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Abstract: Herein, a new homologues series of fluorinated liquid crystal compounds, In, 4-(((4-
fluorophenyl)imino)methyl)-2-methoxyphenyl 4-alkoxybenzoate were synthesized and its mesomor-
phic properties were investigated both experimentally and theoretically. The synthesized compounds
were characterized by elemental analyzer, NMR, and FT-IR spectroscopy to deduce the molecular
structures. The differential scanning calorimetry was employed to examine mesophase transitions
whereas the polarized optical microscopy was used to identify the mesophases. The obtained re-
sults revealed that the purely nematic phase observed in all terminal side chains. All homologues
showed to possess monotropic nematic mesophases except the derivative I8 exhibits enantiotropic
property. The optimized geometrical structures of the present designed groups have been derived
theoretically. The experimental data was explained using density functional theory computations.
The estimated values of dipole moment, polarizability, thermal energy, and molecule electrostatic
potential demonstrated that the mesophase stability and type could be illustrated. Binary phase dia-
gram was constructed and addressed in terms of the mesomorphic temperature range and obtained
polymorphic phases. It was found that incorporation of the terminal F-atom and lateral CH3O group
influence both conformation and steric effect in pure and mixed states. The absorption and fluores-
cence emission spectra of fabricated films were recorded to elucidate the impact of terminal side chain
on photophysical properties of synthesized liquid crystal. It was noted that the increase of terminal
side chain length lead to reduction of optical band gap, whereas charge carrier lifetime increases.

Keywords: fluorinated liquid crystals; optical properties; thin film; geometrical structure; polymor-
phic phases; energy gap

1. Introduction

Recently, the addition of a lateral fluorine atom has shown a significant impact on the
optical and mesomeric properties of nematogenic compounds. The position and spatial
orientation of fluorine atom further influence properties of nematogenic materials. The
physical characteristics of the resulting liquid crystalline material, such as melting and
phase transition temperatures, mesomorphic morphology, dipole moment, and dielectric
anisotropy, were significantly influenced by the combination of the lateral fluorine atom’s
small size and high polarity [1–11].
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The mesomeric characteristics of Schiff bases/ester complexes are significantly affected
by the lateral or terminal polar group [12], particularly the fluorine atom. Owing to
their photoactivity under UV irradiation, azo and esters are also ideal linking groups for
designing new mesomorphic structures [13–19]. Intermolecular separation is generally
increased by lateral substitution, which extends the core moiety and decreases lateral
molecular contacts [20–24].

Grey [25] discovered that increasing the molecule’s width lowers the stability of both
the smectic and nematic phases. The fluorine atom’s small size allows the observation of
liquid crystalline mesophases without causing sterical disruption. Additionally, the high
polarity of fluorine atom influences the optical morphology, melting temperature, transition
events, dielectric anisotropy, and other physical features. Furthermore, depending on the
position and orientation, the polar fluorine atom also impacts the polarisability and dipole
moment of the entire molecule structure. The mesomorphic features of the resulting
molecule clearly reflect this. A small variation in molecular structure lead to changes
in the polarity and direction of dipole moments, consequently, improvement of optical
characteristics and observance of new mesophase behavior. The molecules, on the other
hand, tend to orientate in a parallel arrangement as the length of the terminal substituent
grows [26]. Furthermore, the twist-bend nematic and heliconical phases are influenced by
the length of the terminal chains [27–30].

Remarkably, the computational assumption for new designing materials [31–34] shows
a degree of attractiveness. To provide a wide range of optical properties, stimulated infor-
mation about the molecule orbital energies and molecular geometries of liquid crystalline
materials is required. Density functional theory (DFT) has recently emerged as a viable
technique owing to its superior performance and reproducible computational results. Fur-
ther, the knowledge of optical and photophysical properties of liquid crystal material is
important to find its application in optoelectronic devices. The absorption spectroscopy is
the primary tool to check whether a material is suitable for solar cells active layer or not by
evaluating its optical band gap and absorption coefficient [35]. The steady state and time
resolved fluorescence spectroscopy is used to illustrate the charge carrier dynamics in a
semiconducting material under illumination [36].

