper classifies the types of light conversion agents and their preparation
methods, summarizes the applications for light conversion films in plants, and predicts the
future development directions for light conversion agents and light conversion films.

2. Classification of Light Conversion Agents

Light conversion agents can be divided into green-to-red agents, ultraviolet-to-red
agents, and ultraviolet-to-blue agents according to their light conversion properties. Re-
garding the luminescent properties, these agents can be categorized into red luminescent
agents, blue luminescent agents, and red-blue compound agents. Regarding the material
properties, these can be divided into fluorescent dyes, organic rare-earth complexes, and
inorganic rare-earth complexes.

2.1. Fluorescent Dyes

Fluorescent dyes are compound dyes with good fluorescence emission performance.
They can absorb light of certain wavelengths and then emit other substances with longer
wavelengths than the absorbed light wavelength. Most of the fluorescent dyes contain ben-
zene rings or heterocycles and have conjugated double bonds. Due to the good compatibility
between organic fluorescent dyes and substrates, the light conversion films made of organic
fluorescent dyes have the advantages of uniform distribution and convenient operation.

Yu et al. [21] prepared three kinds of UV-to-blue light conversion agents, namely 2,4,6-tris
(diphenylamino) 1,3,5-triazine (TRZ), 4,6-tris (di-p-tolylamine) 1,3,5-triazine (TRZME), and
2,4,6-tris (4-methoxy-3-methyl-N-phenylaniline) 1,3,5-triazine (TRAOME), and made light
conversion films by doping these light conversion agents into the polyvinyl chloride. The
synthetic route of light conversion agents (S-triazine compounds) is shown in Figure 1. The
experimental results showed that compared with the PVC film without a light conversion
agent, the light conversion films had lower transmittance to UV light (190–335 nm, as
shown in Table 1) and could change the absorbed ultraviolet light into blue light with a
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fluorescence emission peak at 400–460 nm. At the same time, this did not cause a reduction
in visible light transmittance.
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Figure 1. Synthesis route of S-triazine compounds.

Table 1. The fluorescence quantum efficiency at solid state and light transmittance in films of TRZ,
TRZME, and TRZOME.

Light Transmittance TRZ TRZEM TRZOME PVC

UV light area (200–380 nm) 0.45 0.28 0.30 0.69

Visible light area (380–800 nm) 0.84 0.90 0.89 0.89

Kyung et al. [22] synthesized four 3- and 4-position naphthalimide blue fluorescent
dyes with diacetylene bonds (Figure 2 shows the synthesis route) and coated them on the
PE film. They studied the impacts of the diacetylene bond on the fluorescence properties
of naphthalimide-based dyes and the application of the dyes in light conversion films.
The study results showed that the four synthetic fluorescent dyes effectively enhanced
the photosynthesis of blue light. The transmittance of the PE film coated with fluorescent
dye 1 at 400–500 nm was 46.8% higher than that of the transparent film, which was in line
with the result showing that the photosynthetic photon flux density showed an increase of
90% in transmittance in the blue region (400–500 nm). At the same time, it was found that
by using the PE film coated with fluorescent dye 1, the lettuce showed significant increases
in fresh weight, dry weight, and leaf area after three weeks of culture.

The spectrum of sunlight reaching the earth’s surface is between 290 and 3000 nm.
Different components of light have different effects on plant growth. Blue-violet light in
the wavelength of 400~480 nm can be strongly absorbed by chlorophyll and carotenoids
to promote the growth of plant stems and leaves. Red-orange light in the wavelength of
600~700 nm is absorbed by chlorophyll, which can promote the fruit growth of plants.
Yellow-green light with wavelengths of 500~600 nm has little contribution to photosynthesis.
Near-ultraviolet light in the wavelength of 315~400 nm makes the plants shorter and the
leaves thicker. Ultraviolet rays in the wavelength of 290~315 nm are harmful to most plants
and can also lead to the aging of PE films. During photosynthesis, plants absorb sunlight
through chlorophyll, decompose water, and release hydrogen (H+ and e−), reducing the
absorbed carbon dioxide to organic matter. In this process, carbon dioxide and water are
transformed into organic matter and solar energy is transformed into chemical energy,
which is stored in organic matter. The light conversion films can accelerate this process
in plants.

