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Abstract: In modern industry, heavy traditional materials are being substituted with light and strong
fibre-reinforced polymer composite materials. Bridges and railroads made of composite laminates
are considerably affected by traffic loads. Therefore, it is very important to analyse this effect
which would find practical applications in engineering designs. This paper explains the theoretical
formulation that governs the dynamic response of a composite beam subjected to a moving load. The
governing equations for the dynamic effect on the laminated composite bridge beam are explained
here. The main theories in the micro–macro modelling of composite laminates are also described in
the paper. Within the macro modelling, the Classical Laminate and Shear Deformation Laminate
Theory of beams are presented. The symmetric cross-ply laminated bridge, made of boron/epoxy
is under consideration. The computational two-dimensional model of the vehicle is adopted. The
governing equations for the dynamic effect on the laminated composite bridge beam are explained.
The calculation of the time response of the bridge for the characteristic speeds of the vehicle is
performed in the environment of the MATLAB software. The maximum dynamic magnification
factor for the dynamic analysis of a composite beam is found.

Keywords: fibre-reinforced composite; laminate; bridge beam; moving load; vibration

1. Introduction

The use of polymers in composite materials in modern engineering applications has
been increasing rapidly [1]. The rapid growth in manufacturing industries has led to the
need for the betterment of materials in terms of strength, stiffness, density, and lower
cost with improved sustainability [2,3]. Composite materials have emerged as one of the
materials possessing such betterment in properties serving their potential in a variety of
applications [4–6].

Furthermore, the better fatigue performance [7], creep performance [8], and durabil-
ity [9] of fibre-reinforced resin composites in the service environment are also the main
factors to be considered compared to traditional steel. Fibre-reinforced polymer composites
have great potential to replace steel for bridge cables, underground oil extraction, and
ocean engineering, owing to their light weight, high strength, and desirable corrosion and
fatigue resistance.

In modern engineering, the heavy beams of traditional materials are gradually being
substituted by fibre-reinforced polymer composite beams of lower weight and higher
strength. These beams are often considered important elements of structures. Structures
such as railroads and bridges are always under the action of dynamic moving loads caused
by the moving vehicular traffic. Therefore, the analysis of a laminated composite beam
under the action of moving loads would find many practical applications and is of valuable
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interest in engineering designs. The composite material for a specific application usually
requires the use of angle-ply and unsymmetric laminates. Thus, bend–stretch, shear–stretch,
and bend–twist couplings will be present in these laminates. The elementary or classical
laminate theory (CLT) of beams assumes that the transverse shear strains are negligible
and plane cross-sections before bending remain plane and normal to the axis of the beam
after bending (Bernoulli–Euler beam theory). In the Bernoulli–Euler beam theory, the
transverse deflection is assumed to be independent of coordinates x2, x3 of the cross-section.
If the composite materials have a very low transverse shear modulus compared to their
in-plane moduli, the CLT is inadequate for the analysis of dynamic response, and the
shear deformation theory must be applied (Timoshenko beam theory). The first-order
shear deformation theory accounted for a constant state of transverse shear stresses, but
the transverse normal stress is often neglected. The most significant difference between
the classical and first-order shear deformation theory is the effect of including transverse
shear deformation.

There has not been much work completed on the study of composite beams under
the action of moving loads, although several researchers have given theoretical [10–13],
numerical [14–16], and experimental [17–19] analyses of traditional beams and plates under
such conditions.

Considering the different size scales of the mechanical modelling of structure ele-
ments composed of fibre-reinforced composites, the micro, macro, and structural modelling
levels must be considered. Within the microscale, the hybrid parallel approach to the
homogenization of transport processes in masonry composites is described [20]. The non-
local strain gradient nonlinear resonance of bi-directional functionally graded composite
micro/nano-beams under periodic soft excitation is described in [21]. In the research
in [22] was found a more intense shift of the first resonance frequency peak position to
higher frequencies with increasing filler concentrations for HDPE/mica in comparison to
HDPE/wollastonite composites. The research work [23] combines the scientific field of the
micro–macro modelling of reinforced polymer composite laminates applied in the seismic
response area of a rectangular composite tank filled with liquid. Frequency-dependent
damped vibrations of multifunctional foam plates sandwiched and integrated by composite
faces on the macroscale are explained in [24].

Fibre-reinforced polymer composites were originally developed for the aerospace
and defence industries [25]. However, fibre-reinforced polymer composites have great
potential for use in civil infrastructure [26]. One of their first uses was in an all-composite
bridge superstructure in Miyun, China, in 1982 [27]. These materials are gradually gaining
recognition from civil engineers as a new construction material [28]. Over the next few
years, they proved successful in several areas of application: mainly in the form of sheets
and strips for reinforcing existing bridge structures, as well as reinforcing bars, which
replace the traditionally used steel reinforcement in concrete [29].

