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Abstract: To meet the needs of large space telescopes, such as light weight, high folding ratio, and
low manufacturing cost, a flexible deployable regular hexagonal membrane sunshield is proposed
in this paper. Firstly, the dynamic equation of the membrane plane is established by the micro-
element method. Then, the response surface method is used to obtain the mathematical model of
the fundamental frequency of the membrane sunshield. The factors influencing this model, such
as the corner pulling force, the effective circle radius, and the edge arch height, are analyzed. By
combining the formula of the fundamental frequency of the membrane sunshield and the effective
area ratio of the sunshield, the multi-objective optimization function of the fundamental frequency
of the membrane sunshield is obtained. A scaled-down experimental prototype of the membrane
sunshield is built, and the modal test is performed on the thin membrane plane with a circular fixed
boundary in the middle. Comparing the experimental results with the finite element simulation
results, the mode shape and the fundamental frequency are highly consistent. This proves that
the model can be used to solve the fundamental frequency of the membrane sunshield under the
same boundary.

Keywords: membrane sunshield; dynamics; fundamental frequency; modal test

1. Introduction

With the development of the aerospace industry, the diameter of space-borne optical
systems is being continuously enlarged. To shield them from sunlight, control the tempera-
ture, and suppress stray light, higher requirements are put forward on the space-deployable
mechanism’s size, weight, and stability. The traditional sunshield structure is challenged
to meet the needs of the load on the launch envelope and mass. In addition, traditional
designs may cause problems, such as high processing costs for large-diameter thin-walled
structures, large deployment flexibility, poor synchronization of parallel driving, and light
leakage at moving parts. Due to the outstanding advantages of flexible configuration,
ultra-light weight, low production cost, and high folding radio [1], the membrane structure
has gradually been applied to the sunshield.

The International X-ray Observatory, which is a tripartite cooperation among the
National Aeronautics and Space Administration (NASA), European Space Agency (ESA),
and Japan Aerospace Exploration Agency (JAXA), is equipped with a cylindrical mem-
brane sunshield [2]. The sunshield has a diameter of 4 m and an unfolded length of
12.1 m, mainly driven by the middle unfolding structure. Caltech’s submillimeter-wave
telescope is equipped with an inflatable, beveled, cylindrical sunshield. The sunshield is
driven by 10 inflatable tubes of different lengths to drive six layers of the membrane to
expand, providing rigid support for the entire system [3]. To obtain a larger shading angle,
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the American company QinetiQ North America has developed a chamfered cylindrical
sunshield that uses elastic hinges to unfold the membrane [4]. The James Webb Space
Telescope (JWST), jointly developed by NASA, the Canadian Space Agency (CSA), and ESA,
is equipped with a diamond-shaped membrane sunshield. The deployment is realized by
stretching the corners of each layer of the sunshield [5–7]. ATLAST-9.2 is a large-aperture
space telescope located at LaGrange point 2 (SEL2), equipped with a flat square sunshield
composed of four layers of opaque Kapton membrane, blocking light from the sun, moon,
and Earth [8]. The JPL and ATK laboratories of the United States have proposed two regular
polygon sunshields for cosmic expansion detectors [9]. The smaller one can expand to
5.5 m in diameter, and the larger one has a diameter of 22 m. ESA designed a circular light
sunshield for the global astronomical interferometer [10,11], consisting of 12 H-shaped
carbon fiber–aluminum racks, each with a length of 3.8 m and a deployment diameter of
up to 10.3 m. Kutter et al. [12] designed an inflatable unfolding cone-shaped sunshield con-
sisting of six trapezoidal surfaces and realized a three-layer membrane unfolding through
six T-shaped inflatable tubes. The Original Expansion Explorer (PIXIE) is equipped with
a four-layer aluminized/Kapton membrane cone-shaped sunshield [13,14], and the out-
ermost dimension can reach 3.5 m after deployment. The large space telescope ST-9 has
a beveled conical sunshield [15], which is unfolded with six telescopic tubes of different
lengths, and the maximum width after unfolding is greater than 4 m. Tong Zhaoyuan
from the Qian Xuesen Space Technology Research Office designed a regular hexagonal
membrane sunshield by combining bionic technology and origami technology and verified
the feasibility of the structure through finite element simulation [16]. The configuration
of sunshields can be divided into flat sunshields and non-planar sunshields. Non-planar
sunshields are often used in spacecrafts that change positions with the sun and are not
adapted to the sunlight avoidance of large space telescopes. Flat membrane sunshields are
mainly used in large space telescopes, without the need for back-and-forth rotation of the
sunshield. The non-planar sunshield has a longer history and more applications. However,
with the rapid development of the aerospace industry, large flat membrane sunshields will
become the primary research trend in the future.

