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Abstract: The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunc-
tion solar cells have been deemed as promising sustainable future technologies, owing to the use
of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive
summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emit-
ters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different
techniques used to synthesize these polymers are discussed in detail, including their electronic band
structure and doping mechanisms. The general architecture and principle of operating heterojunction
solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers
as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high
transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity,
and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer
from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that
results in total degradation of the polymeric p-type materials. Although great progress has been seen
in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to
go for cells incorporating polymeric materials to realize commercialization and large-scale industrial
production due to the shortcomings in the stability of the polymers. This review therefore discusses
the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon
heterojunction solar cells with the intention to provide insight on the quest of producing highly
efficient but less expensive solar cells.

Keywords: heterojunction solar cell; hole transporting layer; n- and p-type doping; organic photo-
voltaic cell; π-conjugated polymer

1. Introduction

Over the past centuries, the demand for new technologies based on alternative renew-
able energy sources has seen an exponential growth due to the alarming rate of increasing
global population, the current global energy catastrophe, the unceasing consumption of
fossil fuel storages, and the emission of greenhouse gases to the atmosphere because of
the combustion of fossil fuels. This growing demand for sustainable and clean energy re-
sources has significantly led to increased attention into the scientific research, development,
and manufacturing of various new technologies based on renewable energy resources [1].
Amongst the various existing sustainable energy sources, solar energy has gained the most
recognition, due to the continuous availability of sunlight; economic viability, sustainability,
and its promise to reduce greenhouse gases, make it an ideal approach for addressing
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problems associated with energy and the environment, through a photoelectric effect phe-
nomenon utilizing photovoltaic devices [2–4]. Photovoltaic devices are commonly known
as devices focused on converting solar irradiation energy directly into electrical energy by
exploiting the photoelectric effect exhibited by metals and inorganic semiconductors [5].
Traditional inorganic silicon-based modules, also known as first generation solar cells,
currently account for the broad majority of solar cell technology in both the residential and
industrial markets. Recently, the power conversion efficiencies (PCE) competitive to the
traditional solar cells have been realized by utilizing the carrier-selective layer’s approach
on crystalline silicon wafers with high-quality Float Zone (FZ) [6,7]. The architecture of
this solar cell comprises of an intrinsic hydrogenated amorphous silicon ((i) a-Si:H) layer
placed either on both sides or one side of the FZ silicon wafer, acting as a passivation layer,
prior to the formation of carrier-selective contact. This type of silicon-based technology has
led to a record breaking PCE of 26.6%, formed from the blend of interdigitated back contact
and heterojunction concepts [8], which is near to the silicon solar cell theoretical limit PCE
of 29.1% [9]. Despite the significant performance progress and higher attained efficiencies
by silicon-based solar cells, their large-scale industrial production and commercialization
is restricted and hampered by the complexity in fabrication processes and the involved
number of steps, which makes the solar panels extremely expensive. These drawbacks and
limitations experienced by silicon PV cells and the inability to provide cost-effective energy
has shifted research to focus on the development and exploration of alternative materials
such as cadmium indium gallium diselenide (CIGS) and cadmium telluride (CdTe), widely
known as second generation thin-film photovoltaics, to decrease the manufacturing cost
and increase manufacturing and production. These thin-film photovoltaic devices have
seen a production of higher efficiencies for single-junction terrestrial cells of 21.4% and
21.6% for CdTe and CIGS, respectively [10], which are very close to the produced efficiency
by silicon solar cells. These cells are relatively cheaper and more stable than silicon based
solar cells; however, their efficiencies require further improvements for large-scale indus-
trial production in order to compete with silicon in the photovoltaic market. Alternatively,
plastic solar cells, also known as third-generation solar cells, include perovskite solar cells
(PSCs), organic solar cells (OSCs), and dye-sensitized solar cells (DSSCs), have gained
increasing recognition owing to their flexibility, low-cost manufacturing or production, ease
of synthesis of the materials, and the simplicity of their fabrication processes. Currently,
the output of these devices has attained efficiencies for single-junction terrestrial cells of
13% [11], 16–18.1% [11–15], and 25.5% [11,16] for dye-sensitized solar cells, organic solar
cells, and perovskite solar cells, respectively.

Organic solar cells have been receiving increased scientific attention recently, due
to the low production costs, reduced complexity of the fabrication processes, improved
material processability and the use of π-conjugated polymers. Research has shifted focus
towards the area of modeling, fabrication, design and comprehensive investigations of the
applications and properties of π-conjugated polymers, since the breakthrough discovery
of chemical doped polyacetylene possessing electrical conductivity [17,18]. These have
gained widespread considerable recognition because of their superior advantages such as
the ability to tailor their electrical and optical properties through structural modifications,
ease of synthesis, flexibility, low production cost and ease of processability [19]. These first-
class properties have therefore qualified conjugated polymers to be extensively explored
in applications of optoelectronic devices such as organic light-emitting diodes (LEDs),
electrochromic devices, photovoltaics, nonlinear optical devices, field-effect transistors
(FETs), memory storage devices, chemo-and bio-sensors, and energy storage photodetec-
tors [20–24]. The diverse technological application of conjugated polymers is owing to the
addition of side-chains in these polymeric materials, which reduces backbone stiffness,
enhances their thermal stability and solubility, and allows the construction of nanostruc-
tured layers using less expensive, easy solution-processable deposition technique such as
spin-coating [25]. In addition, conjugated polymers (Scheme 1) demonstrating a series
of interchanging satisfactory acceptor and donor units in the polymer main segments, to
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some extent, can exhibit low band-gap energy values, because of the intramolecular charge
transfer interactions. Therefore, conjugated systems consisting of alternating single and
double bonds are considered as advanced class of materials in the field of electronics and
photonics owing to their rich π-excessive nature [26–28].
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For the most part, conjugated polymers have found numerous utilities in different
types of PV devices and architectures. These include, (1) wide use in production of organic
solar cells as hole transporting layers (HTLs) [29] and donor materials [30], (2) use in elec-
trochemical dye-sensitized solar cells as host electrolytes [31], (3) emitters in heterojunction
silicon solar cells in place of highly doped p-type hydrogenated amorphous silicon [32]
and (4) p-type HTLs in perovskite solar cells [33]. Herein, the various synthetic techniques
of conjugated polymers are presented, including their electronic band structure and doping
mechanisms, together with the application of conjugated polymers as HTLs in organic solar
cells, and organic-silicon hybrid heterojunction solar cells are discussed in detail.

2. Electronic Structure and Doping Mechanisms in π-Conjugated Polymers
2.1. The Electronic Structure

So as to achieve a fair impression on the origin of electrical conductivity and superior
optical properties such as low band gaps in π-conjugated polymeric materials, it is impera-
tive to understand the hybridization and electronic configuration exhibited by conjugated
polymers in comparison to non-conjugated polymers. As it is well known, the element
carbon has the electronic structure, 1s22s22p2, with four valence electrons available to
form four bonds with neighboring adjacent atoms. In non-conjugated polymers, carbon
atoms in the polymer main chain are sp3 hybridized, and each carbon atom forms four
covalent σ-bonds with adjacent neighbouring atoms. In such non-conjugated polymers,
the electrons are strongly localized as each carbon atom utilizes all its four valance elec-
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trons, as the main chain of the polymer backbone consists of only σ bonds. Consequently,
non-conjugated polymers are electrically insulating in nature as a result of low mobility
caused by the unavailability of free electrons to move along the polymer backbones that
are responsible for inducing electrical conductivity. Additionally, σ-bonded polymers,
generally have larger electronic energy band gaps, Eg (σ), due to the long single bonds,
inhibit photon absorption in the elecctromagnetc spectrum from visible-to-near infrared
region, thus becoming electronically insulating. For example, polyethylene, defined by
-(CH2–CH2)n- monomer repeating units, has been well studied and found to be electrically
insulating with an optical band gap of 8 eV [34].

In conjugated polymers, carbon atoms in the polymer main chain are sp2 hybridized
and each carbon atom forms three covalent σ-bonds with adjacent neighbouring atoms, and
one remaining unhybridized 2pz atomic orbital (orthogonal to the three σ-bonds), which
has an unpaired electron that overlaps with the unpaired electron of the neighbouring
2pz atomic orbital of sp2 hybridized carbon atom. The continuous overlap of these 2pz
atomic orbitals lead to the formation of π-bonds/electrons delocalized on the polymer
backbone. Therefore, due to this electronic delocalization, semiconducting characteristics
are realized as a result of high mobility induced by the presence of free π-electrons that
are moving along the polymer backbone, thus causing electrical conductivity. In addition,
π-bonded polymers have relatively small band gaps compared to σ-bonded polymers,
Eg (π) < Eg (σ), due to the presence of the short double bonds, leading to optical absorption
from visible-to-near infrared lower photon energies, with low-energy electronic excitations,
and semiconductor behavior [25]. For example, polyacetylene (see structure in Scheme 1),
defined by –(CH=CH)n– monomer repeating units, has been well studied and demonstrated
a semiconductor character with an optical band gap of 1.5 eV [35].