Wang et al. [23] designed and synthesized six triarylacrylonitrile compounds and one
diarylacrylonitrile compound and prepared light conversion films doped with these com-
pounds. In the simulated greenhouse environment, the luminescence agents had excellent
light stability. However, after 1 month of outdoor radiation, their fluorescence intensity
dropped to 17–40% of the basic intensity due to the closed-loop oxidation reaction (in sum-
mer). By comprehensively considering the above-mentioned photophysical and mechanical
properties of the doped films, 2-([1,1′-biphenyl]-4-yl)-3,3-diphenylacrylonitrile can poten-
tially be used as a light conversion agent for agricultural films in winter. Xiao et al. [24]
used acetonitrile, absolute ethanol, and p-methoxybenzaldehyde as starting materials to
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synthesize 2,4,6-tris (p-methoxystyryl)-1,3,5-triazine (TMST) and studied the light conver-
sion properties of TMST. The fluorescence spectrum of the TMST demonstrated that this
compound emitted strong blue-violet light in the range of 410–480 nm, with the strongest
emittance observed at 445 nm. As the blue light (410–480 nm) falls exactly within the
blue-violet light absorption band of chlorophyll, this compound is expected to be used as a
new blue light conversion agent. If it is applied to the agricultural film, it could effectively
improve the utilization rate of light energy.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

 

 

Figure 2. Synthesis routes of fluorescence dyes 1–4. [22] Adapted with permission from ref. 22. 

Copyright 2018 Science Direct. 

The spectrum of sunlight reaching the earth’s surface is between 290 and 3000 nm. 

Different components of light have different effects on plant growth. Blue-violet light in 

the wavelength of 400~480 nm can be strongly absorbed by chlorophyll and carotenoids 

to promote the growth of plant stems and leaves. Red-orange light in the wavelength of 

600~700 nm is absorbed by chlorophyll, which can promote the fruit growth of plants. 

Yellow-green light with wavelengths of 500~600 nm has little contribution to 

Figure 2. Synthesis routes of fluorescence dyes 1–4. Adapted with permission from ref. [22]. Copyright
2018 Science Direct.



Polymers 2022, 14, 851 5 of 17

Previous studies have shown that fluorescent dye light conversion agents possess
good light conversion efficiency. However, fluorescent-dye-type light conversion agents
cannot accept long-term light irradiation because they are prone to chemical reactions,
which may reduce the use time. They also involve high costs and difficult degradation
processes and easily cause pollution to the natural environment, making them unfavorable
for the development of ecological agriculture. Therefore, they are often used in combination
with other light conversion agents in practical applications.

2.2. Organic Rare-Earth Complexes

Organic rare-earth complexes are light conversion agents formed by complexing the
rare-earth metal ion as the luminescence center with the organic ligands [25]. Organic
rare-earth complexes have great advantages, including high fluorescence intensity, easy
dispersion, good light and color uniformity, and excellent photo-thermal stability [26].

Qiao et al. [27] took kaolinite as the main body and prepared luminescent clay (la-
beled with K-NMI-Eu and K-NMI-Tb, respectively) by inserting N-methylimidazole (NMI)
molecules and Eu3+/Tb3+ salts into kaolinite. The research results showed that under the
ultraviolet light, K-NMI-Eu had excellent ability to convert ultraviolet light to red light
(as shown in Figure 3).
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Figure 3. Photos of polycrystalline powders K-NMI-Eu and K-NMI-Tb exposed to ultraviolet light
(λ = 330–380 Nm) under ambient lighting in a room (a,c) and at indoor temperature (b,d). Adapted
with permission from ref. [27]. Copyright 2019 Science Direct.

Wang et al. [28] synthesized Eu(TTA)3(TPPO)2 rare-earth europium compounds with
the solution method, which absorbed ultraviolet light and then converted it into red light,
then compounded this with PLA/PBAT to prepare a biodegradable light conversion agri-
cultural film and studied its optical and mechanical properties. The results showed that
when 0.1% EuTT was added, the PLA/PBAT/EuTT composite film showed better mechan-
ical properties (see Table 2), with tensile strength values of 36.7 MPa and 25.2 MPa. The
red fluorescence (617 nm) could be emitted under ultraviolet light (365 nm). Yu et al. [29]
combined the rare-earth europium with different organic ligands to prepare two rare-earth



Polymers 2022, 14, 851 6 of 17

light conversion agents Eu(DBM)4CPC and Eu(TTA)3(TPPO)2, and combined them with
polylactic acid and polyadipate to prepare two different light conversion films. The results
illustrated that the two light conversion films had excellent light conversion ability and
were able to emit red fluorescence (617 nm) under ultraviolet light (365 nm). At the same
time, the mechanical properties of the light conversion film were also improved, reach-
ing 595.0%/460.9% in the longitudinal (MD) and transverse (TD), respectively (shown
in Table 3). This was mainly because the addition of rare-earth complexes improved the
fluidity of the melt and reduced the melt viscosity of the blend, which greatly increased the
elongation at break of the films.