Compared with the configuration design of the membrane sunshield, there are more
studies on the membrane structure’s dynamic characteristics and experimental analysis.
Shen et al. [17] conducted modal analysis on the membrane with arc edge using simulation
software. They obtained the law that the square of the tensile force is proportional to the
first-order frequency of the membrane. However, they did not reveal the corresponding
relationship between tension and frequency from theoretical analysis. Andreaus et al. [18]
investigated the mesh-size independency of second-gradient numerical solutions with
respect to the classical first-gradient one. The necessity of second-gradient modeling is
finally shown. Zhang Yuelin et al. [19] conducted membrane modal experiments with
high-power pulsed lasers as excitation sources. They verified that the flexible piezo-
electric element and non-contact vibration test system effectively suppress and evaluate
the vibration responses of smart membrane structures. Based on the thin plate theory,
Li et al. [20] derived the free vibration equation of the membrane and studied the dynamic
response of the rectangular tensioned membrane. Liu et al. [21,22] studied a wave-based
active vibration control method for membrane structures and used cable actuators for
vibration control. Fang et al. [23–25] of NASA measured the vibration characteristics of
a 1.5 m × 1.5 m liquid crystal polymer copper-coated thin membrane, which was preloaded
by a constant-force spring, excited by a speaker, and measured using a laser non-contact
vibration measuring instrument. Flint et al. [26,27] clamped the vertex of the membrane to
be tested, mounted it on the backing plate together with the spring-loading device, and
transmitted the excitation motion to the membrane by exciting the backing plate. Mat-
sushita et al. [28] used a pulley to guide the load applied at the edge of the membrane
in the direction of gravity. The exciter directly touches the middle of the membrane and
performs sinusoidal logarithmic scanning excitation on the membrane. During the test, the
membrane was placed vertically to avoid the interference of gravity in the out-of-plane
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direction of the membrane. Iwasa et al. [29] studied the mechanical properties of the flat
membrane, wrinkled membrane, and spliced membrane under corner tension by loading
the membrane with weights and proposed a method to calculate the upper limit spectrum
by measuring several selected points. Meng et al. [30] conducted uniaxial and biaxial stress
relaxation tests on the coated fabrics by motor loading and studied the stress relaxation
behavior of the membranes over time. Liu et al. [31] used a motor to load the membrane to
suppress the vibration of the wrinkled square membrane and excited the frame supporting
the membrane by hammering. For the complex membrane structure, its dynamic analysis
still relies on finite element simulation for calculation, and there is no complete theoretical
formula to solve it. The current dynamic test of membrane structure is performed on
a completely flat membrane. However, the sunshield often has a circular void in the middle
of the membrane plane. For such flat membranes, there is currently no relevant kinetic
experimental study.

Based on the above problems in the configuration design and dynamic analysis of
the membrane sunshield, this paper proposes a new type of regular polygon membrane
sunshield and conducts a dynamic analysis. Firstly, according to the working principle
of the membrane sunshield, the conceptual model of the sunshield is proposed, and the
basic configuration of the membrane sunshield is determined. Through the micro-element
method, the dynamic equation of the membrane sunshield is established, and the influenc-
ing factors that affect the fundamental frequency of the membrane sunshield are analyzed.
According to the response surface method, the mathematical model of the fundamental
frequency of the membrane sunshield considering the influencing factors is established, and
the influence of each variable on the fundamental frequency of the membrane sunshield is
analyzed. Combining the fundamental frequency mathematical model and the effective
area ratio, the multi-objective optimization function of the fundamental frequency of the
membrane sunshield is established. A scale test prototype of the membrane sunshield is
built, and modal tests are carried out. The experimental results are compared with the
finite element simulation results, and the accuracy of the finite element simulation results
under the same boundary is verified. Through the research of this paper, the theoretical
formula of the fundamental frequency solution of this kind of membrane sunshield is pro-
posed. It provides theoretical support for the fundamental frequency solution of membrane
sunshields in the future.

2. Configuration Design of Membrane Sunshield

The main function of the sunshield is to eliminate the impact of direct sunlight on
the telescope and create a low-temperature background environment. By reducing the
camera’s ambient temperature, it provides temperature support for the completion of the
camera’s task. The membrane sunshield designed in this paper is located at the LaGrange
L2 point. To detect farther and more accurately, a large mirror area is needed to collect
more photons, and an open design without a lens barrel is required. The giant membrane
blocks the adverse effects of radiation from the sun and Earth, and its light spread is shown
in Figure 1. The sunlight and Earth’s radiation sources are located on the same side of
the space telescope. The flat sunshade membrane is located between the light source and
the space telescope, ensuring that the camera assembly is in an environment free from
stray light.

The size of the sunshield is mainly determined by the position, volume, and field of
view of the camera assembly. The observation field of a general telescope is −20◦∼+20◦.
According to the current research status of membrane sunshields at home and abroad, this
paper designs a regular hexagonal flat membrane sunshield. Its working principle is shown
in Figure 2. The middle area of the membrane is fixed on the central hub, and tension is
applied to each corner of the membrane to expand the membrane plane. The shaded area
in the figure is the effective working surface of the sunshield. The entire camera assembly
is in the shadow area determined by the maximum declination angle of sunlight, which
effectively avoids the influence of light on the camera assembly.
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Figure 1. Schematic diagram of the working of the sunshield.