2.2. Doping Mechanisms of Conjugated Polymers

As it is well known, π-conjugated polymeric materials in their intrinsic condition are
neutral and can be either insulators or semiconductors with very little conductivity due to
low mobility rates on the polymer’s main chain [24]. However, the electrical properties,
and hence the semiconductor characteristic improvements strongly depend on doping.
Doping is a phenomenon where impurities or foreign materials are introduced in the
intrinsic semiconductor, conjugated polymers in this context, for the sole intention of
regulating its electrical, structural, and optical properties, thereby referred to as an extrinsic
semiconductor. Upon doping, which results in chemical changes within the polymer
matrix, charges are generated and propagate through the polymer chemical structure.
Subsequently, the conductivity significantly elevates by numerous orders of magnitude
due to the reduction between the lowest unoccupied molecular orbital (LUMO) and the
highest occupied molecular orbital (HOMO) energy level band gap from 3–6 eV in neutral
stable (Undoped) conjugated polymers to 1–4 eV in doped conjugated polymers [36,37].
For instance, the conductivity has seen a sharp increase from 10−2–10−5 S/cm in undoped
conjugated polymers to 10−5–103 S/cm in doped conjugated polymers, which is close to
the metallic region [37,38]. Doping in conjugated polymers can be carried out in different
routes using techniques such as electrochemical (redox) doping, chemical doping (gaseous
and solution), in-situ doping, charge-injection, and radiation-induced doping [39,40]. It
can be further distinctly classified according to the electron transfer type such as p-type
doping using oxidizing agents and n-type doping using reducing agent, and according to
the chemical nature of the dopant, such as organic, inorganic, and polymeric [41].

π-Conjugated polymer + dopant −→ electrically conducting polymer

As a result of doping, the introduction of foreign materials, either acceptor or donor
species, into the conjugated polymeric matrix results in the incorporation of defects. The
created defects are labeled as bipolaron, polaron and soliton. The formation of neutral
soliton, positive soliton and negative soliton of polyacetylene (PA) in its trans-configuration
is depicted in Scheme 2.
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A neutral soliton is formed by the donation of one single electron by the dopant to
the polymer or the acceptance of one single electron from the polymer to the dopant, with
the unhybridized 2pz orbital having an unpaired electron and a half-occupied band gap
with reference to the conduction band (CB) and valence band (VB). In the case of charged
solitons, a positive soliton is formed when a pair of electrons is accepted by the dopant
(p-type doping) which results in an empty mid-gap; a negative soliton is formed when
a pair of electrons is donated by the dopant (n-type doping) resulting in a full mid-gap
with two electrons. The soliton state exhibits a form of degenerate ground state owing
to the isolation of the two-phased bonding electrons in the reverse direction; however,
possessing the exact indistinguishable energy state. As a result, a new localized electronic
state responsible for conducting electrical energy, called a soliton band, takes shape in the
center of the band gap (see Figure 1).

As a continuous sequence following the formation of a charged soliton, a polaron
is formed by virtue of the combination of the neighboring neutral conjugated polymer
segment with the created charged soliton segment. The charge of the polaron depends
on the type of doping, be it radical anions in n-type or radical cations in p-type doping.
For instance, in p-type doping of polypyrrole (PPY), one electron is eliminated from the
conjugated polymer chain, resulting in the formation of a radical cation, referred to as
a positively charged polaron (see Scheme 3). Scheme 3 also depicts negatively charged
polaron because of n-type doping, for comparisons sake. The created polaron state results
in the formation of a new electronic state that is localized, situated in proximity to the
valence band that consists of a single electron that is unpaired with a half spin (see Figure 1).
For PPY, the new polaron states are known to reside at about 0.5 eV above the valence band
edges [42,43].

The further oxidation of the already existing polaron, which is the elimination of the
second electron from the chain that already contains the first created polaron, results in the
formation of a bipolaron. This implies that, a dication species, referred to as a bipolaron,
is formed by the combination of two positive polarons, resulting in a spinless defect state
because of the paired electrons in opposite orientation (see Figure 1). For bipolarons, two
newly created electronic states are situated inside the band gap, with each state consisting
of a single electron that is unpaired. In comparison to polaron states, the higher state in
bipolarons is more downshifted from the conduction band while the lower state is more
upshifted from the valence band. In doped PPY, these bipolarons are situated at 0.75 eV [43].
For a heavily doped conjugated polymer, the two newly created bipolaron states found
inside the band gap are capable of overlapping to generate a bipolaron band that can then
act to a certain degree as a full band responsible for high electrical conductivity.
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2.2.1. P-Type Doping

Analogous to the concept of inorganic silicon semiconductor doping, where boron and
phosphorus are the introduced foreign materials as p- and n-type dopants, respectively,
dopants in conjugated polymers are similarly classified as p- and n-type. In the context
of conjugated polymers, p-type doping is a process in which electrons are removed from
the HOMO energy level of the conjugated polymer by utilizing oxidizing agents. In this
case, the oxidizing agent accept electrons from the polymer, thereby being referred to as
the acceptor, and leaves the conjugated polymer with a positive charge on the surface, as
outlined and illustrated in Scheme 4. Due to the abundant π-excessive characteristic of
conjugated polymers, numerous oxidizing agents have found ease and effectiveness in
removing electrons from the conjugated polymer backbone. The list of the common p-type
dopants classified according to the chemical nature such as organic, inorganic, and poly-
meric is tabulated in Table 1. Upon p-type doping, positively charged conjugated polymer
chains and a counter anion are induced, resulting in the formation of an ionic complex.
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Table 1. Examples of common p-type dopants of conjugated polymers.

Dopant Name
Conjugated

Polymer-Dopant
System

Conductivity
(S.cm−1)

Dopant Counter
Ion

Chemical
Nature Ref.

Ferric (III) Chloride P3HT-FeCl3 6.3 × 101 Cl− Inorganic [44]
Tartaric acid (TA) Pani-TA 0.2 C4H5O6

− Organic [45]
Chloroauric acid P3HT-HAuCl4 71.7 AuCl4− Inorganic [46]
Oxalic acid (OA) Pani-OA 0.5 C2HO4

− Organic [47]
Perchloric acid Pani-HClO4 4.68 & 2.72 ClO4

− Inorganic [48]
p-Hydroxybenzene sulfonic acid

(HBSA) PPY-HBSA 11.0 HAS− Organic [49]

Arsenic pentafluoride PPV-AsF5 1.0 AsF5
− Inorganic [50]

Poly(2-methyoxyaniline-5-sulfonate)
(PMSH) PPY-PMSH 2.0 PMS− Polymeric [51]

p-Dodecylbenzene sulfonic acid
(DBSA) PPY-DBSA 2.0 DBS− Organic [49]

Poly(styrene sulfonic acid) (PSSA) PEDOT-PSSA 0.1–10.0 PSS− Polymeric [52]
p-Toluene sulfonic acid (TSA) Pani-TSA 1.2 × 10−2 Tosylate Organic [53]

β-Naphthalene sulfonic acid (NSA) PPY-NSA 18.0 NS- Organic [49]

2.2.2. N-Type Doping

N-type doping is a process in which electrons are donated to the LUMO energy level
of the conjugated polymer by utilizing reducing agents. In this case, the reducing agent
donates electrons to the polymer, thereby being referred to as the donor, and leaves the
conjugated polymer with a negative charge on the surface, as outlined and illustrated
in Scheme 4. Upon n-type doping, negatively charged conjugated polymer chains and a
counter cation are induced, resulting in the formation of an ionic complex. As opposed to
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p-type doping, n-type doping requires the use of strong reducing agents (e.g., alkali metals)
since conjugated polymers in nature are already rich in π-electrons in their 2pz orbitals.
As a result, reports on n-type doping of conjugated polymers are narrowed and restricted.
Therefore, the list of the common inorganic n-type dopants is tabulated in Table 2.

Table 2. List of few common n-type dopants of conjugated polymers.

Dopant Name
Conjugated

Polymer-Dopant
System

Conductivity
(S.cm−1)

Dopant
Counter Ion

Chemical
Nature Ref.

Sodium PA-Na 104 Na+ Inorganic [54]
Potassium Polyphenylene-K 103 K+ Inorganic [54]

Lithium Polyphenylene-Li 103 Li+ Inorganic [54]
Lithium

naphthanilide PA-Li naphthanilide 200 Li+ Inorganic [55]

Sodium
naphthanilide

PA-Na
naphthanilide 25 Na+ Inorganic [55]

3. Synthesis Methods and Modifications of π-Conjugated Polymers

Due to the interesting optical and electrical properties exhibited by conjugated poly-
mers, as discussed in Section 1 of this review, the scope of material design as per the
requirement has led to an increase in the development of a variety of techniques for synthe-
sis of conjugated polymers. Generally, the techniques to synthesize conjugated polymers
are of three types: (1) oxidative polymerization, (2) condensation polymerizations, and
(3) metal catalyzed cross coupling.