In this paper, a solution based on a CLT has been developed for the study of the
dynamic response of an orthotropic laminated composite beam under the actions of mov-
ing loads [30–33]. The algorithm also accounts for the translatory and rotary inertia
effects [34,35]. The differential equations are solved by numerical methods. The program
MATLAB serves procedures for solving the differential equations of the first order by the
Runge–Kutta–Fehlberg method [15]. The algorithm presented in this paper can be applied
to moving loads with a constant-speed motion or constant-acceleration motion for the
Bernoulli–Euler beam theory. A computer code has been developed for the analysis of
orthotropic unsymmetric laminated composite beams under the action of moving loads.

2. Methods of Modelling and Analysis of Laminate Beam Theories

Summarizing the different size scales of the mechanical modelling of structure ele-
ments composed of fibre-reinforced composites, it must be noted that three modelling
levels must be considered.
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2.1. Microscale Level

For a composite with a random microstructure, it is suitable to use the periodic
microstructure model. The model for long cylindrical fibres, regularly arranged in a square
microstructure, is illustrated in Figure 1.
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Figure 1. A periodic microstructure model for effective elastic properties of a bundle.

In the last decade, effective media theories, widely used in classical continuum mi-
cromechanics, have been recognised as an attractive alternative to FE-based methods. Since
its introduction, the Mori–Tanaka (MT) method [25] has enjoyed a considerable interest
in a variety of engineering applications. The Mori–Tanaka method considers the effect of
phase interactions on the local stresses by assuming an approximation in which the stress
in each phase is equal to that of a single inclusion embedded into an unbounded matrix
subjected to a yet unknown average matrix strain.

The constitutive equation for unidirectional composite is written as

σ1
σ2
σ3
σ4
σ5
σ6


=



n l l 0 0 0
l (k + m) (k−m) 0 0 0
l (k−m) (k + m) 0 0 0
0 0 0 m 0 0
0 0 0 0 p 0
0 0 0 0 0 p





ε1
ε2
ε3
ε4
ε5
ε6


, (1)

where:
k = −

(
1/G23 − 4/E22 + 4ν2

12/E11
)−1,

l = 2kν12,
m = G23,

n = E11 + 4kν2
12 = E11 + l2/k,

p = G12.

(2)

From the application of the Mori–Tanaka method are obtained effective material
characteristics at the microscale level, suitable for the 3D modelling of the composite
structural element at the macroscale level.

A thin lamina is assumed to be under a state of plane stress. Two cases of material
behaviour of laminae are of special interest for engineering applications:

Long fibres with one unidirectional fibre orientation, the so-called unidirectional
laminae, or UD-laminae, with loading along the material axis (on-axis case). The elastic
behaviour of UD-laminae depends on the loading reference coordinate systems. In the
on-axis case, the reference axes (1, 2) are identical to the material or principal axes of the
lamina parallel and transverse to the fibre direction (Figure 2). The 1-axis is also denoted
as L-axis and the 2-axis as T-axis (on-axis case). The elastic behaviour is macroscopically
quasi-homogeneous and orthotropic with four independent material moduli E1 ≡ EL,
E2 ≡ ET , E6 ≡ G12 = GLT , and ν12 ≡ νLT .
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The in-plane stress–strain relations are with

E11 = E1
1−ν12.ν21

E22 = E2
1−ν12.ν21

E12 = ν12(E22)L
E66 = G12.

(3)

The relations of the in-plane stress components with the in-plane strain components
are described by

σ = Eε⇔

 σ11
σ22
τ12

 =

 E11 E12 0
E11 0

sym. E66

 ε11
ε22
γ12

 (4)

UD-lamina with loading along the arbitrary axis (x1–x2) is different from the material
axis (off-axis case). The elastic behaviour is macroscopically quasi-homogeneous and
anisotropic. The in-plane stress–strain relations are formulated by fully populated matrices
with all components different from zero, but the number of independent material constants
is still four.

Figure 3 illustrates qualitatively the on-axis elastic behaviour of the UD-lamina [26].
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Figure 3. On-axis stress–strain for UD-lamina.

The values Eij of the reduced stiffness matrix E depend on the effective moduli of
the UD-lamina. These relations simplify the problem from a three-dimensional to a two-
dimensional or plane stress state. For on-axis loading, the elastic behaviour is orthotropic
with E16 = E26 = 0, there is as in isotropic materials no coupling of normal stresses, and
shear strains and shear stresses applied in the (L-T)-plane do not result in any normal
strains in the L and T direction. The UD-lamina is therefore also called an especially
orthotropic lamina.

A unidirectional lamina has very low stiffness and strength properties in the transverse
direction compared with these properties in the longitudinal direction.
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2.2. Mesoscale Level

Laminates are constituted generally of different layers at different orientations. To
study the elastic behaviour of laminates, it is necessary to take a global coordinate system
for the whole laminate and to refer the elastic behaviour of each layer to this reference
system. The global material reference system is given in Figure 4.

Polymers 2022, 14, 812 5 of 19 
 

 

We consider the ply material axes to be rotated away from the global axes by an an-

gle 𝜃, positive in the counterclockwise direction. This means that the (x1, x2)-axes are at an 

angle 𝜃 clockwise from the material axes. Thus, transformation relations are needed for 

the stresses, the strains, the stress–strain equations, the stiffness, and the compliance ma-

trices.  
 