Figure 2. The working principle of the camera.

3. Dynamic Analysis of Membrane Sunshield
3.1. Free Vibration Equation

In the free vibration analysis of the membrane sunshield, its theoretical mechanical
model should be established first. According to the working principle above, the middle
of the membrane sunshield is a circular void and is fixed on the central hub. The stiffness
of the central hub is much greater than that of the membrane, and the middle of the
membrane can be regarded as a fixed constraint without considering the coupled vibration
between the two. Ropes tension each corner of the membrane to provide pre-stress in the
entire membrane. The membrane arc edge design can effectively improve the mechanical
properties of the membrane plane [32] and its equivalent mechanical model is shown in
Figure 3. The inscribed circle in the figure is the effective working surface of the sunshield
with radius R. The distance between the center of the membrane and the corner is L, and
the arc edge arch height is h. The tensile force at each corner point is T, and the central
circle of the membrane has a fixed constraint.

In order to establish the kinetic equation of the membrane sunshield, rectangular
micro-elements with lengths dx and dy are taken at any point of the membrane. The lateral
deflection along the Z-axis of the membrane is ϕ(x,y,t), and t is time. The membrane
thickness is b, the density is ρ, and the tension force per unit length is F. The distributed
force per unit volume along the Z-axis is f. The force analysis of its micro-element body is
shown in Figure 4.
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Figure 3. Equivalent mechanical model of membrane sunshield.

Figure 4. The force analysis diagram of the thin membrane micro-element.

Then, the dynamic equation of the micro-body along the Z-axis can be expressed as:

Fdy
[(

∂ϕ

∂x
+

∂2 ϕ

∂x2 dx
)
− ∂ϕ

∂x

]
+ Fdx

[(
∂ϕ

∂y
+

∂2 ϕ

∂y2 dy
)
− ∂ϕ

∂y

]
+ f dxdy = ρbdxdy

∂2 ϕ

∂t2 , (1)

The lateral vibration equation of the membrane is derived as:

F
(

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2

)
+ f = ρb

∂2 ϕ

∂t2 , (2)

When considering the free vibration of the membrane, let f = 0; then,

F
(

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2

)
= ρb

∂2 ϕ

∂t2 , (3)

The lateral deflection ϕ(x,y,t), of the membrane along the Z-axis can be separated:

ϕ(x, y, t) = α(x, y)β(t), (4)

where α(x,y), is the modal function of the membrane vibration (mm); β(t) is the generalized
coordinate of the membrane vibration. Substituting Equation (4) into Equation (3):

F
α

(
∂2α

∂x2 +
∂2α

∂y2

)
=

ρb
β

∂2β

∂t2 , (5)
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The left side of Equation (5) is independent of t, and the right end of the above equation
is independent of x,y. The left and right ends of the equation are always equal to a constant,
denoted as −ω2, and two linear ordinary differential equations are obtained:

∂2α

∂x2 +
∂2α

∂y2 +
ρbω2α

F
= 0, (6)

∂2β

∂t2 + ω2β = 0, (7)

The solution of Equation (7) is a single-degree-of-freedom linear vibration equation,
and its general solution is:

β(t) = A sin(ωt + θ), (8)

The solution of Equation (6) mainly depends on the shape of the membrane, the
boundary conditions, and the properties of the membrane itself.

Combined with Equation (6) and the shape of the membrane sunshield, the funda-
mental frequency of the membrane sunshield mainly depends on the membrane tension F,
density ρ, thickness b, effective circle radius R, arc edge arch height h, and central hub size.
The sunshield is usually composed of a 0.5-mm-thick polyimide membrane with a density
of 1420 kg/m3. The central hub of the sunshield is determined by the camera load, and
the positioning radius here r is 0.5 m. The tension F of the membrane is provided by the
corner tension T. The influencing factors of the membrane sunshield are mainly determined
by three variables: the tensile force T, the effective circle radius R, and the arc edge arch
height h.

3.2. Fundamental Frequency Mathematical Model Establishment

Due to the complexity of the membrane boundary of the membrane sunshield, it
is not easy to directly apply the theoretical derivation method to generate a reasonable
mathematical model. Each product design relies heavily on the calculation of simulation
software, the process is relatively cumbersome, and the product development cycle is
prolonged. It is preferable to use the response surface method to establish a sunshield
fundamental frequency mathematical model.

The key to the success of the response surface lies in the establishment of the experi-
mental method, and the most widely used method is the full factor method. In this section,
an orthogonal test is designed for the membrane sunshield by the full factor method. The
fundamental frequency of the sunshield corresponding to different parameters is obtained
through finite element simulation. The method of multivariate nonlinear regression is used
to obtain reasonable coefficients. The variation range of the three design parameters in this
paper is as follows: the effective circle radius from 4 m to 7.5 m, the arch height from 0 m
to 1.2 m, and the tensile force from 0 N to 80 N. Each factor takes eight tries, and, finally,
512 results are obtained. The analysis results are shown in Appendix A.