3.1. Oxidative Polymerizations

Among the numerous synthetic techniques for the construction of conjugated poly-
mers, the most frequently utilized techniques are electrochemical oxidative polymeriza-
tions at electrode surfaces [56] and chemical oxidative polymerizations using oxidizing
agents [57]. For chemical oxidative polymerization, a number of aromatic conjugated
polymers such PTh, PPY, PEDOT, and their derivatives by incorporation of side alkyl
chains such as P3HT using 3-hexyl as the side chain, have been synthesized using oxi-
dizing agents such as FeCl3 and ammonium persulfate, (NH4)2S2O8 [58]. Most recently,
the design of these polymers, through chemical oxidative polymerization, has far ex-
panded and evolved from the known linear PThs and PPYs polymers, using monomers
of these polymers to form either linear copolymers or giant branched macromolecules
towards improving the conventional properties exhibited by the pristine conjugated poly-
mers for the application of interest. For example, Ramoroka et al. [59] prepared a novel
2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) donor poly-
mer through chemical oxidative polymerization using FeCl3 as the oxidant in Chloro-
form. In this study, the repeating units of the monomer 3-hexylthiophene (3HT) grew
out on the surface of 2,3,4,5-tetrathienylthiophene through α–α coupling of the aromatic
thiophene rings between TTT and 3HT, which resulted in the formation of the novel
polymer TTT-co-P3HT that found application in OSCs as a donor. In a similar fashion,
Yonkue et al. [18] decorated poly(propylenethiophenoimine) dendrimer core with pendants
of poly(3,4-ethylenedioxythiophene) that grew from the core, resulting in an electroconduc-
tive conjugated star copolymer, synthesized through chemical oxidative polymerization
using (NH4)2S2O8 as the oxidant in a solvent mixture of chloroform and water. This
poly(propylenethiopheneimine)-co-poly(3,4-ethylenedioxythiophene) (G1PPT-co-PEDOT)
demonstrated improved optical, electrical, and photophysical properties, desirable proper-
ties that may be beneficial for photovoltaics and optoelectronic devices. Baleg et al. [60]
modified poly(propylene imine) dendrimer by polymerizing pyrrole monomer units on the
dendrimer principal core using (NH4)2S2O8 as an oxidizing agent in a solvent mixture of
water and chloroform, which resulted in a conductive star copolymer. Hai et al. [61] modi-
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fied polypropylene (PP) on the surface with P3HT via oxidative chemical polymerization
using FeCl3 dispersed in hexane (see Scheme 5). The successful modification or grafting
was achieved through two synthetic steps: (1) PP was first functionalized with styrene,
yielding polystyrene-graft-polypropylene (Ps-g-PP), and (2) subsequent attachment of
P3HT on the surface of Ps-g-PP through cross-linking of aromatic styrene and 3HT unit,
enabled by the presence of the FeCl3 oxidant. The incorporation of P3HT on modifying PP
resulted in the appearance of absorption peaks in the visible region, designating a formed
overall π-conjugated system, and thus enhancing conductivity.
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In another similar study, Hai et el. [62] modified polypropylene (PP) on the surface with
P3HT via oxidative chemical polymerization using FeCl3 dispersed in hexane; however, this
time, 3-(4-ethenylphenyl)thiophene was grafted in the first step instead of styrene, followed
by cross-linking between 3-(4-ethenylphenyl)thiophene and 3HT through α–α coupling,
resulting in P3HT-g-PP. Wang et al. [63] fabricated a conjugated conductive system by coat-
ing PEDOT layers on the surface of polypropylene-graft-poly(acrylic acid)(PP-g-PAA) for
gas sensing, through in-situ oxidative polymerization using FeCl3. Moreover, Hai et al. [64]
synthesized unmodified linear polymer chains of P3HT oxidatively using FeCl3 in various
solvents, investigating the effect of molar ratio of oxidizer/3-hexylthiophene monomer.
In addition, it was discovered that a high molecular weight polymer is easily obtained
reliably in hexane and ethanol-free chloroform using a blend ratio that is less than 1 of the
FeCl3/3HT oxidative polymerization [64]. Generally, it is reported that chemical oxidation
polymerization using FeCl3 as the oxidant, usually produces excellent yields and high
molecular weight polymers [65]. Research work undertaken on the chemical polymeriza-
tion is summarized in Table 3. The polymerization mechanism for the formation of pyrrole
and thiophene polymers is well-documented [66]. Scheme 6 illustrates the mechanism
of thiophene-pyrrole oxidative polymerization. The mechanism involves the formation
of monomer radical cation (step 1) because of oxidation induced by the introduction of
the oxidant (FeCl3). Once oxidation has occurred, two radical cations combine via α–α
coupling (step 2), followed by the formation of conjugation by deprotonation (step 3). From
this point, polymerization continues from n-mer to (n + 1)-mer (step 4) until the undoped
or doped state (step 5).
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On the other hand, in electrochemical oxidative polymerization, the conjugated poly-
mer is prepared by a direct deposition of the polymer film on the surface of an electrode
from a monomer solution that contains an electrolyte, using electrochemical techniques
such as cyclic voltammetry [67]. An example is illustrated in Scheme 7, where Ma et al. [68]
electrochemically synthesized PEDOT grafted with hyperbranched polyglycerol on the
surface of a bare glassy carbon electrode (GCE). In contrast to chemical oxidative polymer-
ization where a chemical oxidizing agent is used, an applied potential that is higher than
the oxidation potential of the respective monomer to be polymerized, is required in the case
of electrochemical oxidative polymerization in order to initiate polymerization. Therefore,
this implies that, the electrochemical oxidative polymerization mechanism is identical to
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the chemical oxidative polymerization mechanism depicted in Scheme 6, except that an
applied potential is used as the initiator instead of the FeCl3 oxidant.

Table 3. Examples of conjugated polymers produced by oxidative polymerization.

Monomer Conjugated Polymer
System

Polymerization Reaction
System/Content

Oxidative
Polymerization

Type
Application Ref.

3-hexylthiophene
(3HT)

2,3,4,5-
tetrathienylthiophene-

co-poly(3-
hexylthiophene-2,5-diyl)

(TTT-co-P3HT)

Palladium –catalysed
synthesis of TTT, followed
by polymerization of 3HT

using FeCl3 in CHCl3

Chemical OSC [59]

3,4-
ethylenedioxythiophene

(EDOT)

G1Poly(propylene
thiophenoimine)-co-

poly(3,4-
ethylenedioxythiophene)

Star copolymer
(G1PPT-co-PEDOT)

Schiff base condensation of
G1PPT, followed by

polymerization using
(NH4)2S2O8 in H2O and

CHCl3

Chemical
Potential

application on
OSC

[18]

Pyrrole (Py)

G1Poly(propylene
imine)-co-Polypyrrole

star copolymer
(G1PPI-co-PPY)

Schiff base condensation of
G1PPI-2Py, followed by
polymerization using
(NH4)2S2O8 in H2O

and CHCl3

Chemical

Potential
application in
sensors, and
membranes

[60]

3-hexylthiophene
(3HT)

Poly(3-hexylthiophene)-
graft-polypropylene

(P3HT-g-PP)

Grafting of PS on the
surface of PP, followed by

polymerization using FeCl3
in hexane

Chemical Not mentioned [61]

3-hexylthiophene
(3HT)

Poly(3-hexylthiophene)-
graft-polypropylene

(P3HT-g-PP)

Grafting of PEPT on the
surface of PP, followed by

polymerization using FeCl3
in hexane

Chemical Not mentioned [62]

3,4-
ethylenedioxythiophene

(EDOT)

Polypropylene-graft-
poly(acrylic

acid)/poly(3,4-
ethylenedioxythiophene)

(PP-g-PAA/PEDOT)

Photo- induced graft
polymerization of AA from
PP fiber surfaces, followed
by polymerization using

FeCl3 in ethanol

Chemical Gas sensing [63]

3-hexylthiophene
(3HT)

Poly(3-hexylthiophene)
(P3HT)

Ultrasound treatment of
FeCl3/hexane mixture,

followed by introduction of
3HT and magnetic stirring

Chemical Not mentioned [64]

3,4-
ethylenedioxythiophene-

methanol
(EDOT-HPG)

Hyperbranched
polyglycerol-grafted-

poly(3,4-
ethylenedioxythiophene)

(PEDOT-g-HPG)

Anionic ring opening
reaction on glycidol on the
PEDOT-MeoH, followed by
deposition of EDOT-HPG
on a bare GCE electrode

from an aqueous solution
containing 100 mM LiClO4

and 60 mM EDOT-HPG

Electrochemical

Protein
detection in

complex
biological

media

[68]

3,3-
bis(cyclohexylmethyl)-
3,4-dihydro-2H-thieno

[3,4-b][1,4] dioxepin
(ProDOT-CycHex2)

Poly(3,3-
Bis(cyclohexylmethyl)-
3,4-Dihydro-2H-Thieno

[3,4-b][1,4] Dioxepin)
(P22ProDOT-CycHex2)

electrolytic solution of 0.1 M
tetrabutylammonium
hexaflourophosphate
(TBAH) dissolved in a
mixture of acetonitrile

(ACN) and
dichloromethane (DCM)

Electrochemical
Candidate for
electrochromic

devices
[69]
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Table 3. Cont.

Monomer Conjugated Polymer
System

Polymerization Reaction
System/Content

Oxidative
Polymerization

Type
Application Ref.

5-(2-ethylhexyl)-1,3-
di(thiophen-2-yl)-4H-

thieno [3,4-c]
pyrrole-4,6(5H)-dione

(TTPT)

Poly(5-(2-ethylhexyl)-
1,3-di(thiophen-2-yl)-

4H-thieno [3,4-c]
pyrrole-4,6(5H)-dione)

(TTPT)

surface of a platinum
electrode in an electrolytic

solution of 0.1 M TBAH in a
solvent mixture of ACN

and DCM

Electrochemical
Candidate for
Optoelectronic

devices
[70]

Pyrrole (Py)

G2poly(propylene
imine)-co-polypyrrole

star copolymer
(G2PPI-co-PPY)

Surface of a platium
electrode in electrolytic

aqueous solution
n of 0.1 M LiClO4
containing pyrrole

monomer and pyrrole-
functionalized dendrimer

Electrochemical Not mentioned [71]

3,4-
ethylenedioxythiophene

(EDOT)

G1Poly(propylene
thiophenoimine)-co-

polythiophene
(G1PPT-co-PEDOT)

Surface of gold (Au)
electrode in an aqueous

electrolytic solution
consisting 0.1 M LiClO4 and

sodium dodecyl sulphate

Electrochemical aptamer
biosensor [72]

3-hexylthiophene
(3HT)

G3Poly(propylene
thiophenoimine)-co-

poly(3-hexylthiophene)

Surface of Au electrode in
an electrolytic solution of 0.1
M Bu4NClO4 dissolved in

