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Abstract: Nanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a
highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However,
this process remains limited due to the need for proper synthesis-property strategies. Herein, we
report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable
properties by chemically reducing HAuCl4 in chitosan solutions and different HAuCl4/sodium
citrate molar relationships. The structure, electrical, and relaxation properties of nanocomposites
have been investigated as a function of HAuCl4/sodium citrate molar relation. It was shown that
gold particle size, conductivity, Vogel temperature (glass transition), and water content strongly
depend upon HAuCl4/sodium citrate relationships. Two relaxation processes have been observed
in nanocomposites; the α-relaxation process, related to a glass transition in wet CS/AuNP films,
and the σ-relaxation related to the local diffusion process of ions in a disordered system. The ability
to fine-tune both α- and σ-relaxations may be exploited in the proper design of functional materials
for biosensors, biomaterials, and flexible electronics applications.

Keywords: chitosan-gold nanocomposites; HAuCl4/sodium citrate relationship; α-relaxation;
σ-relaxation

1. Introduction

Metal nanoparticles exhibit unique optical, electrical, mechanical, and biomedical prop-
erties. In this regard, the number of publications related to polymer-metal nanocomposites
has recently increased [1–15]; various studies report on the use of such nanocomposites
in biomedicine, biosensors for protein recognition, and flexible electronics. Most of these
reports rely on the proper chemical synthesis of Au nanoparticles; however, the challenge to
fine-tune the structure, size, and functionality is still at large. In this regard, the synthesis of
gold nanoparticles has been studied for more than 20 years to obtain homogenous sizes and
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shapes. The preferred method of AuNP synthesis is the well-established Turkevich method,
and it is based upon the chemical reduction of HAuCl4 in a variety of media. AuNPs
are then formulated with a variety of polymer matrices used to fabricate nanocomposites
for specific applications; the literature reports the best polymer choices for AuNPs are
polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyethylene glycol (PEO), and the
polysaccharide chitosan (CS) [1–16]. Moreover, interesting chemical reduction methods
to produce functional metal nanoparticles have been discussed in the literature; in this re-
gard, Ag [17], Au/Ag [18], Pt/Pd [19], and biofunctionalized Au nanoparticles [20]. These
studies reveal the importance of proper synthesis methods for biosensor applications.

Based upon the above polymer matrix choices for nanocomposite fabrication, chitosan
(CS) has emerged as one the preferred ones such that it has been extensively studied [21,22].
In this regard, CS is a natural polymer derivative of chitin which is composed of glu-
cosamine and N-acetylglucosamine unit residues; this polysaccharide displays properties
such as biocompatibility, biodegradability, and low toxicity [23–26]. The cationic nature of
chitosan is primarily responsible for electrostatic interactions with metallic nanoparticles
such that it can be used as a stabilizer and reducer of gold forming zero-valent nanoparti-
cles [27–31]. It is noteworthy that the chemical reduction of HAuCl4 to synthesize AuNPs
of specific sizes depends upon the redox agent sodium citrate concentration [29].

Our research group has extensively reported the synthesis of Au NPs by using a
modified Turkevich method for a variety of applications [28,30–33]. However, in the
literature, there are no reports about the effect of the HAuCl4/sodium citrate concentration
relationship on the synthesis and final properties of gold nanoparticles using the Turkevich
method in chitosan solutions. Chitosan/gold nanoparticle (CS/AuNP) composites find
wide application in biomedicine because gold nanoparticles help promote the protein
expression in the keratinocytes process regeneration and glioma cells; it has also been
shown to be a tool in the detection and treatment of cells cancer [27,29,34]. Moreover,
the development of biosensors requires proper optical, piezoelectric, or electrical responses.
Electrochemical biosensors, which convert biological binding into useful electrical signals,
have received considerable attention in the past years [5,6]. In most cases, AuNPs dispersed
in 3D chitosan matrices served as current conductors [5,6,35]. However, the conductivity
mechanism of CS/AuNP nanocomposites has not been properly addressed.