Table 2. Mechanical properties of PLA/PBAT and PLA/PBAT/Eutt films. Adapted with permission
from ref. [28]. Copyright 2018 Wiley Online Library.

PLA/PBAT/EuTT
(wt/wt/wt)

Tensile
Strength

MD/TD (MPa)

Elongation at
Break

MD/TD (%)

Young’s
Modulus

MD/TD (MPa)

Tear Strength
MD/TD

(kN m−1)

35/65/0 33.4/25.8 442.5/422.6 685.8/307.1 181.0/184.2

35/65/0.3 36.7/25.2 462.8/483.0 766.0/272.6 157.1/173.2

35/65/0.3 33.3/20.1 535.8/413.6 795.2/256.6 148.3/162.4

35/65/0.5 33.1 484.3/396.1 1037.9/348.9 116.3/160.4

Table 3. Mechanical properties of PLA/PBAT, PLA/PBAT/EuDC, and PLA/PBAT/EuTT films.
Adapted with permission from ref. [29]. Copyright 2019 Science Direct.

Sample Elongation at Break MD/TD (%)

PLA/PBAT 442.5/422.6
PLA/PBAT/0.1%EuDC 473.8/448.0
PLA/PBAT/0.3%EuDC 557.8/451.4
PLA/PBAT/0.5%EuDC 595.0/460.9
PLA/PBAT/0.1%EuTT 462.8/483.0
PLA/PBAT/0.3%EuTT 535.8/413.6
PLA/PBAT/0.5%EuTT 484.3/396.1

Zhao et al. [30] synthesized a series of thiophene trifluoropyruvate (HTTA), tereph-
thalic acid (TPA), and Phen (III) complexes with the thermal reflux method. Through
the elemental, infrared spectroscopy, scanning electron microscopy, and thermal stability
analyses, the new Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 complexes were charac-
terized. The results showed that the thermal stability of Eu (III) complexes increased
in the following order: the mononuclear complex Eu(TTA)3Phen, binuclear complex
Eu2(TPA)(TTA)4Phen2, and chain polynuclear complex Eu(TPA)(TTA). The formation
of the binuclear–multinuclear structure of the new complex seems to be the reason for its
enhanced thermal and optical stability (Figure 4 shows the chemical structural formula). In
addition, corresponding to their formation, the fluorescence excitation spectra of these new
complexes gave a wider excitation band than Eu(TTA)3Phen. Through the addition of Gd3+,
increased in Eu3+ fluorescence in the new complexes was observed. When the addition of
EuGd(TPA)(TTA)4Phen2 exceeded 0.5% (mass fraction), bright red luminescent plastics
could be obtained. Xi et al. [31] synthesized a new type of light conversion agent suitable
for PE films, and characterized the morphology, particle size, dispersion performance,
and compatibility of the new light conversion agent via transmission electron microscopy
and scanning electron microscopy. The results indicated that with an average particle
size range of 60–100 nm, the new light conversion agent was well dispersed in the PE
film. In addition, the fluorescence spectrum confirmed that the new light conversion agent
provided high-efficiency luminescence performance.
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The organic rare-earth complexes are featured by short luminescence time, high cost,
and fast luminescence intensity decline, while the characteristic luminescence obtained
by organic complexes is not a good for with the absorption spectrum of plant chloro-
phyll, which requires more in-depth research. The structural characteristics of the high
coordination of the rare-earth ions make it easy for them to form ion clusters during the
coordination synthesis at high concentrations, resulting in concentration quenching and
making it difficult to obtain luminescent complexes with higher intensity. In addition, it is
hard to uniformly dope rare-earth compound particles into the polymer matrix during the
preparation of organic rare-earth complexes, which usually results in the polymer having
poor mechanical strength. Therefore, work in this field has focused on the development
of various rare-earth complexes. Studies have shown that the organic ligands are able to
promote the compatibility between rare-earth elements and polymers [32,33].
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2.3. Inorganic Rare-Earth Complexes

Inorganic rare-earth complexes are light conversion agents prepared by doping inor-
ganic substances with rare-earth ions, which have attracted widespread attention due to
their low price and high temperature resistance [26].