At present, the selection of empirical formulas generally adopts the following polynomials:

1, x1, x2, x3, . . . , xn
x2

1, x1x1, x1x2, x1x3, . . . , x1xn, . . . , x2
n

x3
1, x2

1x2, . . . , x2
1xn, x1x2

2, x1x2
3, . . . , x1x2

n, . . . , x3
n

There are three variables in this experiment. In theory, the least-squares method
can be used to fit the data of the quadratic polynomial. However, the data calculated by
the fitting formula are quite different from the original data, so it cannot be used as an
empirical formula. A reasonable polynomial needs to be selected for fitting. To ensure the
accuracy of the final fitting formula, the control variable method is adopted to explore the
influence of the effective shading radius R, the arch height h, and the corner tension T on
the fundamental frequency of the sunshield. To avoid the possibility of data affecting the
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results, each impact factor selects three sets of data for fitting, and the fitting results are
shown in Figures 5–7.
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Figure 7. Fitting of corner tension to fundamental frequency.

According to the fitting of the above three variables to the fundamental frequency,
the cubic polynomial fitting is more accurate when the effective circle radius and the
force are fitted to the fundamental frequency. When the arc edge arch height is fitted
to the fundamental frequency, the quadratic polynomial and the cubic polynomial have
the same accuracy. The quadratic term can be taken as the fitting polynomial to save
computing resources.

Then, the variables R, h, and T of the membrane sunshield affect the fundamental
frequency as follows:

q =∝
(
k1R3 + k2R2 + k3R + k4

)
q =∝

(
k5h2 + k6h + k7

)
q =∝

(
k8T3 + k9T2 + k10T + k11

) , (9)
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There is no coupling relationship between the effective circle radius R, the arch height
h, and the corner tension T independently. Therefore, it can be concluded that the mathe-
matical model of the fundamental frequency of the membrane sunshield is:

q =
(

k1R3 + k2R2 + k3R + k4

)(
k5h2 + k6h + k7

)(
k8T3 + k9T2 + k10T + k11

)
+ k12 (10)

The data in Appendix A are fitted by the method of multiple linear regression. The
coefficients can be obtained as shown in Table 1.

Table 1. The coefficients of the base frequency formula of the sunshield.

k1 k2 k3 k4 k5 k6

−8.1 × 10−3 1.77 × 10−1 −1.37 4.09 5.87 × 10−6 3.62 × 10−5

k7 k8 k9 k10 k11 k12

1.7 × 10−4 1.09 × 10−2 −2.28 2.49 × 102 2.32 × 103 1.55 × 10−2

Then, the fundamental frequency can be expressed as:

q =
(
−8.1× 10−3R3 + 1.77× 10−1R2 − 1.37R + 4.09

)(
5.87× 10−6h2 − 3.62× 10−5h + 1.7× 10−4)(
1.09× 10−2T3 − 2.28T2 + 2.49× 102T + 2.32× 103)+ 1.55× 10−2

Hz (11)

t =
q− q0

q
× 100, (12)

The fitted formula needs to have sufficient precision to be used as an empirical formula
for future product design. Equation (12) can be used for error analysis to verify the formula’s
accuracy. Five groups of data are randomly selected within the variable range for simple
experimental verification, and the results are shown in Table 2.

Table 2. Comparison of theoretical and simulated values of fundamental frequency.

Effective Circle
Radius (m) Arch Height (m) Corner Tension (N) Theoretical Value

×10−1 (Hz)
Simulation Value
×10−1 (Hz) Error

4.2 0.2 15 7.76 7.90 1.8%
5.2 0.4 25 6.87 6.90 0.44%
5.8 0.6 35 6.59 6.61 0.30%
6.4 0.8 45 6.18 6.21 0.49%
7.2 1 55 5.45 5.57 2.2%

It can be seen from the above five sets of results that the errors of the mathematical
model fitted above are relatively small within the value range of the three variables. This
shows that it is accurate within the value range of the three variables, which can provide
a reference for future product design.

3.3. The Law of Variable Influence on Fundamental Frequency and Multi-Objective Optimization

The observation of the data shows that the increase in the arch height and the effective
circle radius causes the fundamental frequency to decrease. The increase in the pulling
force causes the fundamental frequency to rise. However, the specific function changes
of these factors are not yet clear. Since the three variables jointly affect the fundamental
frequency of the membrane, one of the variables should be kept as a fixed value in the
process of analyzing its variation law. According to the fundamental frequency formula
fitted above, the law of the influence of two variables on the fundamental frequency is
analyzed. Its three-dimensional map is shown in Figure 8.
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Figure 8. The law of the influence of two variables on the fundamental frequency. (a) The arch height
is 0.6 m; (b) the tension is 30 N; (c) the effective circle radius is 5.5 m.