This work aims to provide a robust yet simple chemical synthesis route to fabricate
CS/AuNPs nanocomposites; these nanocomposites may find potential applications in
biosensors, biomaterials, and flexible electronics. In this regard, in situ AuNPs are synthe-
sized in chitosan solutions with different HAuCl4/sodium citrate relationships. We aim to
vary this HAuCl4/sodium citrate relationship to tune the structural, electrical, and thermal
properties using dielectric spectroscopy, thermogravimetric analysis (TGA), and Fourier
transformed infrared spectroscopy (FTIR) measurements.

2. Materials and Methods
2.1. Synthesis of Nanocomposite

Chitosan with medium molecular weight (300,000 g/mol) and 85% of the degree of
deacetylation (cat. num. 448877), hydro chloroauric acid (cat. Num. 50790), and sodium
citrate (cat. num. S1804) were obtained from Sigma Aldrich® (Lerma, MEX, Mexico) and
were used without additional purification.

Seven materials were synthesized with the same molar concentration of HAuCl4
and different amounts of sodium citrate (SC). The nanocomposites were synthesized by
dissolving 2% of chitosan in a 1% acetic acid solution. After that, a 0.3 mM of HAuCl4
solution was added to different amounts of SC to vary millimolar relationships between
HAuCl4 and SC in the range 0.1 and 5. Then the mixture was heated to 75 ◦C under
magnetic stirring until the solution changed its color to red.

A modified Turkevich chemical reduction method was followed according to a recent
study from our group [34]. In this regard, chitosan is a polysaccharide soluble in aqueous
acid media below pH 6. At low pH, the amino groups are protonated, allowing the
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formation of a water-soluble polyelectrolyte. The amount of citrate added to the reaction
should not increase the pH of the solution above 6 to overcome unwanted CS precipitation.
Solutions were heated to 75 ◦C under magnetic stirring until they turned red. Films with
a thickness of ca. 20 µm were prepared by the solvent-cast method by pouring the final
solution into a plastic Petri dish and allowing the solvent to evaporate for 24 h at 60 ◦C.

20 µm films were prepared to perform impedance spectroscopy measurements; for FTIR
in the transmission mode measurements, ca. 10 µm films were prepared.

2.2. Characterization Studies
2.2.1. Infrared Measurements and Morphology Analysis

The materials were characterized by infrared spectroscopy. FTIR spectra were obtained
between 4000 and 400 cm−1 (Perkin Elmer Spectrum1 model, PerkinElmer, Inc. Waltham,
MA, USA). All spectra were recorded at 4 cm−1 intervals and 16 cm−1 times scanning
using the transmission technique. CS/AuNPs films morphology was imaged by JEOM
JSM-7401F field emission scanning electron microscope (JEOL Inc., Peabody, MA, USA).
UV-Vis (UV-Vis spectrometer Agilent 8453, Agilent Technologies, Santa Clara, CA, USA)
was used to determine the sizes of the gold nanoparticles by the detection of the maximum
absorption band in the visible region.

2.2.2. Thermal Measurements

The amount of free water was determined by Thermogravimetric analysis (TGA)
(Mettler Toledo 851e model, Mettler Toledo, Columbus, OH, USA). The measurements
were performed with a dry airflow from 25 to 300 ◦C with a rate of 10 ◦C/min.

2.2.3. Dielectric Measurements

Dielectric measurements in the frequency range from 40 Hz to 110 MHz were carried
out with Agilent Precision Impedance Analyzer 4249A (Santa Clara, CA, USA). The am-
plitude of the measuring signal was 100 mV. Temperature measurements were performed
in the cell in the temperature range from 20 ◦C to 200 ◦C using a temperature controller
programmed to produce a constant heating rate of 3 ◦C/min between certain measure-
ments temperature. To remove moisture content in the films, additional measurements
were carried out in an in-house vacuum cell [36].