Wu et al. [26] synthesized Sr2Si5N8:2% Eu phosphor via solid-phase reaction and
prepared a light conversion film with Sr2Si5N8:2% Eu as the light conversion agent. The
transmission electron microscopy results indicated that the average diameter of the light
conversion agent was 500 nm and that the film structure was denser after the light conver-
sion agent was added. The fluorescence spectra confirmed that the prepared light conver-
sion film converted the blue-violet light into red light. Wang et al. [1] made CaCO3:Eu3+

phosphors modified with surfactants using the carbonization method and prepared a PE
film with the modified CaCO3:Eu3+ phosphor. The experimental results illustrated that
compared with the oleic acid, stearyl alcohol phosphoric acid, and sodium lauryl sulfate,
sodium oleate was the best modifier for CaCO3:Eu3+ phosphor, as the CaCO3:Eu3+ phos-
phor modified by sodium oleate was evenly dispersed in the PE film. The modified PE film
emitted uniform red light under the excitation of ultraviolet rays, while the modified PE
film absorbed more ultraviolet light and changed it into enhanced red light, which was ben-
eficial to the plant growth. Zhu et al. [34] prepared SrAl2O4:Eu2+,Dy3+ particles through
solid-phase reaction and combined the light conversion agent with SrAl2O4:Eu2+,Dy3+

through YsiX3 to prepare a luminescent material, namely the SrAl2O4:Eu2+,Dy3+ light con-
version agent. The results showed that the light conversion agent was completely coated
on the surface of the phosphor and that the coated light conversion agent was very dense
and had no holes. Under ultraviolet excitation, the emission spectrum gave a broadband
range of 450 nm to 650 nm, while the excitation intensity levels were highest at 520 nm
(SrAl2O4:Eu2+,Dy3+) and 600 nm (SrAl2O4:Eu2+,Dy3+ light conversion agent). Additionally,
the colors of the SrAl2O4:Eu2+,Dy3+ light conversion agent were mainly in the orange-red
area. Sun et al. [19] prepared SrB4O7:Sm2 phosphor via high-temperature solid-phase reac-
tion and studied its luminescence properties. The test results and theoretical calculations
demonstrated that the SrB4O7:Sm2 phosphor showed a strong emission at 685 nm under
excitation of 356 nm. The best doping concentration of SrB4O7:Sm2+ in Sm2+ phosphor
was 0.05. The d-d interaction played a major role in the Sm2+ quenching mechanism in the
SrB4O7:Sm2+ phosphor. It is worth mentioning that the decay times were almost unchanged
at different concentrations. The above results show that SrB4O7:Sm2+ phosphor can be
used as a new type of light conversion agent to improve the photosynthesis of plants. In
order to study the effects of the light conversion agent on the luminescence properties
of rare-earth luminescent fibers, Zhu et al. [35] used rare-earth strontium aluminate as
the luminescent material and fiber-forming polymers (e.g., polyethylene terephthalate
(PET)) as the substrate to prepare several rare-earth strontium aluminate luminescent fibers
containing different light conversion agents. The scanning electron microscopy (SEM) and
X-ray diffraction (XRD) results showed that there was no significant difference between the
surfaces of the luminescent fibers without the light conversion agent and the surfaces of the
luminescent fibers containing the light conversion agent. The SrAl2O4:Eu2+,Dy3+ phase in
the fibers was not destroyed by the complicated manufacturing process and the luminescent
fibers that were formed were composed of irregular particles. Under ultraviolet excitation,
the luminescent fibers displayed yellow-green and orange-red emission bands, and the
maximum wavelengths at 520 nm and 600 nm were derived from SrAl2O4:Eu2+,Dy3+ light
conversion agent. In addition, the emission colors of the luminescent fibers were easily
adjusted from yellow-green to orange-red by adding different light conversion agents.
Therefore, this material has potential application prospects in many fields.