The goal of the present work is to synthesize new fluorinated liquid crystals, 4-(((4-
fluorophenyl)imino)methyl)-2-methoxyphenyl 4-alkoxybenzoate, (In), possessing two un-
symmetrical terminal substituents (Figure 1). The first terminal is an alkoxy chains with
6, 8, 10, and 12 16 carbons connected to the phenyl benzoate moiety. The second wing
is the F-atom attached to the phenylimine mesogen. Experimentally, we investigate the
mesomorphic and photophysical properties of synthesized materials and theoretically,
predicted parameters by employing DFT calculation and investigated the impact of the
linking group, alkoxy chain length as well as the position of lateral and terminal sub-
stituents. The optical properties of synthesized materials was investigated by recording
absorption spectra, whereas steady state and time resolved fluorescence spectroscopy were
employed to examine the impact of alkoxy side chain length on photophysical properties
of liquid crystal.
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2. Experimental
2.1. Synthesis

The liquid crystals In were synthesized according to Scheme 1.
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Scheme 1. Synthesis of 4-(((4-fluorophenyl)imino)methyl)-2-methoxyphenyl 4-alkoxybenzoate, In.

2.1.1. Synthesis of 4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenol

The methods of preparation are given in Supplementary Data [37,38].

2.1.2. Synthesis 4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenyl 4-alkoxybenzoate, In

Preparation details are depicted in Supplementary Data.

4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenyl 4-(hexyloxy)benzoate I6

Yield: 93.0%; mp 116.0 ◦C, FTIR (ύ, cm−1): 2912 2850 (CH2 stretching), 1732 (C=O),
1590 (C=N), 1612 (C=C). 1H NMR (500 MHz, DMSO-d6) δ ppm: δ 8.61 (s, 1H, CH=N), 8.03
(d, J = 7.3 Hz, 2H, Ar-H), 7.69 (s, 1H, Ar-H), 7.52 (d, J = 7.7 Hz, 1H, Ar-H), 7.37–7.31 (m, 3H,
Ar-H), 7.26–7.17 (m, 2H, Ar-H), 7.08 (d, J = 7.5 Hz, 2H, Ar-H), 4.04 (s, 2H, OCH2), 3.80 (s,
3H, OCH3), 1.70 (m, 2H, CH2), 1.39 (m, 2H, CH2), 1.27 (m, 4H, 2CH2), 0.84 (m, 3H, CH3).
13C NMR (126 MHz, DMSO-D6) δ 163.86, 163.67, 160.40, 151.54, 147.58, 142.47, 135.31,
132.71, 123.91, 123.42, 122.75, 120.86, 116.48, 115.27, 111.77, 68.56 (OCH2), 56.47 (OCH3),
31.38 (CH2), 28.79 (CH2), 25.32 (CH2), 22.31 (CH2), 14.13 (CH3). Elemental analyses: Found
(Calc.): C, 69.09 (68.96); H, 5.94 (6.11); N, 3.93 (3.95); F, 5.33 (5.49).

4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenyl 4-(octyloxy)benzoate I8

Yield: 91.5.%; mp 97.0 ◦C, FTIR (ύ, cm−1): 2920 2855 (CH2 stretching), 1728 (C=O), 1592
(C=N), 1610 (C=C). 1H NMR (500 MHz, DMSO-d6) δ 8.60 (s, 1H, CH=N), 8.02 (d, J = 8.4 Hz,
2H, Ar-H), 7.69 (s, 1H, Ar-H), 7.52 (d, J = 8.0 Hz, 1H, Ar-H), 7.33 (m, 3H, Ar-H), 7.22 (t,
J = 8.5 Hz, 2H, Ar-H), 7.06 (d, J = 8.4 Hz, 2H, Ar-H), 4.04 (t, 2H, OCH2), 3.80 (s, 3H, OCH3),
1.71 (m, 2H, CH2), 1.45–1.14 (m, 10H, 5 CH2), 0.81 (t, 3H, CH3). 13C NMR (126 MHz, DMSO-
D6) δ 164.00, 163.84, 160.48, 152.00, 148.16, 142.74, 135.44, 132.62, 124.04, 123.39, 123.32,
122.83, 120.92, 116.49, 116.31, 115.34, 111.80, 67.95 (OCH2), 55.98 (OCH3), 31.65 (CH2), 29.23
(CH2), 29.16 (CH2), 29.02 (CH2), 25.85 (CH2), 22.96 (CH2), 14.35 (CH3). Elemental analyses:
Found (Calc.): C, 72.93 (73.06); H, 6.75 (6.71); N, 2.93 (2.95); F, 3.98 (3.79).