3. Results and Discussion
3.1. Infrared Spectroscopy

Figure 1 shows the IR spectra of chitosan-gold nanocomposite with a constant con-
centration of HAuCl4 and different amounts of sodium citrate; neat CS, and molar ratios
of HAuCl4/sodium citrate 0.1, 0.21, 1, 2, and 5. The band at 3300 cm−1 is produced by
a symmetric stretch of -OH groups. The band at 2880 cm−1 is associated with a sym-
metric stretching of the methyl group, the band present at 1640 cm−1 belongs at C=O
antisymmetric, from citrate moiety, additionally, the band at 1550 cm−1 is assigned to
the antisymmetric deformation of NH3

+. The band at 1410 cm−1 is produced by the C-N
stretch. The stretching band at 1025 cm−1 is related to C-O [1–3,36].

The salient features of the FTIR spectra are in the vicinity of the 1640 cm−1 band,
where intensity in the spectrum decreases with decreasing SC concentration. This effect
could be attributed to the low efficacy of sodium citrate to reduce gold.

3.2. Morphology Analysis

Figure 2a,b show SEM micrographs where a homogeneous distribution of Au nanopar-
ticles is embedded in the chitosan matrix. Using AutoCAD 2007 software, the dimen-
sion of nanoparticles can be assessed. Figure 2c shows particle distribution histogram for
HAuCl4/SC relation equal to 1; this histogram has been obtained from 3 micrographs. Most
nanoparticles are 8 to 11 nm (76%). By increasing the HAuCl4/SC from 0 to 1 particle size
decreases; upon further increase, particle size slightly increases. Similarly, the maximum
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absorption UV-Vis in the ultraviolet-visible spectrum decreases, then it almost remains
constant (Figure 2d). The shift of the maximum absorption band to lower wavelength
confirms the decrease in AuNP size. In the conventional Turkevich synthesis of AuNPs
where sodium citrate is used as a reducing agent (without chitosan), the increasing SC
concentration decreases particle size [37]. It is noteworthy that our method, which uses
chitosan as a co-reducing agent, helps reduce the amount of sodium citrate, nanoparticle
size decreases. This trend can be explained by the reducing capacity of CS and the presence
of free amino and hydroxyl groups in chitosan and its polycationic and chelating properties.
The special feature of this polysaccharide enables its use as a stabilizer and reducing agent
in the synthesis of gold nanoparticles [36]. Additionally, an excess volume of HAuCl4
promotes the nucleation of smaller particle sizes and polydispersity [36].
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working distance (WD) 8.6 mm; (c) Histogram of nanoparticle distribution for HAuCl4/SC relation
equal 1.0; (d) Dependence of maximum absorption in the ultraviolet visible spectrum on HAuCl4/SC
molar ratio.

3.3. Thermal Measurements

Thermogravimetric analysis (TGA) was performed to determine free water content.
Free water content may be evaluated by the decrease in sample weight during the heating
scan. The weight loss at 120 ◦C is the result of water evaporation. Figure 3 shows the
dependence of moisture content as a function of the HAuCl4/SC molar relationship. Here,
an increase in the HAuCl4/SC molar relationship to 1 and a decrease in moisture content
are observed. Upon further increasing this HAuCl4/SC relationship, free water content
slightly decreases, as observed in Figure 3. In this regard, the major change of free water
content occurs for HAuCl4/SC molar relationships from 0 to ca. 1 (ca. 17%), while a
minimal change of ca. 3% is observed for up to HAuCl4/SC molar relationship of 5.

Additional TGA measurements were carried out on films that were annealed for
30 min at 120 ◦C with subsequent cooling to room temperature; a second scan was then
performed. In such annealing films, the water content was ca. 0.2 wt.%.
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3.4. Conductivity Measurements

Complex impedance spectra (Z” versus Z′) for all films exhibit characteristic semicir-
cles at high frequencies and a quasi-linear response at low frequencies (insert in Figure 4).
The linear response at low frequencies can be associated with interfacial polarization or
metal contact effects [27]. The values of DC resistance Rdc have been obtained by fitting the
high-frequency semicircle of the impedance spectra before interception with real parts of
impedance as depicted in the Figure 4 insert. The corresponding DC conductivity (σdc) has
been obtained from the equation σdc = d/(Rdc × S), where d is the film thickness and S is
the area of film.