 

yx

 

  nh 

 

 

x  

 

 
 
x     

      
 

 

y  z  
 

n 

 xy  

 y 

 

Figure 4. The global material reference system. 

Note the relations for the transformation matrices 

𝑬𝑛 = �̄�𝑇( 𝜃𝑛 )(𝑛)𝑬𝐿�̄�( 𝜃𝑛 ) (5) 

with transformation matrix for CLT 

𝑻(𝜃) = (
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐
−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

) (6) 

and for shear deformation theory 

�̑�(𝜃) = (
𝑻(𝜃) 𝟎

𝟎𝑇 𝑻𝑡(𝜃)
) =

(

 
 

𝑐2 𝑠2 2𝑠𝑐 0 0
𝑠2 𝑐2 −2𝑠𝑐 0 0
−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2 0 0
0 0 0 𝑐 𝑠
0 0 0 −𝑠 𝑐)

 
 

 (7) 

where 

�̄�(𝜃) = (𝑻𝑇(𝜃))
−1

 (8) 

where c and s are noted as s = sin and c = cos. 

In the theory of laminates, the most complex problem is the modelling and analysis 

of laminate with an arbitrary stacking of the layers. These laminates present couplings of 

stretching and bending, stretching and twisting, bending and twisting and the design en-

gineer must look for simplifications.  

The first and most important simplification is to design symmetric laminates for 

which no coupling exists between the in-plane forces and flexural moments. The coupling 

terms Bij of the constitutive equations vanish. An additional simplification occurs when 

no bending–twisting coupling exists, i.e., the terms D16 and D26 are zero. Symmetric lami-

nates for which no bending–twisting coupling exists are referred to as especially ortho-

tropic laminates. Symmetrically balanced laminates with a great number of layers have 

an especially orthotropic behaviour. This class of laminates is greatly simplified and will 

be used to gain a basic understanding of laminate structural element response.  

The internal forces can be written in matrix form for CLT 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = [

𝐴11 𝐴12 𝐴16
𝐴21 𝐴22 𝐴26
𝐴61 𝐴62 𝐴66

] [

휀�̄�𝑥
휀�̄�𝑦

�̄�𝑥𝑦

] + [

𝐵11 𝐵12 𝐵16
𝐵21 𝐵22 𝐵26
𝐵61 𝐵62 𝐵66

] [

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

] (9) 

Figure 4. The global material reference system.

We consider the ply material axes to be rotated away from the global axes by an angle θ,
positive in the counterclockwise direction. This means that the (x1, x2)-axes are at an angle θ
clockwise from the material axes. Thus, transformation relations are needed for the stresses,
the strains, the stress–strain equations, the stiffness, and the compliance matrices.

Note the relations for the transformation matrices

nE =
−
TT(nθ)(n)EL

−
T(nθ) (5)

with transformation matrix for CLT

T(θ) =

 c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

 (6)

and for shear deformation theory

T̂(θ) =
(

T(θ) 0
0T Tt(θ)

)
=


c2 s2 2sc 0 0
s2 c2 −2sc 0 0
−sc sc c2 − s2 0 0

0 0 0 c s
0 0 0 −s c

 (7)

where
−
T(θ) =

(
TT(θ)

)−1
(8)

where c and s are noted as s = sinθ and c = cosθ.
In the theory of laminates, the most complex problem is the modelling and analysis

of laminate with an arbitrary stacking of the layers. These laminates present couplings
of stretching and bending, stretching and twisting, bending and twisting and the design
engineer must look for simplifications.

The first and most important simplification is to design symmetric laminates for which
no coupling exists between the in-plane forces and flexural moments. The coupling terms
Bij of the constitutive equations vanish. An additional simplification occurs when no
bending–twisting coupling exists, i.e., the terms D16 and D26 are zero. Symmetric laminates
for which no bending–twisting coupling exists are referred to as especially orthotropic
laminates. Symmetrically balanced laminates with a great number of layers have an
especially orthotropic behaviour. This class of laminates is greatly simplified and will be
used to gain a basic understanding of laminate structural element response.
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The internal forces can be written in matrix form for CLT

 Nx
Ny
Nxy

 =

 A11 A12 A16
A21 A22 A26
A61 A62 A66



−
ε xx
−
ε yy
−
γxy

+

 B11 B12 B16
B21 B22 B26
B61 B62 B66

 κx
κy
κxy

 (9)

 Mx
My
Mxy

 =

 B11 B12 B16
B21 B22 B26
B61 B62 B66



−
ε xx
−
ε yy
−
γxy

+

 D11 D12 D61
D21 D22 D26
D61 D62 D66

 κx
κy
κxy

 (10)

and for shear deformation theory N
M
V

 =

 A B 0
B D 0

0 0
−
A


 −
ε

κ

γ

 (11)

2.3. Macroscale Level

On the macroscale or structural level, the mechanical response of structural members
such as beams, plates, shells, etc. must be analysed taking into account possibilities to
formulate structural theories of a different order.