4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenyl 4-(decyloxy)benzoate I10

Yield: 92.1.%; mp 92.0 ◦C, FTIR (ύ, cm−1): 2918 28545 (CH2 stretching), 1725 (C=O),
1590 (C=N), 1613 (C=C). Elemental analyses: Found (Calc.): C, 73.64 (73.42); H, 7.18 (6.96);
N, 2.77 (2.75); F, 3.76 (3.78).
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4-(((4-Fluorophenyl)imino)methyl)-2-methoxyphenyl 4-(dodecyloxy)benzoate I12

Yield: 93.4.%; mp 78.0 ◦C, FTIR (ύ, cm−1): 2925 2850 (CH2 stretching), 1730 (C=O),
1595 (C=N), 1615 (C=C). Elemental analyses: Found (Calc.): C, 74.27 (74.16); H, 7.55 (7.72);
N, 2.62 (2.85); F, 3.56 (3.71).

The isomerization of the present laterally substituted Schiff bases (In) has been investi-
gated. The presence of only one isomer (E-isomer) has been confirmed by NMR spectra.
No duplicate peaks neither for azomethine protons nor for aromatic protons have been
observed. This is owing to the steric hindrance between the bulky two phenyl groups
which destabilizes the Z-isomer relative to the E-isomer (Scheme 2).
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2.2. Characterization

Details are given in Supplementary Data.

2.3. Computational Method

DFT calculations for the investigated substances were performed using Gaussian 09
software [39]. The computations were performed using the DFT/B3LYP methods with
the 6–31G (d,p) basis set. Without imposing any molecular symmetry limitations, the
geometries were optimized by minimizing the energies with respect to all geometrical
parameters. Gauss View [40] was used to design the structures of the optimized geometries.
In addition, the same level of theory was used to calculate frequencies. In the geometry
optimization method, the frequency calculations revealed that all structures were stationary
points with no imaginary frequencies.

3. Results and Discussion
3.1. Liquid Crystalline Properties

The mesomorphic properties of the present synthesized series (In) were investigated.
The results of the transition temperatures and enthalpies, as determined from the DSC inves-
tigations are collected in Table 1. DSC data were estimated from the second heating/cooling
cycles to study the stability of the synthesized compounds. The second heating scan was
used to record all of the thermal properties of these substances. DSC thermogram of the
synthesized homologue I8 is presented in Figure 2. On heating, the homologue showed
two endothermic peaks assigned to the crystal-to-mesophase and mesophase-to-isotropic
transitions while on cooling, a reversed exothermic peak was observed corresponds to
isotropic to mesophases transition as presented in Figure 2 and the mssophase still present
until room temperature. The POM textures was also confirmed by the DSC data. POM
showed schlieren textures of the nematic (N) phase (Figure 3). All homologues exhibits
the monotropic monomorphic characteristics except the derivative I8 shows enantiotropic
property. Figure 4 shows a graphical illustration of DSC temperature of transitions to evalu-
ate the effect of the terminal alkoxy chains (n) on the mesomorphic behavior of the formed
derivatives [41,42]. All examined compounds of the present series (In) are nematogenic,
as shown in Table 1 and Figure 4. In general, the type of linking spacers and the length of
terminal chains as well as the size of attached substituents determine the mesomorphic
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behavior for any designed liquid crystalline molecular architecture [26,38]. As shown from
Table 1 and Figure 4, the melting transitions temperature follow a random pattern. The
homologue I12 possesses the lowest melting point (78.1 ◦C) whereas the homologue I6
has the highest melting transition temperature (116.3 ◦C). All compounds of the prepared
group are nematogenic and display purely N mesophases and their N phase stability
decreases with the terminal alkoxy chain, n; these results are in consistent with previous
documents [25–36,43–45].

Table 1. Phase transition temperatures (T, ◦C) upon heating and cooling cycles, enthalpy of transitions
(∆H, kJ/mol), and normalized transition entropy upon cooling (∆S/R) of present series In.