From Figure 4, one can observe that the nanocomposite’s conductivity increases from 0
up to HAuCl4/SC molar relationship of ca. 1.0; for higher HAuCl4/SC molar relationship,
the conductivity remains almost constant (saturation). This observation qualitatively
agrees with the results shown in Figure 2; there is a saturation of both nanoparticle size
and conductivity.
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3.5. Dielectric Measurements

Dielectric measurements were performed using the Agilent Precision Impedance
Analyzer 4249 A in the frequency range from 40 Hz to 110 MHz. The amplitude of the
measured signal was 100 mV. Temperatures were measured in the cell from 20 ◦C to
200 ◦C using a temperature controller programmed to produce a constant heating rate of
3 ◦C/min between certain measured temperatures. Each sample was kept for 3 min at each
temperature to ensure thermal equilibrium. Additional measurements were conducted
in a vacuum cell to remove moisture from the films. As-prepared samples were annealed
into the vacuum cell before measurements at 120 ◦C for 1 h, followed by cooling at room
temperature in the vacuum. Additionally, a Peltier heating element was used to perform
measurements from 0 ◦C to 100 ◦C.

Dielectric measurements can provide information about the temperature relaxation
processes in the nanocomposites. In polymer-metal nanoparticle composites, both ionic
current and interfacial polarization could often mask the real dielectric relaxation processes
in the low-frequency range. Therefore, to analyze the dielectric process, the complex permit-
tivity ε* has been converted to the complex electric modulus M* by the following equation:

M∗ =
1
ε∗

= M′ + iM′′ =
ε′

ε′2 + ε′′ 2
+ i

ε′′

ε′2 + ε′′ 2
(1)

where M′ is the real and M′′ the imaginary part of electric modulus, ε′ is the real and
ε′′ the imaginary part of permittivity. In this representation, interfacial polarization and
electrode contributions are essentially suppressed [27]. The corresponding relaxation time
can be calculated by the next relation: τ = 1/(2πfp), where fp is the peak frequency in the
dependence of M′′ on frequency [38].

It is noteworthy that a recent study of our group reported three molecular relaxations
in CS-Au nanocomposites based upon dielectric measurements [38]:

(1) in the temperature range of 25–70 ◦C, a nonlinear behavior is revealed,
(2) a linear behavior in the temperature range of 70–150 ◦C, and
(3) at temperatures above 160 ◦C, polymer degradation is triggered.
(4) Based upon this analysis, Figure 5 shows the dependencies of the relaxation time on re-

ciprocal temperature based upon the methodology described in [27] for a HAuCl4/SC
molar relationship of 0.21.

In the temperature range of 25–70 ◦C the nonlinear relaxation process can be fitted
by the Vogel–Fulcher–Tammann (VFT) relationship τ = τ0 exp( DT0

T−T0
), where T0 is Vogel

temperature, τ0 and D are empirical material-dependent parameters.
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In the linear relaxation process (80–150 ◦C), an Arrhenius-type linear dependency was
observed (τ = τ0 exp( Eaτ

RT )) for as-prepared films and in the temperature range 22–150 ◦C
for dry films (annealed in vacuum to the temperature of 120 ◦C).
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Figure 5. Dependence of the relaxation time on the reciprocal temperature in as-prepared (open
circles) and annealed films (open triangles) for HAuCl4/SC molar relationship of 0.21. Note an
Arrhenius-type linear fit associated with σ-relaxation (activation energy ca. 103.2 kJ/mol) and the
nonlinear VFT fit associated with an α-relaxation (glass transition).

The σ-relaxation appears when there is dominance of ionic conductivity in CS-Au
nanocomposites and in neat chitosan and most polysaccharides [36]. This relaxation
appears due to ion migration which is responsible for additional dielectric polarization in
amorphous and electrically inhomogeneous systems.