2.3.1. Classical Laminate Beam Theory

Frequently, as engineers try to optimise the use of materials, they design composite
beams made from two or more materials. The design rationale is quite straightforward.
For bending loading, stiff, strong, heavy, or expensive material must be far away from the
neutral axis at places where its effect will be greatest. The weaker, lighter, or less expensive
material as composite laminates will be used in the part of the bridge beam under the
moving load. Laminate beams with simple or double symmetric cross-sections are most
important in engineering applications. The derivations are therefore limited to straight
beams with simple symmetric constant cross-sections. The bending moments act in a plane
of symmetry. Also, cross-sections consisting of partition walls and orthogonal to the plane
of bending are considered. We consider elementary beam equations. The cross-section area
can have various geometries but must be symmetric to the z-axis.

The known equations for the stress

σ(x, z) =
−
ε (x)E(z) + zκ(x)E(z) (12)

where E = Eeff is the effective elastic modulus in longitudinal direction.
The strains are deduced from the displacements

ε(x, z) =
−
ε (x) + zκ(x) (13)

with
−
ε =

∂
−
u

∂x
and

κ = −∂ψ

∂x
(14)

Then strain ε can be written as

κ = −∂ψ

∂x
(15)
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The internal forces N, M can be obtained from

N =
∫ +h/2
−h/2 E(z)dz

−
ε +

∫ +h/2
−h/2 E(z)zdzκ

M =
∫ +h/2
−h/2 E(z)zdz

−
ε +

∫ +h/2
−h/2 E(z)z2dzκ

(16)

with stretching, coupling, and bending shear stiffness:

A = b
∫ +h/2
−h/2 E(z)dz = b

N
∑

n=1

∫ nz
n−1z

nEdz = b
N
∑

n=1

nEnh

B = b
∫ +h/2
−h/2 E(z)zdz = b ∑N

n=1
∫ nz

n−1z
nEzdz = b ∑N

n=1
nE

nz2−n−1z2

2

D = b
∫ +h/2
−h/2 E(z)z2dz = b

N
∑

n=1

∫ nz
n−1z

nEz2dz = b
N
∑

n=1

nE
nz3−n−1z3

3

(17)

where b is the beam width, nE is the effective elastic modulus in the longitudinal direction
of nth layer and A = bA11, B = bB11, D = bD11.

The constitutive equation can by written in the condensed matrix form:(
N
M

)
=

(
A B
B D

)( −
ε
κ

)
(18)

2.3.2. Shear Deformation Laminate Beam Theory

The classical laminate theory allows us to calculate the stresses and strains with high
precision for very thin laminates except in a little extended region near the free edges. The
validity of the classical theory has been established by comparing theoretical results with
experimental tests and with more exact solutions based on the general equations of the
linear anisotropic elasticity theory. If the width-to-thickness ratio is less than 20, the results
derived from the classical theory show significant differences with the actual mechanical
behaviour and the modelling must be improved. A first improvement is to the effect of
shear deformation in the framework of a first-order displacement approach. A further
improvement is possible by introducing correction factors for the transverse shear moduli.

The known equations for the stresses are the following:

σ(x, z) =
−
ε (x)E(z) + zκ(x)E(z)

τ(x, z) = γG(z)
(19)

where E = Eeff and G = Geff are the effective elastic modulus in longitudinal direction and
transversal direction.

The strains are deduced from the displacements

ε(x, z) =
−
ε (x) + zκ(x)

γ(x, z) =

(
∂
−

w(x)
∂x − ψ(x)

)
(20)

with
−
ε =

∂
−
u

∂x
and

κ = −∂ψ

∂x
(21)

Then strains can be written as

ε = ∂u
∂x = ∂

−
u

∂x − z ∂ψ
∂x

γ = ∂w
∂x + ∂u

∂z = ∂
−
w

∂x − ψ
(22)
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The stress σx = σ, varies linearly through a layer thickness and the stress τxz = τ is
constant through the thickness. There is no stress continuity through the laminate thickness
but stress jumps from ply to ply at their interfaces depending on the reduced stiffness.

Internal forces can be written as

N =
∫ +h/2
−h/2 E(z)dz

−
ε +

∫ +h/2
−h/2 E(z)zdzκ

M =
∫ +h/2
−h/2 E(z)zdz

−
ε +

∫ +h/2
−h/2 E(z)z2dzκ

V = (k∗)
∫ +h/2
−h/2 Et(z)dzγ

(23)

With stretching, coupling, and bending stiffnesses the same as in Equation (17).
Transverse shear stiffness can be written as

−
A = b

∫ +h/2

−h/2
Et(z)dz = b

N

∑
n=1

nEtnh (24)

where nEt is the effective elastic modulus in the transversal direction of nth layer.
The constitutive equation can by written in the condensed matrix form: N

M
V

 =

 A B 0
B D 0

0 0
−
A


 −

ε
κ
γ

. (25)

The shear stiffness values can be improved with help of shear correction factors. In
this case, the part of the constitutive equation relating to the resultants N, M is not modified.
The other part relating to transverse shear resultants V is modified by replacing the stiffness
−
A by k*

−
A.