Compared with organic compounds and fluorescent dyes, inorganic light conversion
agents have been widely used due to their low price, easy preparation and storage, oxida-
tion resistance, and high temperature resistance. These types of light energy conversion
materials overcome the poor light stability of fluorescent dyes and high production costs of
rare-earth organic complexes. In addition, they have high luminous efficiency and good
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stability, a wide light wavelength conversion range, and an emission spectrum that can
match the absorption spectrum of plant chlorophyll. However, the biggest disadvantages
of existing inorganic light conversion agents are poor dispersion and easy aggregation in
agricultural plastic films, which makes the emission of light conversion films inhomoge-
neous and means they are not conducive to crop growth [36,37]. The reasons for the poor
dispersion are that inorganic light conversion agents usually have polar, hydrophilic, and
high free energy surfaces and are incompatible with certain non-polar, hydrophobic, and
low free energy polymer matrices.

3. Preparation of Light Conversion Agents

Currently, light conversion agents are mainly prepared via the high-temperature
solid-phase synthesis method, the sol–gel method, the hydrothermal synthesis method,
the co-precipitation method, the combustion method, the spray pyrolysis method, and the
microwave radiation method. This article mainly discusses the first three methods.

3.1. High-Temperature Solid-Phase Synthesis Method

The high-temperature solid-phase method is used to grind the raw materials in a
certain proportion and then calcine them at a certain temperature for a certain time in a
certain atmosphere. Afterwards, the materials can be cooled, ground, and sieved to obtain
the final required light conversion material.

Zhang et al. [38] synthesized a series of Ca2Sr(PO4)2:Ce3+, Mn2+, and Na+ phosphors
through high-temperature solid-phase reactions and studied their luminescence properties
and water resistance. The PLE, PL, and DR spectra and the attenuation curves indicated
strong energy transfer from Ce3+ emitted by near-ultraviolet light to Mn2+ emitted by red
light. The diffuse reflectance and UV–visible absorption spectra showed (Figure 5) that the
Ca2Sr(PO4)2:Ce3+, Mn2+, and Na+ phosphors had strong absorption in the near-ultraviolet
range of 320 nm. The absorbance increased with the increase in Mn2+ content from 0.10 to
0.15, which was beneficial to the anti-aging ability of the agricultural films. Additionally,
the absolute QE value of the co-doped phosphor reached 94%, representing good stability
in water. Therefore, the Ca2Sr(PO4)2:Ce3+, Mn2+, and Na+ phosphors have potential
application prospects as light conversion materials in agricultural films. Mondal et al. [39]
used zinc oxide, molybdenum oxide, erbium oxide, yttrium oxide, and lithium carbonate
as raw materials to synthesize a series of Er3+/Yb3+/Li+/K+:ZnMoO4 phosphors via solid-
phase synthesis, then characterized and analyzed their structures and optical properties.
The experiments demonstrated that under excitation at 980 nm, the Er3+-Yb3+-doped
phosphor showed strong green light emission at 531 and 553 nm, corresponding to the
2H11/2/4S3/2→4I15/2 transition. It also displayed weak blue and red emissions at 408,
474, and 656 nm, corresponding to the 2H9/2→4I15/2, 4F7/2→4I15/2, and 4F9/2→4I15/2
transitions, respectively. This study also showed that the mixing of Er3+-Yb3+-based
phosphors and K+ ions improved the temperature sensitivity and temperature range.
He et al. [40] first prepared carbon dots (CD) via high-temperature solid-phase reaction
and then directly recombined CD and Eu3+ solutions instead of using the traditional
method based on Eu3+ coordination compounds. They then successfully adjusted the
photoluminescence characteristics by controlling the ratio of CD to Eu3+, which met the
variable light demands of the different plant species. Finally, they inserted Eu3+ ions and
carbon dots (CDs) into a polyvinyl alcohol (PVA) solution to make blue and red light
conversion films (Eu3+/CD/PVA films), which had excellent visible light transmittance
and ultraviolet absorption characteristics. It is worth mentioning that the films showed
broad application prospects because of their good stability and reusability.
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3.2. Sol–Gel Method

The sol–gel method is a soft chemistry method that mixes compounds containing
highly chemically active components in a solution uniformly to form a precursor, and
then forms a transparent and stable sol system based on the hydrolysis and condensation
reaction. The sol colloidal particles are slowly polymerized to form a gel with a three-
dimensional network structure. The solvent loses its fluidity and fills in the network
structure of the gel. Finally, the required material is prepared through drying and high-
temperature sintering.