The nonlinear α-relaxation, which is related to a glass transition, appears in wet CS-Au
nanocomposites. Figure 6 shows the Vogel temperature T0 as a function of the HAuCl4/SC
molar relationship; an analogous behavior for the glass transition temperature of such
nanocomposites is expected at 50–70 K higher than T0 [38].
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Figure 6 shows the existence of excess HAuCl4 is responsible for the “anomaly”
dependence of Vogel temperature. The Vogel temperature T0 is the apparent activation
temperature of the α-relaxation in many polymers; T0 is usually 50–70 K lower than glass
transition temperature [34].

4. Discussion

In this work, CS/Au nanocomposites have been prepared with different HAuCl4/SC
molar relationships; this means that some HAuCl4 will be complexed in the films and
can participate in the observed ionic DC conductivity. By decreasing the concentration
of SC (an increase in HAuCl4), there is an increase in the film’s conductivity. When the
HAuCl4/SC molar relationship is higher than 1.0, a competitive reducing capacity of
chitosan helps compensate for the reduced amount of SC. The ability of chitosan to help
reduce HAuCl4 is due to the presence of free amino and hydroxyl groups. This effect is
responsible for saturation in the particle size (Figure 2c), conductivity (Figure 4), water
absorption (Figure 3), and Vogel temperature (Figure 6).

The presence of water absorption in neat chitosan films promotes a plasticizing effect;
for this reason, in the samples with lower moisture content, the Vogel temperature is
lowered [38]. Nevertheless, in the case of CS/AuNP nanocomposites, the Vogel temperature
decreases with increasing HAuCl4/SC molar relationship even though moisture content
decreases (see Figures 3 and 6). According to our previous work [36], gold nanoparticles at
low HAuCl4/SC molar relationship attach to chitosan through hydrogen bonds between
complexed sodium and the amino groups of chitosan. Upon increasing the HAuCl4/SC
molar relationship, complexed sodium decreases, and the interaction between AuNPs and
chitosan could be due to electrostatic forces (due to the polarization of nanoparticle surface.
This effect is responsible for the decreasing of Vogel and glass transition temperatures.
A similar conclusion can be drawn from the dependencies of particle size (Figure 2c) and
the conductivity at HAuCl4/SC molar relationships higher than 1.0.

It is noteworthy that by varying the HAuCl4/SC molar relationship, the nanocom-
posite’s water absorption, conductivity, and the glass transition temperature can be fine-
tuned. Samples prepared with low HAuCl4/SC molar relationships have higher com-
plexed sodium molecules. These molecules form hydrogen bonds with the polymer matrix,
and water can attach to the OH group of chitosan. On the other hand, the films with high
HAuCl4/SC molar relationships have less complex sodium molecules such that the quan-
tity of hydrogen bonds is also lower. Additionally, any excess of HAuCl4 can potentially be
reduced by the chitosan’s reducing capabilities. Although the reducing process by chitosan
is not well understood, it is possible that the OH groups can act as reducing groups in the
formation of nanoparticles [39]. Au nanoparticles that are charged superficially can attach
to NH3

+ groups by electrostatic forces. The nanocomposite water absorption is lower for
materials with higher HAuCl4/SC molar relationships due to the decreasing hydrogen
bonding capacity.

5. Conclusions

CS/AuNP thin films have been synthesized by chemical reduction of HAuCl4 in
the presence of sodium citrate (SC) and chitosan solutions. The structure, conductivity,
and relaxation properties of CS/AuNPs films have been investigated as a function of the
HAuCl4/SC molar relationship. Our results show that HAuCl4/SC molar relationship
affects the AuNP sizes because of the additional chitosan reducing agent capabilities.
A descriptive model for understanding the reaction between HAuCl4, sodium citrate
chitosan, and acetic acid has been proposed. We have shown that an excess of HAuCl4 is
responsible for dependencies of conductivity, Vogel temperature, and water absorption
in CS/AuNPs nanocomposites. The value of HAuCl4/SC molar relationship of ca. 1.0 is
a molar relationship threshold. At higher HAuCl4/SC molar relationships, the reducing
capacity of chitosan leads to saturation of free HAuCl4 amount and subsequently to
saturation in all properties of CS/AuNP nanocomposites.
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