The parameters k∗ is the shear correction factor. A very simply approach is to introduce
a weighting function f (z) for the distribution of the transverse shear stress through the
thickness h.

Assume a parabolic function

f (z) =
5
4

(
1−

(
z

h/2

)2
)

. (26)

The transverse shear force is

Vxz =
N
∑

n=1

∫
nh

nτxz f (z)dz

Vxz =
5
4

(
N
∑

n=1

nEtγxz
∫

nh

(
1−

(
z

h/2

)2
)

dz
) (27)

The constitutive equation for shear force is

Vxz =
−
Aγxz (28)

For the components of
−
A gilt

−
A =

5
4

N

∑
n=1

nEt
((

nz − n−1z
)
− 4

3h2

(
nz3 − n−1z3

))
(29)

This approach yields for the case of a single homogenous layer with Et =Geff and
shear correction factor k∗ = 5/6 for the shear stiffness.

The first-order shear deformation theory yields mostly sufficiently accurate results for
the displacements and for the in-plane stresses.
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For a midplane symmetric laminated composite beam subjected to a lateral load p3
and including transverse shear deformation:

D ∂2ψ

∂x2 − k∗
−
A
(

ψ + ∂w
∂x

)
= 0

k∗
−
A
(

∂ψ
∂x + ∂2w

∂x2

)
+ p3 = 0

(30)

More often products and structures are subjected to vehicular dynamic loads. In the
linear-elastic range, the dynamic effects can be divided into two categories: free vibrations
and forced vibrations, and the latter can be further subdivided into one-time events or
receiving loads. Free vibration problems are called eigenvalue problems. They are repre-
sented by homogeneous equations, for which nontrivial solutions only occur at certain
characteristic values of a parameter, from which the natural frequencies are determined.
In the general case of forced vibrations, the displacements, the rotations, and the trans-
verse load p3 are functions of x and t. In-plane loading is not considered but in-plane
displacement, rotary, and coupling inertia terms must be considered.

The governing equations for the calculation of natural frequencies of especially or-
thotropic beams are

D
∂2ψ

∂x2 − k∗
−
A
(

ψ +
∂w
∂x

)
− I

∂2ψ

∂t2 = 0 (31)

k∗
−
A
(

∂ψ

∂x
+

∂2w
∂x2

)
− ρmh

∂2w
∂t2 = 0 (32)

For the force vibration analysis of laminate beam gilt:

k∗
−
A
(

∂ψ

∂x
+

∂2w
∂x2

)
− ρmh

∂2w
∂t2 + p3(x, t) = 0 (33)

where

ρm = b
N

∑
n=1

nρ
(

nz − n−1z
)

and

I = b
1
3

N

∑
k=1

nρ
(

nz3 − n−1z3
)

. (34)

The terms involving ρm and I are called translatory or rotatory inertia terms.

3. Bridge under Consideration, Discussion

The symmetric cross-ply laminated bridge, ((0/90)25)s, made of boron/epoxy is anal-
ysed next, in Figures 5–7. These are two separate bridges situated next to each other. The
subject of the analysis is only one bridge. The geometric and material properties of this
model are listed in Table 1.
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Figure 7. Transverse section of the one segment.

Table 1. Material properties of composite laminate.

Property Value

Mass density of the composite, ρ 2100 kg/m3

Longitudinal modulus, E1 214 GPa
Transverse modulus, E2 18.7 GPa

Longitudinal shear modulus, G12 4 GPa
Major in-plane Poisson’s ratio, ν12 0.27

Fibre volume fraction, ξ 0.55
Effective moduli of laminate ((0/90)25)s, Ex = Eeff 115 GPa

Effective shear modulus of laminate ((0/90)25)s, Geff 4.8 GPa
Effective in-plane Poisson’s ratio of laminate, νeff 0.035

3.1. A Computational Model of Vehicle and Bridge

To solve the task of the bridge response to the effects of moving loads due to a heavy
truck, a two-dimensional (2D) model was adopted in this case [10]. The model of the
vehicle is a 2D multi-body model with eight degrees of freedom, Figure 8.
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Figure 8. 2D multi-body model of vehicle.

Five degrees of freedom are mass (displacements ri, i =1, 2, 3, 4, 5) and three are
massless (displacements vi, i = 3, 4, 5). The displacement components corresponding to the
degrees of freedom are arranged in the vector {r}.