Cycle Upon Heating Upon Cooling ∆S/R

Comp. TCr-I TCr-N TN-I TI-N TN-Cr
I6 116.3 (42.22) - - 112.9 (1.16) - 0.36
I8 96.7 (45.64) 108.4 (1.85) 106.5 (1.13) - 0.36

I10 91.7 (36.14) - - 69.2 (1.18) 21.7 (19.35) 0.41

I12 78.1 (37.00) - - 53.0 (1.13) 32.33
(18.72) 0.42

Abbreviations: Cr-I = solid-isotropic liquid; Cr-N = solid-nematic; N-I = nematic-isotropic liquid; I-N = isotropic
liquid-nematic; N-Cr = nematic-solid.
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In general, the mesogenic core of the molecule’s polarity and/or polarisability plays
the most important roles in determining mesophase behavior. In comparison of present
derivatives, homologue I6 has the highest nematic stability (112.9 ◦C), whereas homologue
I12 has the lowest N phase stability (53.0 ◦C). Wide N temperature ranges are observed
for all homologues upon cooling. From the present results, it could be concluded that, as
the molecular anisotropy increases, as a result of the change in the mesogenic core of the
molecule, the temperature range of the produced mesophases is increased.

On the other hand, the geometrical parameters such as dipole moment, polarizability,
and molecular shape of the prepared homologues In are highly affected on the association
of molecules that leads to enhance the formation of wide N mesophase temperature range
on cooling.

The normalized entropy changes, ∆S/R, upon cooling of the prepared compounds
(In) are collected in Table 1. Independent of the alkoxy chains length (n), the entropy of
N transition is of small magnitude. The lower value of entropy changes for N transitions
of homologous series In can be explained by the lower degree of linear alignments of the
molecules at high temperatures. Furthermore, the terminal chains play a significant part in
the molecule’s multi-conformational modifications [46].

3.2. Geometrical Structures

Because fluorine atom is one of smallest atoms, lateral fluorine inside the mesogenic
part of the molecule will have a slight steric effect. Furthermore, the fluoro substituent has
the maximum electronegativity and is very polar (3.98). It also has a low polarizability
(5.57 × 10−25 cm−1), which means that intermolecular dispersion interactions are minimal.
The effect of fluoro substitution in a laterally substituted mesogen, on the other hand, is
largely reliant on its location.

The optimized geometrical shape of designed fluorinated derivatives I6, I8, I10 and
I12 are shown in Figure 5. The computational calculations were performed by DFT/B3LYP
method using 6–31G (d,p) basis set and GAUSSIAN 09W. The calculated data predict
that the all compounds are linear. The synthesized homologues (In) should be in planar
conformation because they are mesomorphic. The frequency calculation confirmed that
the optimized structure of each member of the current series is stable, as no imaginary
frequency was predicted for any of the members (Figure 5).

It is widely known that the polarizability, dipole moment and total thermal energy
of liquid crystalline materials have a significant impact on the type and mesophase sta-
bility [13]. Furthermore, these parameters have an impact on some properties that are
significant for nonlinear optical (NLO) liquid crystal applications such as optical intercon-
nections, telecommunications, and signal processing [47,48]. The computed energies of
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO), as well as the energy difference between them, using the same approach
and the 6–31G (d,p) basis set for all compounds have been calculated. The predicted
geometrical and thermal parameters values are collected in Tables 2 and 3. Results revealed
that the competition between the intermolecular terminal and lateral molecular interactions
impacts the mesomorphic characteristics. This competition leads to the predomination of
one of them according to the geometrical structure optimization. The linear-shape of the
investigated homologues (In) enhances the terminal interactions over the lateral ones. This
consequently resulted in the production of the N mesophase, covering all of the prepared
fluorinated derivatives (In).
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Table 2. DFT predicted thermal parameters for series In.

Compound ZPE
(Kcal/Mol)

Thermal
Energy

(Kcal/Mol)

Enthalpy
(Kcal/Mol)

Gibbs Free
Energy

(Kcal/Mol)

Entropy
(Cal mol.k)

I6 311.781 331.655 332.247 268.439 214.013

I8 347.608 369.186 369.779 301.645 228.522

I10 383.435 406.717 407.310 334.847 243.042

I12 419.262 444.249 444.842 368.056 257.542
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Table 3. Total Energy, EHOMO, ELUMO, ∆E, dipole moment, ionization energy, electron affinity and
polarizability calculated for the present series, In.

Comp. Total Energy
(Hartree)

EHOMO
(ev)

EluMO
(ev) ∆E (ev) Dipole Moment

(Debye) IE (ev) EA (ev) Polarizability
Bohr3

I6 −1500.642 −6.035 −2.062 3.973 6.2270 6.035 2.062 374.73

I8 −1579.207 −6.034 −2.062 3.972 6.2646 6.034 2.062 398.87

I10 −1657.771 −6.034 −2.061 3.973 6.2850 6.034 2.061 422.75

I12 −1736.335 −6.033 −2.061 3.972 6.2981 6.033 2.061 446.49

Abbreviations; EHOMO; energy of the highest occupied molecular orbital, ELUMO; energy of the lowest unoccupied
molecular orbital and ∆E = ELUMO−EHOMO; orbital energy gap.