Liu et al. [41] first used the sol–gel method to make a series of Sr2MgSi2O7 particles and
then prepared SOG/SMS composite films containing 5 wt% SMS particles with the one-step
photolithography method (see Figure 6 for the preparation process). Finally, they character-
ized and analyzed their performance using a scanning electron microscope, fluorescence
microscope, and fluorescence spectrophotometer. The results showed that the composite
film had good adhesion and emitted blue fluorescence due to the characteristic transition
from the 4f65d excited state to the 4f7 ground state of the Eu2+ ion in the main body of
Sr2MgSi2O7. Xue et al. [42] successfully prepared SiO2-coated Sr4Al14O25:Eu2+,Dy3+–LCA
composite yellow phosphor using the sol–gel method. The light conversion agent and SiO2
were combined with strontium aluminate through Al-O-Si bonds and the silane coupling
agent, respectively. The composite yellow phosphor was able to effectively absorb light in
the range of 280 to 570 nm, and the emission peak intensity at 586 nm was much higher
than the emission peak intensity at 493 nm. Therefore, the composite phosphor appeared
yellow in the dark. Additionally, the light conversion agent was not only bonded with
strontium aluminate but also interacted with SiO2 through hydrogen bonding and electro-
static interaction, causing the LCA chromophore to be positively charged. This interaction
increased the excitation of the light conversion agent and the emission peak changed from
606 nm (orange-red) to 596 nm (yellow). This reflected the important role of the SiO2
coating in the emission of composite yellow phosphors. Moreover, due to being coated
with silicon dioxide, the SiO2-Sr4A114O25:Eu2+,Dy3+/LCA composite yellow phosphors
had good water resistance. In order to obtain high-efficiency phosphors that emitted long
wavelengths, Zhang et al. [38] successfully prepared SiO2-Sr4A114O25:Eu2+,Dy3+/LCA
(light conversion agent) with the sol–gel method. The migration phenomenon was ana-
lyzed via fluorescence and FTIR spectra and the blue shift was caused by the chemical
bond between LCA and SiO2. The study also found that when the SiO2 content was
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changed within the range of 0–2 wt%, there was a significant blue shift; when the silica
content was 6 wt%, the quantum yield reached the maximum. Since the silica coated
on the composite phosphor through chemical bonding and the silica layer affected the
SiO2-Sr4A114O25:Eu2+,Dy3+ and LCA, the color of SiO2-Sr4A114O25:Eu2+,Dy3+/LCA phos-
phor was altered in the yellow-red range with the change in silica content. This study
indicated that SiO2-Sr4A114O25:Eu2+,Dy3+/LCA phosphor could be used as a suitable
luminescent material.
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3.3. Hydrothermal Synthesis

The hydrothermal synthesis method is an effective method that uses water as a
solvent in a special closed reactor (autoclave) to heat and pressurize the reaction system
(or autogenous vapor pressure) in order to achieve a high-temperature and high-pressure
environment in a closed state to dissolve and recrystallize insoluble substances for inorganic
synthesis and material processing.

Mao [43] prepared two red-emitting MOFs with rare-earth metal europium as the
metal luminescence center and with terephthalic acid or trimellitic acid as the organic–



Polymers 2022, 14, 851 12 of 17

ligand chain using the hydrothermal method. The shift of the characteristic peaks of the
functional group shown via FT-IR illustrated the coordination reaction between the organic
ligands and the metal center. The micromorphology of the MOF showed that the MOF
structure of terephthalic acid was stacked with many different blocks, while the pyromellitic
acid showed a rod structure. Additionally, the change in the fluorescence peak intensity
was used to reveal the impacts of the time and temperature of the hydrothermal synthesis
reaction on the fluorescence intensity of the MOF, with an optimal reaction time of 48 h
and optimal temperatures of 110 ◦C for terephthalic acid and 120 ◦C for trimellitic acid.
At the same time, after thermogravimetric characterization, it was found that the thermal
stability of the terephthalic acid MOF was relatively better than that of the trimellitic acid
MOF. Most important of all, both MOFs showed good red light emission near 615 nm and
were well dispersed in the organic film (as seen in Figure 7). This experiment provided two
more affordable organic ligand chains and the prepared MOF structures showed excellent
red light emission performance. Xu [26] prepared Re:KYW (Re = Eu3+, Sm3+, Eu3+/Sm3+)
phosphors using the hydrothermal method to assist the organic active agents and studied
the impacts of controllable factors on the luminescent and light conversion performance
of KYW phosphors. The fluorescence results for Re:KYW (Re = Eu3+, Sm3+, Eu3+/Sm3+)
explained that the morphology differences observed for KYW with different surfactants,
which had an effect on the fluorescence properties. Among them, the sample with 10 mL
acetylacetone had the strongest luminescence intensity. The excitation wavelength of Eu3+