It can be seen from the figures that when the arch height is fixed, the fundamental
frequency of the membrane plane increases as the effective circle radius decreases or the
tension increases. When the tension is fixed, the fundamental frequency of the membrane
plane increases as the arch height decreases and the effective circle radius decreases. There-
fore, a higher fundamental frequency can be obtained by increasing the corner point pulling
force, reducing the arch height of the arc edge, and reducing the effective circle radius.

The membrane arc edge design can improve the membrane’s stress distribution
state. An increase in the effective circle radius provides a larger shading plane. How-
ever, both will have a certain impact on the fundamental frequency and effective area
ratio of the membrane sunshield. In order to resolve this contradiction, it is necessary
to establish a multi-objective optimization function of the fundamental frequency of the
membrane sunshield.

The area of the sunshield is mainly divided into three parts: the area S1 of the regular
hexagon, the area S2 beyond the arc side, and the area S3 of the central hub. A simplified
model of its configuration is shown in Figure 9.
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Figure 9. Simplified model of membrane configuration.

According to the geometric relationship, the radius R1 of the arc edge is:

R1 =
h2 + (L/2)2

2h
, (13)

The central angle γ of the circle corresponding to the arc edge is obtained as:

γ = arctan
L
2

R1 − h
, (14)

The area S2 outside the arc edge can be obtained as:

S2 = 6γR2
1 − 3L · (L/2)2 − h2

2h
, (15)

The area S1 of a regular hexagon can be obtained as:

S1 = 6× 1
2
· sin 60 · L2 =

3
√

3
2

L2, (16)

The area S3 of the center hub can be obtained as:

S3 = πr2, (17)

The area S of the membrane sunshield is:

S = S1 − S2 − S3, (18)

The effective area S0 of the membrane sunshield is:

S0= πR2 − πr2, (19)

The distance L from the center of the membrane to the corner point is:

L =
2
√

3
3

(R + h), (20)

The effective area ratio of the membrane plane is:

p =
S0

S
, (21)

Combined with the fundamental frequency formula, the effective area ratio, and the
value range of each variable, the optimization function is determined as follows.
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

q =
(
−8.1× 10−3R3 + 1.77× 10−1R2 − 1.37R + 4.09

)(
5.87× 10−6h2 − 3.62× 10−5h + 1.7× 10−4)(
1.09× 10−2T3 − 2.28T2 + 249.26T + 2317.74

)
+ 1.55× 10−2

p = S0
S

4 m ≤ R ≤ 7.5 m
0� h ≤ 1.2 m
5 N ≤ T ≤ 80 N
c1 ≤ q ≤ c2, c3 ≤ p

, (22)

where c1 and c2 are the expected fundamental frequency ranges for the thin membrane
sunshield design c3. is the minimum effective area ratio designed for the membrane
sunshield.

4. Dynamic Test Analysis of Membrane Sunshield
4.1. Sample Preparation

Modal tests have strict demands on the boundaries and surrounding environment of
the membrane. To ensure the test’s accuracy, the membrane’s test environment should be
kept consistent with the simulation environment as much as possible. According to the
working principle, the membrane is in a fixed state relative to the central cylinder, and the
six corners of the membrane are opened under the tension. Based on the above membrane
boundaries, a modal test platform for the membrane sunshield is built in this paper, as
shown in Figure 10.

Figure 10. Assembly of the test piece of the membrane sunshield.

The test platform consists of an external support frame, pulley system, spring, center
cylinder, and diffuse reflection paper. The support frame in the figure provides a support
platform for the entire sample. The fundamental frequency of the frame should be larger
than that of the membrane to avoid coupling between the fundamental frequency of frame
and membrane. The pulley system mainly changes the direction of the pulling force and
reduces the influence of the friction force on the fundamental frequency test. Both ends
of the rope are attached to the spring and weight, respectively, to provide tension to the
membrane. The rope is divided into several thin ropes, which are then secured over the
corners of the membrane with scotch tape and partially secured at the ends of the ropes.
The spring provides constant tension for the membrane to ensure that each corner receives
the same tension. The central cylinder is divided into upper and lower parts, and the
membrane is sandwiched and fixed by a flange connection. The diffuse paper reflects the
laser light, allowing the vibrometer to collect the returned light.

In this paper, the scaled prototype of the membrane sunshield is selected for the modal
test. The membrane size is a regular hexagonal membrane with a side length of 260 mm.
There is a circular void with a diameter of 50 mm in the middle of the membrane. The
membrane thickness is 0.05 mm, the material is polyimide, and the density is 1420 kg/m3.
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The envelope dimensions of the frame are 760 mm × 760 mm × 640 mm. The entire frame
is fixed to the ground with weights to increase the fundamental frequency of the frame.