ACN containing
3HT monomer

Electrochemical Phenanthrene
sensor [73]Polymers 2022, 14, x  13 of 38 
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Numerous varieties of linear and branched conjugated polymers have been exten-
sively and successfully synthesized using this route. For example, Cakal et al. [69]
prepared an analogue of disubstituted 3,4-propylenedioxythiophenes, namely poly(3,3-
bis(cyclohexylmethyl)-3,4-dihydro-2H-thione [3,4-b][1,4] dioxepin) (P22ProDOT-CycHex2),
which was carried out in an electrolytic solution of 0.1 M tetrabutylammonium hex-
aflourophosphate (TBAH) dissolved in a mixture of acetonitrile (ACN) and dichloromethane
(DCM). This polymer exhibited a faster response time (0.7 s) and a higher coloration effi-
ciency (769 cm2/C) during oxidation, which showed a potential towards application in
electrochromic devices. In a similar approach, another study, Cakal et al. [70] converted 5-(2-
ethylhexyl)-1,3-di(thiophen-2-yl)-4H-thieno [3,4-c] pyrrole-4,6(5H)-dione (TTPT) monomer
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to its corresponding polymer PTTPT, carried out on the surface of a platinum electrode
in an electrolytic solution of 0.1 M TBAH in a solvent mixture of acetonitrile (CAN) and
dichloromethane (DCM). Baleg et al. [71] modified a bare platinum electrode by electro-
chemical attachment of generation 2 poly(propylene imine)-co-polypyrrole conducting
dendrimeric star copolymer (G2PPI-co-PPY) using an electrolytic aqueous solution of 0.1 M
LiClO4 containing pyrrole monomer and pyrrole-functionalized dendrimer (G2PPI-2Py).
This conjugated dendrimeric star copolymer revealed relatively high ionic conductivity
compared to linear PPY, facilitated by freely flowing charge between the holes generated
by the arms of PPY on the surface of G2PPI-2Py. In another example, Olowu et al. [72]
developed and fabricated an aptamer biosensor using an electrochemically synthesized con-
jugated system of generation 1 poly(propylene thiophenoimine)-co-polythiophene (G1PPT-
co-PEDOT) dendritic star copolymer modified in bare gold (Au) electrode in an aqueous
electrolytic solution consisting of 0.1 M LiClO4 and sodium dodecyl sulphate. More-
over, Makelane et al. [73] followed a similar approach and fabricated a phenanthrene
sensor using a conjugated system of generation 3 poly(propylene thiophenoimine)-co-
poly(3-hexylthiophene) (G3PPT-co-P3HT) star copolymer modified on Au electrode in an
electrolytic solution of 0.1 M Bu4NClO4 dissolved in ACN containing 3HT monomer.

3.2. Metal-Catalyzed Cross-Coupling Reactions

Among the numerous varieties of synthetic techniques for organic compounds and
conjugated polymers, cross-coupling reactions stand amongst the most important in chem-
istry. These reactions are a highly valuable powerful tool employed to prepare a diverse
variety of organic compounds, from synthetic and natural bioactive compounds to new
organic compounds and conjugated polymers, in all fields of chemistry [74]. These are
reactions involving the reaction between an organometallic reagent (Ar1–M) with an un-
saturated organic halide (Ar2–X) or pseudohalide using transition metal complexes, such
as palladium and nickel as catalysts for C(sp2)–C(sp2) hybridized bond formation [74–77].
The well-known, mostly used, and recognized cross-coupling polymerization methods are
the Suzuki–Miyaura, Stille, and Kumada using nucleophilic reagents such as organoboron,
organotin, and aryl Grignard reagents, respectively. In contrast to polymers formed by
oxidative polymerizations, the conjugated polymers formed using cross-coupling reactions
are in their undoped neutral state.

3.2.1. Suzuki–Miyaura Cross-Coupling Reaction

Amongst the cross-coupling reactions, the Suzuki–Miyaura has become the most
extensively applied and versatile transition metal catalyzing technique for the construc-
tion of a variety of conjugated polymers and organic compounds through the formation
of C(sp2)–C(sp2) bonds [78,79]. This reaction involves coupling between aryl boronate
species (eg. Arly boronic acid and aryl boronate esters) with an aryl halide in the presence
of palladium, Pd (0), as a catalyst, and base for the activation of the boron compound
(Scheme 8) [80–82]. The success and versatility of this reaction is owing to the commercial
availability of boronic acids, which are non-toxic and environmentally friendly, compared
to organostannane and organozinc reagents employed in Stille and Negishi coupling [83].
In addition, the reaction has a high degree of functional group tolerance, works under
relatively mild conditions, and the reagents used can be easily prepared and are cheap [83].
As such, the Suzuki–Miyaura cross coupling has found utility in synthesizing substituted
conjugated biphenyls, poly-olefins, styrenes, and in large scale industrial applications.
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Since the discovery and inception of the Suzuki–Miyaura concept, in 1979, where
Miyaura et al. [84], demonstrated that the conjugated (E)-dienes or (E)-enyes with high
regio- and stereo-specificity in good yields are obtainable via hydroboration of 1-alkynes react-
ing with 1-alkenyl halides or alkynyl halides in the presence of tetrakis(triphenylphosphine)
palladium and base, a number of conjugated polymers have been prepared, now referred
to as Suzuki Polycondensation (SPC). SPC is a step-growth polymerization technique, a
derivative of the Suzuki–Miyaura reaction, in which a continuous sequence of Suzuki
couplings occur between the monomers, and subsequently form a polymer. SPC is divided
into two approaches: (1) AA/BB approach-two monomers are used as the starting reagents,
in which the first monomer is substituted with two boronic acid functional groups and the
second monomer is carrying two halides, to form an alternating copolymer [85]; (2) AB
approach- uses one monomer substituted with both a boronic acid and halide in order to
form a homo-polymer [83]. The AA/BB approach is of the utmost significance in altering
the properties exhibited by pristine conjugated polymers through preparation of alter-
nating donor-acceptor copolymers that are extensively applied in optoelectronic devices.
For example, Lee et al. [86] synthesized a benzothiadiazole- based conjugated copolymer
by reacting 4,7-dibromobenzo[c]-1,2,5-thiadiazone with 1,3,5-phenyltriboronic acid in the
presence of tetrakis(triphenyl phosphine) palladium (0) catalyst and potassium carbonate
as base in dimethyl formamide (DMF). The authors investigated the catalytic properties of
the benzothiadiazole copolymer and concluded that it can be applied in water treatment
and organic synthesis reactions using sunlight as an energy injection source. Moreover, the
copolymer exhibited enhanced and broadened visible light absorption, which is a desirable
property for conjugated polymers applied in OSCs. Murad et al. [87] prepared four alternat-
ing donor-acceptor copolymers (Scheme 9), PFDTBTDI-DMO, PDBSDTBTDI-8, PFDTBTDI-
8, and PDBSDTBTDI-DMO for photovoltaic application through Suzuki polymerization by
reacting bis-borate esters with dibromides, performed using Pd(OAc)2/P(o-tol)2 catalyst
and NaHCO3 in anhydrous THF. Low-lying HOMO energy levels of about −5.59 eV were
realized when using these polymers as electron-donating materials, which are beneficial for
the chemical stability of the polymers in oxygen and should subsequently lead to higher
open-circuit voltage (Voc) values, thus improving the OSC performance.
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In another study, Vazquez-Guillo et al. [88] prepared conjugated aniline-fluorene
alternate copolymers through microwave-assisted Suzuki polymerization. Briefly, the
copolymer poly[1,4-(2/3-aminobenzene)-co-alt-2,7-(9,9′-dehexylfluorene)] (PAF) as a molec-
ular model with solvent sensing property was realized by mixing 2,5-dibromoaniline and
9,9-dihexylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester in the presence of Pd(0)
and potassium carbonate as base dissolved in a solvent mixture of THF/H2O placed in
the microwave. By this method, the products were acquired in shorter periods as com-
pared to traditional synthetic methods, which gave average yields and moderate molecular
weight copolymers. The authors envisaged that these copolymers could find applications
in sensing.

The general mechanism of Suzuki–Miyaura follows a catalytic cycle that is similar
to the other metal-catalyzed cross coupling reactions, involving three primary steps, in a
sequential manner, namely: (1) oxidative addition, (2) transmetalation and (3) reductive
elimination. However, reports have shown that the transmetalation step or the activation
of boron reagent makes Suzuki–Miyaura coupling different from the other metal-catalyzed
cross coupling processes [81]. This is because, in the Suzuki–Miyaura coupling transmeta-
lation step, sodium hydroxide or potassium carbonate as the base is required [89]. In the
mechanism (Scheme 10), the first step involves the oxidation of the palladium catalyst from
LnPd(0) to LnPd(II) through the coupling of aryl halide (Ar1X) with the palladium catalyst
(LnPd(O)) to form an organopalladium complex Ar1LnPd(II)X, where the Ar1-X bond is
broken and the palladium sandwiches itself in between the Ar1 and X. This step is often
deemed as the rate determining step. The second step is the transmetalation step, where
an organometallic reaction takes place and a ligand transfer occurs from the incoming
organoboron specimen (Ar2-By3

−) to the oxidized palladium complex (Ar1LnPd(II)X). In
this step, a base is required to react with the organoboron specimen, creating a negative
charge boronic species, which is highly nucleophilic and ready to undertake ligand transfer
with the palladium complex (metathetic exchange), forming another palladium complex,
Ar1LnPd(II)Ar2. The reductive elimination is the final step in the catalytic cycle, where the
Ar1LnPd(II)Ar2 palladium complex proceeds to eliminate the required product (Ar1-Ar2)
and is converted back into Pd(0).
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3.2.2. Stille Cross-Coupling Reaction