ion was 397 nm and the doping concentration was 45%, which showed high-intensity red
light emission (612 nm) and the best fluorescence performance. The results also showed
that under certain conditions, the higher the crystallinity of the phosphor, the better the
dispersion. This led to increases in the specific surface area of the phosphor and the
integrity of the flower sphere, improving the fluorescence performance. Wu et al. [44] used
a mixed solution including a CeO2-TiO2 precursor and ATO particles to deposit a Sb-doped
SnO2(ATO)-(CeO2-TiO2) film on a glass substrate using a sol–gel dip coating process, then
prepared ATO particles using the low-temperature hydrothermal synthesis method. The
optical properties of the film were characterized by ultraviolet–visible light transmission
and infrared reflectance spectroscopy. The sheet resistance of the ATO particles and the
film was measured using a rubber sheet press and a four-point probe, while the surface
morphology and structure of the film were analyzed using 3D Digitale Mikroskop and
X-ray diffraction methods, respectively. It was found that the ATO precursor solution
was completely weightless at about 500 ◦C, allowing ATO particles to be obtained, which
confirmed that it had the same rutile lattice structure as SnO2. Moreover, the glass substrate
coated with the ATO-(CeO2-TiO2) film showed better performance in shielding ultraviolet
rays (almost 100%), visible light transmittance (70%), and infrared reflection (>30%).
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4. Application of Light Wavelength Conversion Greenhouse Films

Recently, the application of light conversion films in greenhouse and field planting has
gradually increased. Through the conversion of ultraviolet light into blue-violet light or red-
orange light, the utilization of sunlight can be significantly improved, thereby providing
an optical environment for crops. The increases in red and blue light promote the growth
of crops and the accumulation of nutrients and play an important role in increasing crop
yield and improving crop quality. In this section, the application effects of light conversion
films are discussed in detail.

Many scholars have studied and improved the quality of light conversion films and
such kind of light conversion films played a central role in greenhouse and field planting
research. Light conversion films can convert ultraviolet light into blue-violet light and
red-orange light, which are useful for crops, or can change yellow-green light into red-
orange light, which changes the quality of the light passing through the film. This not only
increases the leaf area, vine spread, plant height, and petiole length of plants, meaning
the leaves have good ductility, but also effectively reduces the ecological pollution at the
end of the season. In Gao’s study, a transplanted film used as a modified material in
greenhouse lettuce cultivation had a beneficial effect in improving the light energy use
efficiency for crop production [45]. The research by Yang et al. showed that a translucent
film had great application prospects in field crop cultivation, as it promoted plant growth
and increased the biological dry weight per plant [46]. Gao applied a light conversion film
to seedling trays containing tobacco and tomato plants. The film was conducive to the
growth of the seedlings, as they effectively increased the temperature in the membrane
disk, improved the resistance and quality, and significantly promoted the aboveground
biomass and root phenotypic parameters of the seedlings. Additionally, the time of seedling
emergence was shortened by 2 d and the period of seedling establishment was 3 d ahead
of schedule. The total root length, root surface area, and volume of tobacco seedlings
at the seedling establishment stage were significantly increased by 44.88%, 69.87%, and
90.90%, respectively [47]. Zhang treated tomatoes with a rare-earth light conversion film,
which significantly promoted the growth of green stems and leaves, increased the fruit
yield, and improved the fruit quality. In addition, the fruits ripened 7d earlier and yield
increased by 6.35% [48]. Song covered potato plants with light conversion films, which
not only promoted potato emergence and maturity, but also increased the potato yield
and output value by 8.91% [49]. Wen also covered tomato plants with a light conversion
film, which significantly promoted the plant growth and development in the heliostat,
with a 9.92% increase in tomato yield per unit area [50]. The sugar-to-acid ratio and
contents of lycopene, soluble sugar, and VC in tomato fruit samples were also significantly
increased, indicating that the addition of suitable light transfer agents to the trellis film
could increase the proportions of red-orange and far-red light in the transmitted light.
This promoted the growth and development of tomato plants and improved the yield and
quality of fruit. In Liu’s studies [51], the light conversion film had a promotion effect on the
growth of greenhouse strawberry plants. Firstly, the light conversion film caused a marked
temperature increase. Compared with the normal film, the accumulated temperature in the
greenhouse increased by 75.0 ◦C and the average daily temperature increased significantly
by 0.39 ◦C. Secondly, the light conversion film promoted the growth and development
of strawberry plants. The chlorophyll content and net photosynthetic rate of fruiting
strawberry plants in the transplanted film sheds were markedly increased by 14.0% and
14.3%, respectively, and the use of the light conversion film meant strawberries could be
picked about 10 d earlier. Thirdly, the light conversion film had improved the quality of the
strawberries. The VC contents of strawberries grown under both transplanted films were
significantly higher than when grown under normal film. Wen’s research found that the red
light conversion film could significantly improve the yield and quality of cucumber fruit
compared with the control. The red light conversion film promoted the growth of cucumber
plants; prominently improved the plant height, stem diameter, internode length, and single
fruit quality; and increased the yield by 16.78%. In addition, the contents of soluble sugar,
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free amino acids, and VC in cucumber fruit increased significantly [52]. Yan applied a
broad-spectrum light conversion film to tomato plants, which enhanced the efficiency of
the UV-to-red-light conversion and increased the total amount of red light emission. It also
facilitated the photosynthesis of tomato plant leaves in the heliostat, promoted the growth
of tomato seedlings and the absorption of nutrients and water, increased the yield, and
improved fruit quality [53]. Sun’s research showed that the white light conversion film
treatment significantly promoted the growth of tomato seedlings, increasing the strong
seedling index by 67% and stem thickness by 44%, which was suitable for cultivation
cover in South China and had good application prospects [54]. Li’s study proved that
by increasing the ratio of red light to orange light under the red light conversion film,
the high-temperature light effect had two advantages. On the one hand, it improved
the photosynthetic efficiency of sweet pepper and promoted the absorption of nutrients
and the synthesis of amino acids. On the other hand, it accelerated the degradation of
chlorophyll and anthocyanin accumulation in fruit during discoloration by promoting
carbon metabolism to improve the appearance and nutritional quality of the fruit. At the
same time, the addition of suitable light conversion agents could increase the VC content
of sweet pepper fruit [55].