4.2. Experiment Design

According to the shape of the membrane, the plane test points of the membrane are
laid out. Each sticker is an equilateral triangle with a side length of 30 mm. There are
60 stickers on the entire membrane surface, which ensures the accuracy of the membrane
fundamental frequency test. Since the stress distribution at the edge of the membrane is
relatively inhomogeneous, which will increase the instability of the membrane’s mode
shape, no measurement points are attached. In the experiment, the membrane is excited
by the external beating frame so that the membrane can vibrate freely. Each measurement
point is sampled for 8 s, the frame is tapped every 4 s, and a single measurement takes
8 min. We provide 2 N and 4 N tensile force to the membrane, respectively. The vibration
frequency curves of the membrane under two tension forces are measured.

The instrument used to test the vibration of the membrane in this paper is the Polytec
laser vibrometer. The membrane vibration test equipment is shown in Figure 11. The
system contains a total of two cameras. Camera 1 is used as the main camera to collect
vibration speed information. Camera 2 serves as an auxiliary camera to provide the position
reference of the system. The Polytec controller 1 controls laser camera 1 to scan the target.
The Polytec controller 2 controls camera 2 to pick up a sticker in the membrane to provide
a position reference.

Figure 11. Schematic diagram of the frequency test of membrane.

4.3. Test Analysis
4.3.1. Finite Element Simulation Analysis

When the membrane is modally tested in air, the effect of the air’s additional mass on
the membrane’s frequency should not be ignored. The article [33] gives the free vibration
equation of the membrane in air.

−ω2(1 + αa)MΦ + KΦ = 0, (23)

where αa is the added-mass ratio denoting the ratio of added air mass to the mass of the
membrane vibrating in air. M represents the mass matrix, K is the stiffness matrix, and Φ is
the mode shape function.

Minami [34] applied the thin-wing theory to study the membrane vibration in the air
and pointed out that the added-mass ratio αa does not depend on the period and amplitude
of the oscillation. One of his conclusions is that the height of an equivalent air layer
corresponding to the added mass distributed uniformly over the membrane is equal to 68%
of the membrane length, which is confirmed by comparison with the results obtained from
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a source-distribution Green’s function approach. The formula for the additional mass ratio
given by Minami is:

αa = 0.68ρalm/mm, (24)

In the formula, ρa represents the air density (kg/m3); lm is the membrane length, and
it refers to the distance between the fixed boundaries of the membrane (m); mm is the mass
of the membrane (kg).

Taking the air density in the atmosphere as 1.18 kg/m3, the added-mass ratio can be
obtained as 13 according to the size of the membrane mentioned in Section 4.1. Therefore,
the density of the membrane should be set to 1420 kg/m3 × (1 + 13) in the finite element
simulation. The analytical element is a three-node triangular membrane element in Abaqus
(M3D3), with 2 N and 4 N tensile forces applied to the membrane corners, respectively. The
central circle of the membrane is a fixed constraint, and the analysis results are shown in
Table 3.

Table 3. Comparison of simulation analysis results and test results.

Working
Condition Frequency Order Simulation

Frequency (Hz) Test Frequency (Hz) Error

2 N
First-order frequency 5.76 6.25 7.8%

Second-order frequency 6.35 7.15 11.2%

4 N
First-order frequency 8.14 9.45 13.86%

Second-order frequency 8.98 11.37 21%

4.3.2. Prototype Test Analysis

A total of 60 measuring points were added to the scanning points in the computer. The
camera laser accurately illuminates each sticker, and the 60 measuring points are connected
to divide the grid, as shown in Figure 12.

Figure 12. Meshing of thin membrane test points.

The tests were carried out under two working conditions, 2 N and 4 N, respectively.
The amplitude–frequency characteristic curve obtained is shown in Figure 13.

According to the analysis results of the above figure and the finite element simulation
analysis, the results are shown in Table 3.

From the comparison of the above two results, the overall frequency of the membrane
tends to increase with the increase in tensile force. When the tensile force is 2 N, the
errors of the first-order frequency and the second-order frequency of the membrane are
both less than 12%, which are all within the acceptable range. When the pulling force is
4 N, the second-order frequency error reaches 21%. The increase in error results from the
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coupling between the fundamental frequency of the support frame and the frequency of
the membrane, as the latter increases when the pulling force is larger.
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Since the boundary conditions and membrane dimensions under 2 N tension and 4 N
do not change, the mode shapes of the two modes are the same. The mode shapes of the
test results and the simulation results are shown in Figure 14.

Figure 14. Comparison of test mode shape and simulation mode shape. (a) Test first mode shape;
(b) simulated first-order mode shapes; (c) test second mode shape; (d) simulated second-order
mode shapes.

The Polytec Vibrometer uses a linear interpolation calculation method to process
the data, and it automatically fills in the circular voids in the middle of the membrane.
Therefore, there are no circular vacancies in the middle of the membrane in Figure 14a,c.
The edge of the mode shape obtained by the finite element simulation is slightly different
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from that in the test state, mainly because the edge mode shape of the membrane is not
measured in the test state. The two modes of vibration maintain a similar configuration.
Membranes have lower amplitudes in the middle of the first mode and relatively higher
amplitudes at the periphery. The intermediate amplitude of the thin membrane in the
experimental state is higher than that in the finite element simulation, which is mainly due
to the interpolation calculation used by the experimental software. The second-order model
is a torsional mode, similar to a “V” shape. This shows that under the same boundary
conditions, the fundamental frequency of the membrane sunshield can be solved by finite
element simulation.