Similar to the Suzuki–Miyaura cross coupling, the Stille cross coupling has also found
extensive application and versatility in transition metal-catalyzed reactions for the construc-
tion of a variety of conjugated polymers and organic compounds through the formation of
C(sp2)–C(sp2) bonds [90]. This reaction involves coupling between aryl stanners species
with organic electrophiles such as aryl halide in the presence of palladium, Pd (0), as a
catalyst (Scheme 11) [91,92]. The success and widespread use of this reaction is attributed
to the mild reagents of organotin, which are well matched with a diverse number of func-
tional groups [93,94]. Moreover, organostanners are insensitive to moisture and oxygen,
allowing stille reactions to be undemanding and performed under relatively neutral con-
ditions [93,94]. As good as this reaction is, the drawback lies with the contamination and
toxic waste products as a result of the use of organotin compounds such as Bu3SnR [95–97].
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Since the discovery of the Stille coupling concept after the efforts made by Migita et al. [98],
in 1978, where Still et al. [99], demonstrated the coupling of a variety of alkyl tin reagents
with numerous acyl and aryl halides under mild conditions with much improved better
yields in the presence of a palladium catalyst, a number of conjugated polymers have
been prepared, now referred to as Stille polycondensation (SP). Much as Suzuki polycon-
densation, the Stille polycondensation is a step-growth polymerization procedure, where
electron-rich distannane monomers are reacted with electron-deficient organodihalide
reagents in the presence of palladium catalyst. This reaction is known to produce high
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molecular weight polymers with excellent yields, and as a result, SP has been extensively
applied in the construction of various π-conjugated polymers [100–102], which has led to
advanced technologies for different applications such as polymer solar cells [103], poly-
mer light-emitting diodes [104], and polymer field-effect transistors [105]. For example,
Hanif et al. [106] prepared two conjugated polymers, P1 and P2, by employing the Stille poly-
condensation (Scheme 12), reacting 2,7-dibromo-9,9-didodecylfluorene and 1,4-dibromo-
2,5-bis(dodecyloxy) benzene with 5,5”-bis(trimethylstannyl)-2,2′-:5′-2”-terthiophene in the
presence of Pd catalyst for photovoltaic application. The polymers exhibited good higher
molecular weight, good stability, well defined UV-Vis, and lower band gaps as required in
PV applications.

Polymers 2022, 14, x  17 of 38 
 

attributed to the mild reagents of organotin, which are well matched with a diverse num-
ber of functional groups [93,94]. Moreover, organostanners are insensitive to moisture and 
oxygen, allowing stille reactions to be undemanding and performed under relatively neu-
tral conditions [93,94]. As good as this reaction is, the drawback lies with the contamina-
tion and toxic waste products as a result of the use of organotin compounds such as 
Bu3SnR [95–97]. 

 
Scheme 11. General Stille cross-coupling reaction. 

Since the discovery of the Stille coupling concept after the efforts made by Migita et 
al. [98], in 1978, where Still et al. [99], demonstrated the coupling of a variety of alkyl tin 
reagents with numerous acyl and aryl halides under mild conditions with much improved 
better yields in the presence of a palladium catalyst, a number of conjugated polymers 
have been prepared, now referred to as Stille polycondensation (SP). Much as Suzuki pol-
ycondensation, the Stille polycondensation is a step-growth polymerization procedure, 
where electron-rich distannane monomers are reacted with electron-deficient or-
ganodihalide reagents in the presence of palladium catalyst. This reaction is known to 
produce high molecular weight polymers with excellent yields, and as a result, SP has 
been extensively applied in the construction of various 𝜋-conjugated polymers [100–102], 
which has led to advanced technologies for different applications such as polymer solar 
cells [103], polymer light-emitting diodes [104], and polymer field-effect transistors [105]. 
For example, Hanif et al. [106] prepared two conjugated polymers, P1 and P2, by employ-
ing the Stille polycondensation (Scheme 12), reacting 2,7-dibromo-9,9-didodecylfluorene 
and 1,4-dibromo-2,5-bis(dodecyloxy) benzene with 5,5”-bis(trimethylstannyl)-2,2′-:5′-2”-
terthiophene in the presence of Pd catalyst for photovoltaic application. The polymers ex-
hibited good higher molecular weight, good stability, well defined UV-Vis, and lower 
band gaps as required in PV applications. 

 
Scheme 12. Synthesis of P1 and P2 using Stille polycondensation reaction. Reproduced with per-
mission from reference [106], copyright (2015), John Wiley and Sons. 

Yin et al. [107] synthesized a series of boron-containing conjugated polymers, PB2T and 
PFB2T, with boron atoms incorporated into the conjugated polythiophene main chain via 

Scheme 12. Synthesis of P1 and P2 using Stille polycondensation reaction. Reproduced with permis-
sion from reference [106], copyright (2015), John Wiley and Sons.

Yin et al. [107] synthesized a series of boron-containing conjugated polymers, PB2T
and PFB2T, with boron atoms incorporated into the conjugated polythiophene main chain
via Pd-catalyzed coupling of stannylated thienylborane monomers. The authors stressed
that these boron-containing conjugated polymers call for a broad adaptation in the devel-
opment of novel optoelectronic materials, as rendered by the excellent long-term chemical
stability to moisture and air, facile tunability, and the excellent fluorescence properties.
Kim et al. [108] prepared a benzodithiophene-based donor-acceptor polymer (PTB7) via
Stille polymerization using both thermal and microwave as a comparative study for solar
cell application. In this study, it was found that the microwave assisted Stille polymer-
ization of PTB7 gave higher molecular weight polymer compared to thermal heating;
however, the power conversion efficiency of the resultant solar cell was lower than that of
thermal PTB7. This was believed to be due to structural defects generated by microwave,
which consequently resulted in the decrease of the short-circuit current density (Jsc) and fill
factor (FF).

The general mechanism of Stille cross coupling (Scheme 13) is similar to that of Suzuki–
Miyaura, which follows a catalytic cycle involving three primary steps, in a sequential
manner, namely: (1) oxidative addition (2) transmetalation and (3) reductive elimination.

In the mechanism, the first step involves the oxidation of the palladium catalyst from
LnPd(0) to LnPd(II) through the coupling of aryl halide (Ar1X) with the palladium catalyst
(LnPd(0)) to form an organopalladium complex Ar1LnPd(II)X, where the Ar1-X bond is
broken and the palladium sandwiches itself in between the Ar1 and X. This step is often
deemed as the rate determining step. The second step is the transmetalation step, where
an organometallic reaction takes place and a ligand transfer occurs from the incoming
organotin specimen (Ar2-Sn(alkyl)3) to the oxidized palladium complex (Ar1LnPd(II)X).
The reductive elimination is the final step in the catalytic cycle, where the Ar1LnPd(II)Ar2

palladium complex proceeds to eliminate the required product (Ar1-Ar2) and is converted
back into Pd(0).
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3.2.3. Kumada Cross Coupling

In addition to Suzuki and Stille cross couplings, Kumada–Corriu coupling has also
been widely used as a synthetic technique for the construction of conjugated polymers and
other organic compounds through the formation of C(sp2)-C(sp2) bonds [109]. This type of
reaction involves the coupling between Grignard reagents and aryl halides, facilitated by
nickel complexes as catalysts [109] (Scheme 14). Its wide range of practical applicability
is owing to reasons such as simple procedures, high yields, mild reaction conditions,
and the high purity of the coupling products obtained [110]. In addition, because of
the use of Grignard reagents, which are highly reactive, the coupling has very limited
functional group tolerance. As such, Kumada coupling has been employed in the synthesis
of polyalkylthiophenes which are useful in organic electronic devices, and large-scale
industrial production of aliskiren, a hypertension medication.
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which involved selective cross coupling between a Grignard reagent and an aryl halide
catalyzed by a nickel-phosphine complex, which has produced high product yields—the
coupling method gained wide spread attention for preparation of conjugated polymers
that have a variety of potential applications in organic solar cells and light-emitting diodes.
In 1992, McCullough and Lowe et al. [112] synthesized the first series of regioselective
poly(3-alkylthiophenes) (Scheme 15) from 2-bromo-3-alkylthiophenes through the use of a
nickel-catalyzed cross-coupling reaction, which produced yields of between 20–60% and
exhibited high electrical conductivities, desirable for applications in opto-electronic devices.
Since this initial preparation, the synthesis has been modified to obtain high yields and
large numbers of conjugated polymers to find applications in organic electronic devices.
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For example, Xie et al. [113], prepared two regioregular polythiophene derivatives for
application in organic solar cells, P3SHT and PTST with incorporation of thioalkyl chains,
through Kumada catalyst-transfer polycondensation (KCTP). In comparison to the tradition-
ally used P3HT polymer with hexyl chains, P3SHT and PTST exhibited stronger absorption
and downshifted energy levels, which are properties desirable for OSCs. Lee et al. [114]
prepared a conjugated block copolymer (P3HT-b-PFTBT) to be used as an active-layer
material in OSC, through a combination of Kumada catalyst transfer/Grignard metathesis
and Suzuki polycondensation. The block copolymer formation proceeded through two
synthetic steps: (1) synthesis of P3HT using Kumada coupling (2) followed by the addition
of PFTBT on P3HT as an extension using Suzuki polycondensation. The resultant block
copolymer demonstrated enhanced microphase separation, minimal homopolymer impuri-
ties, and higher power conversion solar cell efficiencies when used as the active layer in
the devices.

Similar to the Suzuki and Stille cross couplings, the Kumada coupling mechanism
(Scheme 16) follows a catalytic cycle involving three fundamental steps, namely: (1) oxida-
tive addition (2) transmetalation and (3) reductive elimination.

In the mechanism, the first step involves the oxidation of the active nickel catalyst
from LnNi(0) to LnNi(II) through the coupling of aryl halide (Ar1X) with the nickel catalyst
(LnNi(0)) to form an organonickel complex Ar1LnNi(II)X, where the Ar1-X bond is broken
and the nickel sandwiches itself in between the Ar1 and X. The second step is the transmet-
alation step, where an organometallic reaction takes place and a ligand transfer occurs from
the incoming Grignard reagent (Ar2MgX) to the oxidized nickel complex (Ar1LnNi(II)X)
to generate a diarly nickel (II) complex. The reductive elimination is the final step in the
catalytic cycle, where the Ar1LnNi(II)Ar2 nickel complex proceeds to eliminate the required
product (Ar1-Ar2) and is converted back into Ni(0).
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4. π-Conjugated Polymers in Solar Cell Applications

π-Conjugated polymers have gained increased scientific attention due to their low
production cost, lessened complexity in the fabrication processes, and flexibility. In addition,
the increased attention is also owing to their superior advantages such as the ability to tailor
their electrical and optical properties by use of structural modifications, ease of synthesis,
and ease of processability [19]. Therefore, these advantageous properties have rendered
extensive usage of the polymers in the broad scope of solar cell technology as compared to
inorganic materials. They have found extensive use in organic solar cells, perovskite solar
cells, dye-sensitized solar cells, and silicon solar cells.