5. Conclusions

Rare-earth inorganic complex light conversion agents have strong anti-UV aging
functions, but their luminous efficiency is relatively weak, making them suitable for the
preparation of long-life light conversion films and for use with crops with low demands
for light intensity. Organic rare-earth complex light conversion agents have high light
conversion efficiency, good matching with host polymers, and relatively high preparation
costs. These agents will be important for the future development of light conversion
agents and they are suitable for the preparation of high-performance light conversion
films. Organic conjugated small-molecule light conversion agents have a wider absorption
spectrum, poor light conversion efficiency, and poor aging resistance. They are more
suitable for crops with special spectrum needs.

6. Future Development Trends for Light Conversion Agents

An analysis was performed to compare the three existing types of mature light con-
version agents, namely inorganic agents, organic fluorescent dyes, and organometallic
complexes, to identify their advantages and disadvantages. The current research on light
conversion agents mainly focuses on the following six aspects. (1) Stability: The agricultural
films prepared with the addition of light conversion agents should be able to be used under
all weather conditions, meaning the light conversion agents need to have high stability,
slow attenuation rates, and good weather resistance. (2) Light conversion efficiency: Light
intensity levels and light times differ by regions, so the prepared light conversion agents
should have higher light conversion efficiency. (3) Cost: The production costs of the light
conversion agents need to be reduced, as the price of light conversion agents is one of the
key indicators determining whether they will be adopted by companies and the common
people. (4) Good compatibility with greenhouse films: Adding light conversion agents
can filter ultraviolet light into red light required for plant photosynthesis and can increase
greenhouse temperatures. Therefore, the prepared light conversion agents must be well
dispersed in the agriculture films. (5) Good light matching with the growth of crops: The flu-
orescence spectrum emitted by the light conversion agent must be effectively matched with
the absorption spectrum of plant photosynthesis to ensure that the red-light energy emitted
by it can be used for plant photosynthesis. (6) High light transmittance: The addition of
light conversion agents should improve the light conversion properties of agricultural films
but not reduce their light transmittance. To solve the current problems, the focus should be
on using the advantages of the existing light conversion agents and combining them with
other materials with excellent fluorescence characteristics or fluorescent carriers to prepare
new light conversion agents with strong red-light emission levels and better stability.
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