5. Conclusions

According to the working principle of the space telescope at the L2 point, this paper
proposes a flexible and deployable regular hexagonal membrane sunshield. According
to the working form of the membrane sunshield, the equivalent mechanical model of the
membrane sunshield is given. Then, the dynamic equation of the membrane is deduced
by the method of rectangular micro-elements. The analysis shows that the three variables
of corner tension, effective circle radius, and arc edge arch height are the main factors
affecting the fundamental frequency of the membrane sunshield. Using the response sur-
face method, the mathematical formula of the fundamental frequency of the membrane
sunshield is obtained, with the effective circle radius from 4 m to 7.5 m, the arch height
from 0 m to 1.2 m, and the tensile force from 0 N to 80 N. Five sets are randomly selected
to verify the fundamental frequency formula, and the error range is within 2.5%, which
proves the formula’s accuracy. The variation law of the fundamental frequency of the
membrane under the influence of two variables is analyzed. The multi-objective optimiza-
tion function of the membrane sunshield is established based on the parameter analysis in
terms of the arc edge arch height, the effective circle radius, the fundamental frequency,
and the effective area ratio. A test prototype of the membrane sunshield is built, and the
modal test of the membrane sunshield in the atmospheric environment is carried out. By
comparing the experimental results with the finite element simulation results, it is found
that the fundamental frequency and mode shape of the two are highly consistent. The
test shows that under the same boundary, the fundamental frequency of the membrane
sunshield can be solved by finite element simulation. It is proven that the fundamental
frequency mathematical model can be used to solve the fundamental frequency of the
membrane sunshield.

Author Contributions: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Data Curation, Writing—Original Draft, T.P.; Resources, Supervision, Funding Acquisition, Q.L.;
Visualization, Project Administration, B.L.; Writing—Review and Editing, A.L.; Investigation, Q.C.,
S.D., R.L. All authors have read and agreed to the published version of the manuscript.

Funding: This project is supported by the National Natural Science Foundation of China (U1937202),
the Civil Aerospace Pre-Research Project of Science and Industry Bureau (D030201), and the National
Natural Science Foundation of China (51835002). This support is gratefully acknowledged by
the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Polymers 2022, 14, 609 16 of 19

Appendix A

Table A1. Finite element simulation experimental data of membrane sunshield.

Effective
Circle Radius

Arch
Height

Fundamental Frequency under Different Tension Levels (Hz)