4.1. General Working Principle of Solar Cells and Their Characteristics

A French scientist, Edmund Becquerel, first discovered the photovoltaic phenomenon
in 1839 using an electrolytic cell, where he observed that exposing certain materials to visible
light could create a weak electrical current [3,115]. It was noted that, for the phenomenon
of photovoltaic to be effective and operate efficiently, the semiconducting material must
be able to absorb a sufficient quantity of incident photons, which generate and promote
electrons to higher energy levels (conduction band, CB), and carry an electrical field that
increases the rate in which the excited electrons are transported in one specific direction,
causing an induced electrical current [3,115]. Since then, the general working mechanism
has been well studied and understood. The mechanism is believed to proceed through five
operational steps (Figure 2) as follows:

• Generation of excitons due to absorption of sufficient number of photons by the
semiconductor or absorbing materials that form a p-n junction;

• Diffusion of the generated excitons to the active interface of the p-n junction;
• Subsequent separation or dissociation of the photo-generated excitons into electrons

and holes, referred to as charge carriers, at the junction;
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• Transportation of the charge carriers using appropriate hole and electron transporting
materials, commonly known as HTLs and ETLs;

• Lastly, collection of the charge carriers at the terminals of the junction, by anodic and
cathodic electrodes, thereby resulting in electrical energy creation and flow.
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Figure 2. General operating principle of a photovoltaic cell. The entire process is outlined as follows:
(a) photon absorption generates excitons, (b) excitons diffuse to the heterojunction, (c) excitons
dissociate into charge carriers, and (d) carriers are transported to the electrodes for collection. The
diagrams also depict other loss mechanisms as follows: (1) non-absorbed photons, (2) exciton decays,
(3) geminate recombination of the bound pair and (4) bimolecular recombination. Reproduced with
permission from reference [116], copyright (2013), Elsevier.

A generalized conventional and inverted working solar cell structure of a device is
depicted in Figure 3. As seen, it consists of several layers for different functions, namely
TCO, HTL, absorber, ETL, and a metal. The TCO is a transparent conducting oxide, such as
fluorene-doped tin oxide (FTO) and indium tin oxide (ITO), used as an anti-reflective coater
(ARC) as well as the conducting anodic electrode on the front side of the cell. Usually, very
thin films of these TCO layers of between 70–150 nm in silicon-based solar cells are required
as to allow more transmission of light to the absorbing material and minimize optical losses.
Studies conducted have shown transmittances of more than 90–95% with minimal sheet
resistances and smooth surface morphologies when the TCO layer, particularly ITO, is
between 80–150 nm [117–119]. Metallization of Au, Al, or Ag as metal contacts occur at
the rear/back side of the cell. Studies conducted by Gwamuri et al. [120] have shown that
an ITO thickness of 50 nm has transmittance of around 80% with higher sheet resistance
values, not satisfactory for solar cell applications. Therefore, this affirms the threshold
minimum of 70 nm in order to find a balance between transmittance, sheet resistivity, and
smooth morphologies.

The important parameters associated with determining and elucidating the perfor-
mance of a solar cell are the fill factor (FF), open-circuit voltage (Voc), the short-circuit
current density (Jsc), and the power conversion efficiency (PCE). The typical current-voltage
(I-V) curve is presented in Figure 4. The FF is defined as the ratio between the cell’s maxi-
mum power (Pm) and the product of the Voc and Jsc (Voc × Jsc). Under illumination, the
Voc is characterized as the potential difference between the cell’s terminals at zero current
flow through the terminals. Jsc is the current produced by the cell under illumination when
there is no other source of potential or external potential. The PCE is the ratio of the solar
cell’s overall output power to the incident radiant power.
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4.2. Conjugated Polymers as Emitters/HTLs in Organic-Silicon Hybrid Heterojunction Solar Cells

Hybrid heterojunction solar cells (SHJ) based on crystalline silicon substrates (c-Si) are
drawing increased recognition owing to their diverse technological advantages [122]. The
attention gained is owing to the use of hydrogenated amorphous silicon (a-Si:H), which can
be deposited as either p-or n-type and intrinsic using plasma enhanced chemical vapour
deposition (PECVD), leading to SHJ solar efficiency of 24.7% for rear or front contact
structure and 25.5% for interdigitated rear contact architecture [123–125]. P-type a-Si:H is
often used at the emitter region in a front contact structure working as both the emitter layer
and HTL. As impressive as these SHJs are, their practical use is limited by the complexity
in fabrication processes, high deposition temperatures of (p)-a-Si:H, and the expenses of
the state-of-the-art PECVD method, which increases costs [126]. Additionally, the well-
known absorption inability of blue light by a-Si:H on the front side [7,126,127] and the
large resistivity at the ITO/a-Si:H interface which results in electrical losses [128], hinders
the development of SHJs incorporating (p)-a-Si:H. Ideally, a very thin emitter layer should
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have low light absorption, low resistivity, and high conductivity. Alternatives such as using
p-doped microcrystalline silicon thin-film emitter (p-(µc-Si:H) [129] and p-type silicon
carbon (p-(a-SiC:H) emitter layer [126] in place of (p) a-Si:H have been developed but still
lack the cutting edge due to the deposition of the layers using the complex and expensive
PECVD technique. Therefore, looking for an efficient HTL or emitter is imperative and
significant in electron-hole separation, transmission of light, and ultimately the excellent
performance of the device.

In order to lower the manufacturing cost of conventional silicon heterojunction solar
cells, hybrid solar cells based on the blend of silicon semiconductors and organic materials
are presently under investigation for future alternative photovoltaic devices due to their
easy fabrication processes and low production costs [130,131]. Therefore, the use of con-
jugated conductive polymers offers an advanced feasible and delicate approach because
of the likelihood of employing cost-effective and low temperature deposition techniques
such as spin coating [132], ink-jet printing [133] and spray-pyrolysis [134]. Moreover, the
presence of the semiconductor impedes the head-on attachment between the silicon base
semiconductor and the metal anode, thereby decreasing carrier recombination at the front
due to the charge carrier-blocking characteristics of the polymeric material as compared
to the conventional approach [135,136]. Generally, a transparent conductive conjugated
polymer is utilized as the emitter or HTL for lowering the fabrication cost without com-
promising the performance of the solar cells. In this regard, amongst the many p-type
conjugated polymers, PEDOT:PSS has found more application as HTL layer in hybrid
organic-silicon heterojunction solar cells. This is due to its good film forming properties, ex-
cellent transparency, low processing temperature, and high work function (~5.2 eV), which
render it an effective HTL [137–139]. Therefore, the conjugated polymer is used to replace
the (p) a-Si:H layer in the a-Si/c-Si heterostructure solar cell. For this technology, various
forms of structured and planar silicon substrates (poly-Si, c-Si, Si, and µc-Si nanostructures
in different sizes) are used as absorber materials. Uma et al. [140] fabricated the device
with ITO/PEDOT:PSS-GO/SiNWs/(n) c-Si/Ti/Ag architecture and obtained an efficiency
of 9.57%. The performance of the device was owing to the incorporation of 30% graphene
oxide (GO) to form a blend mixture of PEDOT:PSS-GO, promoting high hole mobility to the
ITO before carriers could recombine. Mahato et al. [141] obtained an improved efficiency
of 11% by fabricating the solar cell structure of Ag/PEDOT:PSS-5% DMSO/(i) a-Si:H/(n)
c-Si/(i) a-Si:H/(n+) a-Si:H/a-SiC:H/Ti/Al. The improved efficiency was ascribed to the fast
hole mobility of the PEDOT:PSS-DMSO blend and the surface passivation using intrinsic
hydrogenated amorphous silicon ((i)a-Si:H) at the PEDOT:PSS/(n) c-Si interface and (n)
c-Si/(n+) a-Si:H interface, thereby reducing carrier recombination. Thiyagu et al. [142]
obtained a 12% efficiency with a hierarchical surface composed of silicon nanoholes (SNHs)
and micro-desert textures. The hierarchical surface provided excellent light harvesting due
to internal multiple reflections. The morphology of the Si surfaces or Si nanostructures have
a direct impact on the performance of the solar cells. These morphologies can be controlled
by etching masks and deposition times in order to realize higher efficiencies. He et al. [143]
fabricated a conventional Si/PEDOT:PSS structure on a textured-Si with pyramids. The
problem associated with this approach is that the Si-pyramids cannot be fully coated by
the PEDOT:PSS, leading to poor contact properties and inferior Voc. This problem was
avoided by spin-coating a water-insoluble phthalic acid ester having a low viscosity on
the PEDOT:PSS side of the cell, which improved the tensile stress of the PEDOT:PSS to
have tight contact and full coverage with textured-Si. This led to the cell producing an
efficiency of 16.2%. Ding et al. [144] constructed hybrid organic/inorganic solar cells based
on a blend of silicon nanocrystals (NCs) and conjugated polymers and carefully optimized
the devices through tuning the surface termination of Si NCs and selecting an appropriate
conjugated polymer with a narrow band gap. Devices constructed with Si NCs terminated
with chlorine exhibited reduced performance due to excessive carriers as a result of the
high electronegativity of the halogen at the surface, which polarizes the electron density
away from the Si NC core. The devices showed an improved in performance from 0.52% to
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2.25% in PCE when Si NCs were terminated with hydrogen by treatment with HF vapor
and using PTB7 as the conjugated polymer with narrow band gap as opposed to P3HT.
The increased performance was attributed to the reduction in excessive carriers and the
ability of PTB7 to harness light over a wider range than P3HT. The different morphologies
of the Si substrates and Si nanostructures with PEDOT:PSS interactions are illustrated in
Figure 5 and the typical fabrication process of the hybrid organic-silicon heterojunction is
schematically depicted in Figure 6.
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Figure 5. Comparisons of the cross-sectional area SEM images of the different morphologies of
Si/PEDOT:PSS films. (a) Silicon nanowires (SiNWs) prepared by chemical etching with different
etching time [145], (b) Silicon nanoholes (SiNHs) with micro-deserted structures (Reproduced with
permission from reference [142], copyright (2014), Royal Society of Chemistry), (c) Silicon nanocones
(SiNCs) at different etching times (Reproduced with permission from reference [146], copyright
(2015), Royal Society of Chemistry), (d) Silicon nanopillar arrays (SiNPs) at different etching times
(Reproduced with permission from reference [147], copyright (2012), Royal Society of Chemistry),
and (e) Textured-Si with and without phthalic acid ester (Reproduced with permission from refer-
ence [143], copyright (2017), Wiley & Sons).
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ciency was realized after 1 day using the solar cell structure of Au/MoO3/P3HT/CH3-Mon-
olayer/(n) c-Si/(i) a-Si:H/(n+) a-Si:H/Metal. In order to solve these challenges, inverted back 
contact device structures and thicker metal contacts are recommended as they are more 
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Zielke et al. [154] fabricated an inverted back junction organic-silicon solar cell by 
placing the PEDOT:PSS layer on the rear side instead of the front side which avoided par-
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a hybrid solar cell using a p-type silicon absorber, an excellent passivation electron selec-
tive layer (a-Si:H (i/n) on the front side, and PEDOT:PSS as the HTL on the rear side and 
attained an efficiency of 16.2% with a record breaking Voc of 688 mV. To date, Schdmt et 
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Figure 6. Schematic illustration of the fabrication process of organic-silicon hybrid heterojunction
solar cell. (a) Fabricated Silicon Nanowires (SiNWs), (b) deposited Ti and Ag on the rear side of the
Si wafer as cathode material, (c) Spin-coated PEDOT:PSS on ITO/glass substrate, and (d) immersion
of SiNWs into wet PEDOT:PSS film. Reproduced with permission from reference [141], copyright
(2015), AIP Publishing.