{r} = [r1(t), r2(t), r3(t), r4(t), r5(t), v3(t), v4(t), v5(t)]
T (35)

The relationship between the displacement components {r(t)} corresponding to the
degrees of freedom and the deformations of the connecting members {d(t)} is presented
by a transposed static matrix [A]T according to the relation

{d(t)} = [A]T · {r(t)}. (36)

The dependence between the elastic forces in the connecting members (in terms of the
action of mass objects on the connecting members) and their deformations is described by
the equation

{Fre(t)} = [k] · {d(t)}, (37)

where [k] is the stiffness matrix of the connecting members. The dependence of the damping
forces on the strain rate

{ .
d(t)

}
is

{Fd(t)} = [b] ·
{ .

d(t)
}

. (38)

The resulting forces in the connecting members when acting on mass objects are

{FCM(t)} = −({Fre(t)}+ {Fd(t)}). (39)

The sign (-) is a consequence of the principle of action and reaction. From the forces in
the connecting members {FCM(t)}, the static equivalents corresponding to the individual
degrees of freedom {FDF(t)} are calculated according to the relation

{FDF(t)} = [A] · {FCM(t)}. (40)

To the forces corresponding to the individual degrees of freedom {FDF(t)} it is neces-
sary to add the gravitational forces {FG(t)} and reactions at the point of contact {FRC(t)},
which gives a complete vector of forces acting on the given computational model {FR(t)}

{FR(t)} = {FDF(t)}+ {FG(t)}+ {FRC(t)}. (41)
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The system of equations describing the conditions of force equilibrium of the model
has the form

[m] ·
{..

r(t)
}
= {FR(t)}, (42)

where [m] is the mass matrix of the model. Derivations according to time t are indicated
by a dot above the sign of the dependent variable. System (42) is finally subdivided into
equations of motion describing the vibration of the vehicle (43) and the equations for
calculating the reactions at the contact points (44)

..
r1(t) = −

{
b1 ·

[ .
r1(t)− a · .

r2(t)−
.
r3(t)

]
+ b2 ·

[ .
r1(t) + b · .

r2(t)−
.
r4(t)

]
+ k1 · [r1(t)− a · r2(t)− r3(t)]+

+ k2 · [r1(t) + b · r2(t)− r4(t)]}/m1,
..
r2(t) = −

{
−a · b1 ·

[ .
r1(t)− a · .

r2(t)−
.
r3(t)

]
+ b · b2 ·

[ .
r1(t) + b · .

r2(t)−
.
r4(t)

]
−

−a · k1 · [r1(t)− a · r2(t)− r3(t)] + b · k2 · [r1(t) + b · r2(t)− r4(t)]}/Iy1,
..
r3(t) = −

{
−b1 ·

[ .
r1(t)− a · .

r2(t)−
.
r3(t)

]
+ b3 ·

[ .
r3(t)−

.
v3(t)

]
− k1 · [r1(t)− a · r2(t)− r3(t)]+

+k3 · [r3(t)− v3(t)]}/m2,
..
r4(t) = −

{
−b2 ·

[ .
r1(t) + b · .

r2(t)−
.
r4(t)

]
+ b4 ·

[ .
r4(t)− c · .

r5(t)−
.
v4(t)

]
+ b5 ·

[ .
r4(t) + c · .

r5(t)−
.
v5(t)

]
−

−k2 · [r1(t) + b · r2(t)− r4(t)] + k4 · [r4(t)− c · r5(t)− v4(t)]+k5 · [r4(t) + c · r5(t)− v5(t)]}/m3,
..
r5(t) = −

{
−c · b4 ·

[ .
r4(t)− c · .

r5(t)−
.
v4(t)

]
+ c · b5 ·

[ .
r4(t) + c · .

r5(t)−
.
v5(t)

]
−

−c · k4 · [r4(t)− c · r5(t)− v4(t)] + c · k5 · [r4(t) + c · r5(t)− v5(t)]}/Iy3,

(43)

FRC,3(t) = G3 − k3 · [r3(t)− v3(t)]− b3 ·
[ .
r3(t)−

.
v3(t)

]
=

= g · (m1 · b/s + m2)− k3 · [r3(t)− v3(t)]− b3 ·
[ .
r3(t)−

.
v3(t)

]
,

FRC,4(t) = G4 − k4 · [r4(t)− c · r5(t)− v4(t)]− b4 ·
[ .
r4(t)− c · .

r5(t)−
.
v4(t)

]
=

= 0, 5 · g · (m1 · a/s + m3)− k4 · [r4(t)− c · r5(t)− v4(t)]− b4 ·
[ .
r4(t)− c · .

r5(t)−
.
v4(t)

]
,

FRC,5(t) = G5 − k5 · [r4(t) + c · r5(t)− v5(t)]− b5 ·
[ .
r4(t) + c · .

r5(t)−
.
v5(t)

]
=

= 0, 5 · g · (m1 · a/s + m3)− k5 · [r4(t) + c · r5(t)− v5(t)]− b5 ·
[ .
r4(t) + c · .

r5(t)−
.
v5(t)

]
.