10/N 20/N 30/N 40/N 50/N 60/N 70 N 80 N

4000

150 0.70635 0.99888 1.2233 1.4125 1.5792 1.7298 1.8683 1.9972

300 0.68585 0.96989 1.1878 1.3715 1.5333 1.6796 1.8140 1.9392

450 0.66203 0.93620 1.1465 1.3238 1.4800 1.6212 1.7510 1.8718

600 0.63965 0.90455 1.1078 1.2791 1.4300 1.5664 1.6918 1.8085

750 0.61907 0.87544 1.0721 1.2379 1.3839 1.5159 1.6373 1.7502

900 0.60028 0.84887 1.0396 1.2003 1.3419 1.4699 1.5875 1.6970

1050 0.58320 0.82471 1.0100 1.1661 1.3037 1.4280 1.5423 1.6486

1200 0.56764 0.80270 0.98301 1.1350 1.2688 1.3898 1.5011 1.6045

4500

150 0.58186 0.82284 1.0077 1.1636 1.3008 1.4249 1.5390 1.6452

300 0.56496 0.79893 0.97844 1.1298 1.2630 1.3835 1.4943 1.5974

450 0.54658 0.77294 0.94661 1.0930 1.2219 1.3385 1.4457 1.5454

600 0.52931 0.74851 0.91669 1.0584 1.1833 1.2962 1.4000 1.4966

750 0.51345 0.72609 0.88922 1.0267 1.1478 1.2573 1.3580 1.4517

900 0.49887 0.70546 0.86395 0.99755 1.1152 1.2216 1.3194 1.4140

1050 0.48548 0.68653 0.84077 0.97077 1.0853 1.1888 1.2839 1.3725

1200 0.47319 0.66914 0.81947 0.94618 1.0578 1.1587 1.2514 1.3377

5000

150 0.48922 0.69183 0.84728 0.97831 1.0937 1.1981 1.2940 1.3833

300 0.47495 0.67165 0.82256 0.94976 1.0618 1.1631 1.2562 1.3429

450 0.46085 0.65170 0.79813 0.92156 1.0303 1.1286 1.2189 1.3031

600 0.44729 0.63254 0.77466 0.89446 0.99998 1.0954 1.1831 1.2647

750 0.43481 0.61489 0.75304 0.86949 0.97207 1.0648 1.1501 1.2294

900 0.42321 0.59848 0.73294 0.84628 0.94612 1.0364 1.1193 1.1966

1050 0.41251 0.58335 0.71441 0.82488 0.92219 1.0101 1.0910 1.1663

1200 0.40260 0.56933 0.69724 0.80505 0.90002 0.98586 1.0648 1.1382

5500

150 0.41812 0.59128 0.72414 0.83613 0.93478 1.0240 1.1060 1.1823

300 0.40647 0.57482 0.70397 0.81284 0.90874 0.99543 1.0751 1.1493

450 0.39506 0.55868 0.68420 0.79002 0.88322 0.96748 1.0449 1.1170

600 0.38434 0.54352 0.66564 0.76858 0.85926 0.94123 1.0166 1.0876

750 0.37430 0.52931 0.64825 0.74850 0.83681 0.91663 0.99003 1.0583

900 0.36494 0.51608 0.63204 0.72978 0.81588 0.89371 0.96527 1.0319

1050 0.35624 0.50378 0.61697 0.71238 0.79642 0.87239 0.94224 1.0072

1200 0.34814 0.49232 0.60293 0.69617 0.77830 0.85253 0.92079 0.98431

6000

150 0.36241 0.51250 0.62765 0.72472 0.81023 0.88752 0.95860 1.0247

300 0.35278 0.49888 0.61097 0.70546 0.78869 0.86393 0.93311 0.99750

450 0.34351 0.48577 0.59492 0.68692 0.76797 0.84124 0.90860 0.97130

600 0.33477 0.47342 0.57979 0.66946 0.74845 0.81985 0.88550 0.94660

750 0.32657 0.46183 0.56560 0.65307 0.73012 0.79977 0.86382 0.92342

900 0.31890 0.45097 0.55230 0.63771 0.71295 0.78096 0.84350 0.90170
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Table A1. Cont.

Effective
Circle Radius

Arch
Height

Fundamental Frequency under Different Tension Levels (Hz)

10/N 20/N 30/N 40/N 50/N 60/N 70 N 80 N

1050 0.31173 0.44084 0.53989 0.62338 0.69692 0.76341 0.82454 0.88143

1200 0.30502 0.43134 0.52826 0.60995 0.68191 0.74696 0.80677 0.86243

6500

150 0.31780 0.44941 0.55040 0.63552 0.71050 0.77829 0.84061 0.89862

300 0.30979 0.43809 0.53653 0.61950 0.69260 0.75867 0.81943 0.87597

450 0.30217 0.42732 0.52334 0.60427 0.67557 0.74003 0.79929 0.85445

600 0.29493 0.41707 0.51079 0.58979 0.65938 0.72228 0.78012 0.83396

750 0.28815 0.40748 0.49905 0.57623 0.64422 0.70568 0.76219 0.81478

900 0.28177 0.39847 0.48800 0.56347 0.62996 0.69006 0.74532 0.79674

1050 0.27578 0.39000 0.47763 0.55150 0.61656 0.67538 0.72947 0.77980

1200 0.27015 0.38203 0.46787 0.54023 0.60397 0.66159 0.71456 0.76386

7000

150 0.28145 0.39801 0.48744 0.56283 0.62924 0.68927 0.74447 0.79584

300 0.27477 0.38857 0.47588 0.54948 0.61432 0.67293 0.72682 0.77697

450 0.26839 0.37955 0.46484 0.53673 0.60007 0.65732 0.70996 0.75895

600 0.26236 0.37103 0.45440 0.52467 0.58658 0.64255 0.69400 0.74190

750 0.25666 0.36296 0.44452 0.51327 0.57383 0.62858 0.67892 0.72577

900 0.25130 0.35538 0.43523 0.50254 0.56184 0.61544 0.66472 0.71059

1050 0.24624 0.34822 0.42647 0.49242 0.55053 0.60305 0.65134 0.69628

1200 0.24107 0.34091 0.41751 0.48207 0.53895 0.59037 0.63765 0.68165

7500

150 0.25144 0.35558 0.43548 0.50283 0.56216 0.61580 0.66511 0.71101

300 0.24580 0.34760 0.42570 0.49154 0.54954 0.60197 0.65018 0.69504

450 0.24041 0.33998 0.41637 0.48076 0.53749 0.58877 0.63592 0.67981

600 0.23531 0.33277 0.40754 0.47057 0.52610 0.57629 0.62245 0.66540

750 0.23049 0.32595 0.39919 0.46093 0.51532 0.56449 0.60970 0.65177

900 0.22593 0.31950 0.39129 0.45180 0.50511 0.55331 0.59762 0.63886

1050 0.22161 0.31339 0.38381 0.44317 0.49546 0.54273 0.58620 0.62665

1200 0.21757 0.30761 0.37673 0.43500 0.48632 0.53272 0.57538 0.61509
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