Despite the tremendous progress made by the hybrid cells, the stability of the PE-
DOT:PSS or p-type polymer based solar cell still provides a daunting task due to the
hydrophilic and acid characteristics of the PEDOT:PSS [148,149]. Moreover, reports have
emerged where PEDOT:PSS corrodes substrates, and more particularly ITO [150]. In addi-
tion, the hygroscopic properties of PEDOT:PSS [151], together with the chemical degrada-
tion of metal electrodes [152], results in the degradation of the solar cells. The stability issue
was well demonstrated by Zellmeier et al. [153] where a 50% loss of the initial efficiency was
realized after 1 day using the solar cell structure of Au/MoO3/P3HT/CH3-Monolayer/(n)
c-Si/(i) a-Si:H/(n+) a-Si:H/Metal. In order to solve these challenges, inverted back contact
device structures and thicker metal contacts are recommended as they are more mechani-
cally stable and can successfully prevent photo-oxidation [153].

Zielke et al. [154] fabricated an inverted back junction organic-silicon solar cell by
placing the PEDOT:PSS layer on the rear side instead of the front side which avoided
parasitic light absorption and enabled an improved surface passivation. This solar cell with
architecture Al/SiNx/Al2O3/n+-FSF/(n) c-Si/SiOx/PEDOT:PSS/Ag eventually achieved
an efficiency of 17.4%. Moreover, Gogolin et al. [155] expanded on this concept and
fabricated a hybrid solar cell using a p-type silicon absorber, an excellent passivation
electron selective layer (a-Si:H (i/n) on the front side, and PEDOT:PSS as the HTL on the
rear side and attained an efficiency of 16.2% with a record breaking Voc of 688 mV. To
date, Schdmt et al. [156,157] have attained the record efficiency of 20.6% by applying an
optimized p-type silicon surface pre-treatment. These results demonstrate that conductive
p-type polymers are promising hole transfer materials in silicon heterojunction solar cells,
substituting the boron-doped hydrogenated amorphous silicon ((p) a-Si:H) in order to
reduce fabrication complexities and minimize production cost. More research results
undertaken in this field are summarized in Table 4.
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Table 4. Research progress of organic-silicon hybrid heterojunction solar cells using conjugated
polymer as HTLs.

Solar Cell Hybrid Heterojunction Architecture Jsc (mA/cm2) Voc (mV) FF (%) PCE (%) Ref.

ITO/PEDOT:PSS-Go/SiNWs/(n) c-Si/Ag/Ti 31.00 518 59.6 9.57 [140]
Ag/PEDOT:PSS-DMSO/(i) a-Si:H/(n) c-Si/(i) a-Si:H/(n+)

a-Si:H/a-SiC:H/Ti/Al 30.97 600 59.4 11.04 [141]

ITO/PEDOT:PSS/SiNHs/(n) c-Si/n+ layer/Ti/Ag 36.81 492 66.3 12 [142]
Ag-grid/PEDOT:PSS/(n) c-Si/(i) a-Si:H/(n) a-Si:H/Al 36.5 634 70 16.2 [143]

Ag/PEDOT:PSS-Gr/(n) c-Si/Al 26.64 530 64 9.05 [145]
ZnS/Ag/MoO3/PEDOT:PSS/n-SiNCs/Al 24.21 400 53 5.12 [146]

Cu-grid/P3HT/(n) SiNPs/In/Ga 37.6 457 54 9.2 [147]
Ti/Al-grids/Au/MoO3/P3HT/CH3-Monolayer/poly-

Si/SiO2+SiN3N4+SiO2/Glass 24.3 552 49.8 6.6 [153]

Al/SiNx/Al2O3/n+-FSF/(n) c-Si/SiOx/PEDOT:PSS/Ag 39.7 653 67.2 17.4 [154]
ITO/(n) a-Si:H/(i) a-Si:H/(p) c-Si/PEDOT:PSS/Ag 32 688 74.3 16.2 [155]
Ag-grid/PEDOT:PSS/SiO2/(n) c-Si/(i) a-Si:H/(n+)

a-Si:H/ITO/Ti/Ag 31.9 663 70 14.8 [158]

Ag-grid/PEDOT:PSS-5wt% DMSO/n-SiNWs/Al 30.1 569 55 9.3 [159]
Ag-grid/PEDOT:PSS-6wt% ethylene

glycol/n-Si/rubrene:DMSO/Ag 28 609 69 11.9 [160]

Ag-grid/PEDOT:PSS/Dopamine@graphene/n-
Si/PC61BM/Al 32.64 623 64.6 13.15 [161]

Semi-transparent Au/P30T/SiOx/(n) c-Si/(i) a-Si:H/(n+)
a-Si:H/metal - 500 - 9.6 [135]

Ag-grid/PEDOT:PSS-5wt% DMSO-0.1wt% Tritocn X
100/n-SiNWs/Al 27.32 598 75.7 12.32 [162]

Glass/SiNx/(n) mc-Si/Al2O3/PEDOT:PSS/Ag 25.4 604 67.4 10.3 [163]
Ag-grid/PEDOT:PSS-7% EG/n-Si/Ag 15.7 598 58 5.1 [164]

4.3. π-Conjugated Polymers as HTLs in Organic Solar Cells

Since the breakthrough of organic solar cells in late 1958, their attention has been
rapidly growing in the solar cell community owing to their flexibility, ease of processability,
light weight, abundancy of raw materials, ease of synthesis of organic materials, and low
fabrication or production costs [165,166]. Much of the success is due to the development of
the bulk heterojunction (BHJ) solar cells which provides an enhanced charge separation
path-length due to the increased donor-acceptor (D-A) interface, where the charges are
separated efficiently [167]. As opposed to the organic-silicon hybrid heterojunction solar
cells discussed in Section 4.2, where silicon acts as the main light absorber, OSCs utilize
a blend mixture of conjugated donor and acceptor polymers (D-A) as the active layer
responsible for absorbing light to generate excitons. The active layer is sandwiched in
the middle of two electrodes having different work functions, ITO and metal as the front
and back contact, respectively, as illustrated in Figure 3 under Section 4.1. Recently, due
to the novel design of new organic donor and acceptor materials, innovative-engineered
architectures, and device optimizations, single-junction OSCs have significantly improved
their performances with PCEs exceeding 17% [168–171] and reaching 18.22%, to date [172].
As much as most of the research is centered around the design of novel donor and acceptor
materials, the tremendous improvements of late are also owing to the utilities of suitable
HTLs which form a significant constituent of OSCs and play an important role is enhancing
both the PCE and stability of OSCs. Much as in organic-silicon hybrid heterojunction solar
cells, the presence of the HTLs impede the head-on attachment between the active layer
and the metal anode (ITO), thereby reducing carrier recombination at the front due to
the electron blocking characteristics of the HTLs [135,136]. In addition, HTLs are capable
of passivating surface defects and pinholes by regulating or modifying the surface of
ITO, thereby decreasing the leakage of current, and thus increasing the Jsc of the solar
cell, which ultimately improves the PCE [173]. Amongst many, just as in organic-silicon
hybrid heterojunctions solar cells, PEDOT:PSS is the most commonly and widely used