(44)

The bridge is modelled as simple supported Bernoulli–Euler beam with continuously
distributed mass. The equation of motion has the form

E · I ∂4y(x, t)
∂x4 + µ

∂2y(x, t)
∂t2 + 2 · µ ·ωb

∂ y(x, t)
∂t

= p(x, t) (45)

where E is modulus of elasticity, I is quadratic moment of cross section, µ is mass inten-
sity per meter of length, ωb angular damping frequency, y(x,t) is dynamic bending line,
and p(x,t) is the intensity of the continuous distributed load. Equation (45) is a partial
differential equation. Since the equations of motion of the vehicle are ordinary differential
equations, it is also appropriate to transform the bridge equation of motion into an ordinary
differential equation. This can be performed by assuming the shape of the bending line of
the bridge y0(x)

y(x, t) = q(t) · y0(x) = q(t) · sin
π · x

L
. (46)

The proportionality coefficient q(t) has the meaning of the generalised Lagrange coordi-
nate and L is the span of the bridge. Substituting assumption (46) into equation (45) produces{

..
q(t) · µ +

.
q(t) · 2 · µ ·ωb + q(t) · E · I π4

L4

}
sin

π.x
L

= p(x, t). (47)

In the case of motion of discrete forces Fj, the continuously distributed load p(x,t) can
be expressed by the use of Dirac function [8] in the form

p(x, t) = ∑j ε j · δ
(
x− xj

)
· Fj(t) = ∑j ∑

∞
n=1 pn,j(t) · sin

n · π · x
L

, (48)

where

pn,j(t) =
2
L

∫ 1

0
pj(x, t) · sin

n.π.x
L

dx =
2
L

ε j · Fj(t) · sin
n · π · xj

L
. (49)



Polymers 2022, 14, 812 13 of 18

Then

p(x, t) = ∑
j

∞
∑

n=1
pn,j(t) · sin n·π·x

L = ∑
j

∞
∑

n=1

2
L ε j · Fj(t) · sin

n·π·xj
L · sin n·π·x

L =

= ∑j ∑∞
n=1

2
L ε j · Fint,j(t) · sin

n.π.xj
L · sin n·π·x

L .
(50)

If we take into account only the first member of the series, the expression takes
the form

p(x, t) =
2
L

sin
π · x

L ∑j ε j · Fj(t) · sin
π · xj

L
. (51)

If the force Fj is already on the beam, then εj = 1, if Fj is outside the beam, εj = 0. The
time t = 0 corresponds to the input of the first axle on the beam. If we are looking for a
response only in the middle of the bridge span, x = L/2, then sin(π · x/L) = 1, and the
equation of motion of the bridge takes the form

..
q(t) · µ +

.
q(t) · 2 · µ ·ωb + q(t) · E · I π4

L4 =
2
L ∑j ε j · Fj(t) · sin

π · xj

L
. (52)

It is possible to work with the unevenness of the road u(t) and define the resulting
profile of the road surface as

v(x, t) = y(x, t) + u(t). (53)

3.2. Results of Numerical Solution

The numerical solution of the equations of motion was performed in the environment
of MATLAB system [12]. The fourth order Runge–Kutta method was used (ode45 proce-
dure). The second order differential equations were transformed to the first order equations
by the following substitution

r1(t) = y1(t), r2(t) = y3(t), r3(t) = y5(t), r4(t) = y7(t), r5(t) = y9(t), q(t) = y11(t),.
r1(t) = y2(t),

.
r2(t) = y4(t),

.
r3(t) = y6(t),

.
r4(t) = y8(t),

.
r5(t) = y10(t),

.
q(t) = y12(t).

(54)

The subject of the solution is then the set of 12 the first order differential equations for
unknown functions yi(t), (i = 1,2,3,4,5,6,7,8,9,10,11,12) in the form

.
y1(t) = y2(t),

.
y2(t) =

..
r1(t),

.
y3(t) = y4(t),

.
y4(t) =

..
r2(t),

.
y5(t) = y6(t),

.
y6(t) =

..
r3(t),.

y7(t) = y8(t),
.
y8(t) =

..
r4(t),

.
y9(t) = y10(t),

.
y10(t) =

..
r5(t),

.
y11(t) = y12(t),

.
y12(t) =

..
q(t).

(55)

The subject of numerical analysis are the time dependences of dynamic deflections in
the middle of the bridge span. As is known, all kinematic quantities of the bridge response
depend on the speed of movement of the vehicle [23]. Therefore, in the first step, the
dependence of the dynamic factor δ of the bridge on the speed of movement of the vehicle
was calculated in Figure 9. A smooth bridge surface and zero initial conditions on both the
vehicle and the bridge are assumed:

ri(0) =
.
ri(0) = 0, i = 1, 2, 3, 4, 5, q(0) =

.
q(0) = 0. (56)

The vehicle parameters are:
m1 = 22,950 kg, m2 = 2910 kg, m3 = 2140 kg, Iy1 = 62,298 kg·m2, Iy3 = 932 kg·m2,
k1 = 287,433 N/m, k2 = 1,522,512 N/m, k3 = 2,550,600 N/m, k4 = k5 = 5,022,720 N/m,
b1 = 19,228 kg/s, b2 = 260,197 kg/s, b3 = 2746 kg/s, b4 = b5 = 5494 kg/s,
a = 3.135 m, b = 1.075 m, c = 0.66 m, s = 4.21 m.
The bridge parameters are:
L = 37 m, µ = 6442 kg/m, I = 0.23186 m4, E= 1.15e11 Pa, ωb = 0.23321 rad/s.
Maximum static deflection from the vehicle ys = 9.815068 mm.
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Figure 9. Bridge dynamic factor versus speed of vehicle.