Polymers 2022, 14, 716 27 of 37

solution-processable HTL in single-junction organic solar cells. This is because PEDOT:PSS
is highly conductive, has a good optical transparency in the visible-to-near infrared which
minimizes optical losses, can be easily dispersed in water, easily forms homogenous films
using different deposition techniques, and has a work function of 5.2 eV close to ITO,
which allows for good transport of holes between PEDOT:PSS and ITO [174–178]. Yuan
et al. [179] fabricated the device with the structure ITO/PEDOT:PSS/PM6:Y6/PDINO/Al
using PEDOT:PSS as the HTL and Y6 as the non-fullerene electron acceptor and achieved
an efficiency of 15.7%. Anagnostou et al. [180] achieved an efficiency of 7.32% using
PEDOT:PSS as HTL and Ca for transporting electrons. Moreover, Guo et al. [181] achieved
an efficiency of 6.6% with the device architecture of ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al,
fabricated from non-halogenated solvents. Despite the merits exhibited by PEDOT:PSS
and its extensive usage in conventional OSCs, it somehow also exhibits drawbacks that
are a limiting factor in the performances and industrial uses of OSCS. The first factor
is the hygroscopic character, as it can absorb moisture and oxygen which affects the
long-term stability of the devices by promoting fast degradation at the ITO/PEDOT:PSS
interface [182,183]. Secondly, the acidic nature of PEDOT:PSS tends to corrode the ITO
surface which results in rough surface morphology, thereby inhibiting the free-flow and
collection of holes and hammer over the device’s lifetime [184,185]. For example, Wu
et al. [186] investigated the effect of trifluoroacetic acid (TFA) treatment of PEDOT:PSS
layers on the performance and stability of organic solar cells. The results revealed that
the device with pristine PEDOT:PSS as HTL remains with 1% of the initial efficiency after
63 days of storage, whereas the device treated with TFA retains 25% of its initial efficiency.
In another example, Xu et al. [187] observed a decay of 72% of PCE after just 315 h for
pristine device with PEDOT:PSS as HTL, whereas a 60% decay was observed for a device
with solvent additives on PEDOT:PPS/ITO front contact after 315 h.

Due to these constraints experienced by devices fabricated from PEDOT:PSS as HTL,
research has led to the design and development of alternative conjugated polymers to be
used as HTL in substitution of PEDOT:PSS. Conjugated polyelectrolytes, which are poly-
mers, composed of conjugated backbones and ionic pendant functionalities, have emerged
as favorites and front runners to replace PEDOT:PSS. Similar to most conjugated polymers,
the conjugated backbone of polyelectrolytes determines the optical and electrical behavior
of the material, whereas the side chain ionic functionalities determine the solubility and the
ability of forming homogenous films. Therefore, this implies that the electrical and optical
properties of the polyelectrolytes can be tuned through structural modifications [188,189].
Moreover, polyelectrolytes meet the standard requirements for good HTLs such as high
HOMO level for transporting holes and low LUMO level for blocking electrons, high
transmittance in the visible region, and good solubility in friendly common laboratory
solvents. The good solubility property allows for simplicity in depositing layers via solution
processing for optoelectronic devices [190]. In contrast to PEDOT:PSS, polyelectrolytes are
neutral and do not corrode the surface of the ITO, thereby increasing the lifetime or stability
of the devices.

In addition, the presence of the pendant ionic functionalities permits the generation of
surface dipoles permanently, thereby changing the work function of electrodes through
the creation of interfacial dipoles at the electrode/active layer interface [191,192]. Due to
these advantageous properties exhibited by polyelectrolytes, they have gained attention
and are regarded as promising HTLs for extensive applications in OSCs. Moon et al. [193]
fabricated a series of conventional devices based on CPE–K, CPE–Na, CPE–PCPDT–K
polyelectrolytes as HTLs and compared them with the traditional device made from
PEDOT:PSS. Polyelectrolytes-based devices achieved higher efficiencies compared to the
conventional PEDOT:PSS-based organic device, with CPE–PCPDT–K producing the highest
efficiency of 3.11%. The better performances from CPE-based devices were attributed to
better charge transfer across the CPEs HTL/active layer interface, low surface roughness,
and higher transmittance in the visible region. The common conjugated chemical structures
of HTLs and their corresponding summary of device performances are illustrated in
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Scheme 17 and Table 5, respectively. In another study, Choi et al. [194] fabricated a series of
conventional devices based on PFF, PFT, PFTSe polyelectrolytes as HTLs and compared
them with the traditional device made from PEDOT:PSS. Polyelectrolytes-based devices
achieved higher efficiencies compared to the conventional PEDOT:PSS-based organic
device, with PFTSe producing the highest efficiency of 7.2%. The PFTSe device also
demonstrated better air stability and long lifetime with about 70% retention of its initial
PCE after air exposure of 480 h, whereas the PEDOT:PSS-based device lost 50% of its initial
power in the same time frame. The improved long-term stability was ascribed to the neutral
nature of the polyelectrolytes with a pH of 6.7–7.0 which does not corrode the ITO surface.
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Table 5. Organic solar cells research work focused on conjugated polymers as HTLs.

Organic Solar Cell Architecture Jsc (mA/cm2) Voc (mV) FF (%) PCE (%) Ref.

ITO/PEDOT:PSS/PM6:Y6:PDINO/Al 25.3 830 74.8 15.7 [179]
ITO/PEDOT:PSS/PTB7:PC71BM/Ca/Ag 16.32 760 59.6 7.32 [180]

ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al 10.3 850 75 6.6 [181]
ITO/CPE-PCPDT-K/P3HT:PCBM/Al 7.88 610 63 3.11 [193]
ITO/PFTSe/PTB7:PC71BM/PFN/Al 14.4 677 69 7.2 [194]

ITO/PCPDffPhSO3K/PTB7-Th:PC71BM/Al 17.88 782 65.7 9.4 [195]
ITO/PCP-H/J52-2F:IT-M/PFN-Br/Al 18.4 960 73 12.8 [196]
ITO/PFS/PBDT-T:IT-M/PFN-Br/Al 17.2 921 70 11 [197]

ITO/PCP-Na/PBDT-TSI:PC71BM/Mg/Al 17.46 803 70.6 9.89 [198]
ITO/PCP-3B/PBDT-T:IT-M/NDI-n/Al 15.5 910 68 9.67 [199]

ITO/PEDOT:PSS/PTB7-Th:PC71BM/ZnO/CPEPh-
Na/PTB7-Th:PC71BM/AL 11.1 1540 66 11.3 [200]

ITO/PFS/PBDT-TSI:PC71BM/Mg/Al 18.2 794 66.6 9.60 [201]
ITO/RG1200/P3HT:PCBM/Ca/Al 8.1 580 60.3 2.82 [202]

ITO/p-PFP-HD/PTB7-Th:PC71BM/PFN/Al 16.3 780 77 9.03 [203]
ITO/p-PFP-O/PTB7-Th:PC71BM/PFN/Al 16.6 780 70 9.2 [204]

ITO/PEDOT-S/P3TI:PC71BM/LiF/Al 12.89 690 58 5.12 [205]

5. Conclusions

π-Conjugated polymers have attracted considerable and significant recognition in the
area of solar cells owing to their flexibity, ease of synthesis, light weight, tunability of optical
and electrical properties through structural modifications, and solution processability. At
present, the challenge in solar cells is centered on finding the device with the highest PCE,
long-term stability, and that comes at a lower production or fabrication cost in order to
gain broad stream commercialization and large-scale industrial production. For these
reasons, conjugated polymers have found extensive application in organic-silicon hybrid
heterojunction solar cells and pure organic solar cells, to afford flexible devices at a lower
cost. Tremendous progress has been made in optimizing device structures, designing and
developing new conjugated polymers with desirable properties, and engineering front
contact interfaces. This review focused particularly on the significant progress made in
the employment of conjugated polymers as HTLs in organic-silicon hybrid heterojunction
solar cells and organic solar cells, and how they affect the PCE and stability of the devices.
In organic-silicon hybrid heterojunction solar cells, the PCE of the devices using HTLs such
as PEDOT:PSS and P3HT in place of (p) a-Si:H has dramatically increased over the years. In
order to achieve high efficiencies, the conjugated polymers have to have high transmittance
in the visible to near-infrared region, high conductivity, and high hole mobility. Despite
the impressive progress made, these cells suffer from long-term stability owing to the
hygroscopic character of PEDOT:PSS and photo-oxidation at the anode interface that
results in total degradation of the polymeric p-type material. One strategy employed to
overcome this challenge is the use of the p-type conjugated polymer in the rear side of
the device in an inverted configuration, widely referred to as the backPEDOT concept,
in order to avoid parasitic absorption. Using this backPEDOT strategy, organic-silicon
hybrid solar cells have shown excellent PCEs close to PCEs achieved by traditional silicon
heterojunction solar cells and improved solar cells lifetimes. On the other hand, in OSCs,
different conjugated polymers have been successfully used as HTLs. PEDOT:PSS and
polyelectrolytes are the top favorites. Devices fabricated from PEDOT:PSS HTL suffer from
long-term stability due to the acidic character of PEDOT:PSS which corrodes the ITO anode,
thereby reducing its lifetime. In contrast, polyelectrolytes-based devices are robust, stable,
and produce reasonably high efficiencies. This is because they are neutral and do not
corrode the anode ITO, thereby creating a smooth morphological surface for the transfer
and collection of holes by the ITO. Generally, although great progress has been seen in the
incorporation of conjugated polymers in the various solar cell types, there is still a long way
for cells incorporating polymeric materials to realize commercialization and large-scale
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industrial production due to the shortcomings in the stability of the polymers and their low
conductivities compared to traditional silicon-based solar cells. Although these challenges
exist, the current fast-growing significant progress, together with future innovative designs
for new conjugated polymeric materials and solar cell architectures, provide enough room
for future promise and hope that commercialization will soon emerge.
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