The dependence δ(V) is a curve that has many local maxima and spikes [24]. The
position of the spikes is related to the discontinuous course of the function indicating the
position of the vehicle on the bridge at the moment when the maximum deflection occurs.
Figure 10 shows the position of the vehicle centre of gravity on the bridge (in dimensionless
form xC/L) at the moment when the maximum deflection occurs depending on the speed
of the vehicle V. For practical purposes, it is appropriate to define an envelope curve, for
example in the shape

envelope = 1/(1− 0.5 · α) (57)

where α is dimensionless speed parameter defined as

α = T(1)/(2Ts). (58)
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T(1) is the period of bridge vibration in the first natural mode and Ts is the time of stay
of the vehicle axle on the bridge.

In the second step, the calculation of the time response of the bridge for the character-
istic speeds of the vehicle was performed. The speeds 38 km/h, 51 km/h, and 95 km/h
correspond to the local maxima of the function δ(V) and the speeds 43.1 km/h, 62.7 km/h,
and 123.2 km/h correspond to the spikes. In this analysis, it was assumed that the vehicle
enters the bridge already vibrant. The initial conditions for the vehicle are as follows:

r1(0) = −0.02 m, r2(0) = −0.03 rad, r3(0) = −0.002 m, r4(0) = −0.003 m, r5(0) = 0.0 rad,
.
ri(0) = 0, i = 1, 2, 3, 4, 5.
Figure 11 shows the time courses of the vertical deflections in the middle of the bridge

span for speeds 38, 51, and 95 km/h, and Figure 12 for speeds 43.1, 62.7, and 123.2 km/h.
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The maximum bridge deflections and dynamic factors for individual speeds are
summarised in Table 2.

Table 2. Maximum bridge deflections and dynamic factors for individual speeds.

Speed V (km/h) tmax.
(s)

Max. Dynamic Deflection vmax
(mm)

Dynamic Factor
δ

38 2.0310 9.9627 1.0150
51 1.5432 10.1018 1.0292
95 0.8544 11.0073 1.1214

43.1 1.6296 9.9250 1.0112
62.7 1.0705 9.8174 1.0002
123.2 0.7711 10.4482 1.0645

4. Conclusions

The use of fibre-reinforced polymer composite materials in modern engineering ap-
plications has been increasing rapidly. Bridges and aerospace structures are a couple of
examples of their application. Steel bridges are replaced by composite materials due to
their superior qualities, such as a higher strength-to-weight ratio. Bridge structures are
constantly being exposed to various types of loads. The major loads that influence the life
of a bridge are dynamic moving loads.

For the forced vibration analysis of laminated polymer composite beams under the
effect of moving loads, it is advantageous to use the MATLAB software system. To solve
equations of motion, the Runge–Kutta–Fehlberg methods can be used (ode45 solver).

The bridge response to the effects of moving loads is influenced by many factors. The
most important of these can be considered the speed of the vehicle. It only makes sense to
talk about the influence of all other parameters in connection with the specific speed of the
vehicle. If the deflections in the middle of the bridge span are analysed, it is advantageous
to work with dimensionless values in the form of dynamic magnification factors δ. The
dependence of the dynamic factor on the speed of the vehicle δ(V) is a curve that has many
local maxima and spikes. Its shape depends on the type of vehicle used in the analysis. For
practical reasons, it is good to define the envelope of amplitudes.

Therefore, in this case, the dynamic magnification factors for the dynamic analysis of
composite beams were computed. The maximum dynamic magnification factor occurs at
the velocity of 95 km/h.

The ply orientation influences the dynamic behaviour of a beam subjected to a moving
load. Based on these results, a designer can choose the right ply orientations to control the
dynamic behaviour of laminated beams.

We are still working on research which considers the classic conventional materials,
the cross-section of a bridge made of steel girders and a concrete bridge deck. To solve
this task of the bridge response to the effects of moving loads due to a heavy truck, a 1D
model was adopted. We obtain the maximum difference between the dynamic and static
deflection in the middle of the bridge of 21.9%. By replacing conventional materials with
laminated composite, we obtained the maximum difference between the dynamic and
static deflection in the middle of the bridge of 16.11%. From this point of view, the use of
FRP materials in bridge structures is still in its infancy, and there are very clear indications
that it will be an excellent choice for a multitude of projects on bridges in the future.
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20. Krejčí, T.; Kruis, J.; Šejnoha, M.; Koudelka, T. Hybrid parallel approach to homogenization of transport processes in masonry. Adv.

Eng. Softw. 2017, 113, 25–33. [CrossRef]
21. Sahmani, S.; Safaei, B. Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-

beams under periodic soft excitation. Thin-Walled Struct. 2019, 143, 106226. [CrossRef]
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