It was found that, linear dependency of the polarizability and dipole moment of the
whole molecule as the terminal alkoxy chain length (n) increases (Table 3). Another linear
dependency of the estimated total thermal energy as the stability of the N phase increases
(Figure 6).
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3.2.1. Frontier Molecular Orbitals (FMOs)

Figure 7 depicts the frontier molecular orbitals HOMO (highest occupied) and LUMO
(lowest unoccupied) diagrams for the current fluorinated derivatives designs In. Table 3
lists the calculated energies and energy gap (∆E) values. The energy gap predicts the ability
of electron transfer from HOMO to LUMO during the electronic excitation mechanism and
is inversely connected with reactivity [49]. The electron densities of the sites involved in the
production of HOMOs and LUMOs are localized on the fluoro substituent and azomethine
moiety as well as lateral methoxy group, according to the expected values. Furthermore,
the two terminals of molecules have a minor effect on the placement of the FMOs’ electron
distributions. In addition, the energy gap of FMOs is not affected by the length of the
alkoxy chain (n).
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3.2.2. Molecular Electrostatic Potential (MEP)

The distribution of electron density at atomic locations of LC materials affects molecule
polarizability, electronic structure, dipole moment, and many other properties [36]. In
addition, the molecular electrostatic potential (MEP) is a significant element for studying
the electron density distribution in molecules [47–49] Furthermore, MEP is one of the most
effective methods for determining whether or not a molecule has intermolecular and/or
intramolecular interactions. The B3LYP/6311G(d,p) method was used to compute the MEP
of the examined compounds (In, Figure 8). The position of the polar attached terminal
F-group as well as the connecting azomethine and lateral methoxy groups of the examined
compounds had slight effect on the localization of the iso-electronic density of the electron
rich and electron deficient areas. The ester group of the benzoate component, on the other
hand has the most electrons. While, the terminal alkoxy chain shows the least negatively
charged atomic sites.
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3.3. Binary Phase Diagram

Figure 9 shows an example of a binary phase diagram derived by DSC investigations of
two components bearing same alkoxy chain lengths, present derivative I8 and laterally neat,
II8. The binary mixtures was produced from the enantiotropic terminal chain homologues
(I8/II8). Laterally neat derivative II8 exhibit the SmA and N mesophases enantiotropically.
As seen in this figure, the binary phase diagram exhibits a negative depression of the N
phase from the normal behavior. The little disruption of the N phase can be attributable
to the great difference between the geometry the two components of the mixture that
disturbs to some extent the linear arrangement of the molecules. Moreover, induced
polymorphic phases have been produced at compositions 40 and 60 mol % of II8. Figure 9
also demonstrates that the solid mixture with eutectic composition of 60.0 mol % of I16 has
a eutectic melting point of 85.7 ◦C and mesomorphic temperature range of 41.3 ◦C. It may
be deduced that incorporation of the terminal F-atom and lateral methoxy group influence
both conformation and steric effect in pure and mixed states that lead to formation of
induced polymorphic phases.

3.4. UV-Vis Absorption Spectra

The UV-Visible absorption spectra of prepared samples on glass slides are illustrated in
Figure 10a. The spectra exhibit two regions: high energy absorption from 280 nm to 430 nm
and low energy absorption from 430 nm to 950 nm. The peak absorption in higher energy
region for all samples was observed at ~293 nm which correspond to π − π∗ transition in
aromatic ring. The absorption in this region also exhibits a shoulder ~361 nm corresponds
to absorption by side alkyl chain. As the length of side chain increases shoulder becomes
more prominent and its position red shifted to 365 nm, 383 nm and 392 nm, for samples
I8, I10 and I12, respectively. The direct energy band gaps of fabricated samples were
evaluated from Tauc plot shown in Figure 10b [50] using relation: (αhυ)2 = A

(
E− Eg

)
,

where absorption coefficient α = Abs.
Thickness and A is an empirical constant. The bandgap of

sample with smallest alkyl side chain was noted to be 2.97 eV and found to be decreases
with increase of side chain length. The evaluated bandgap for samples I8, I10 and I12, are
2.93 eV, 2.79 eV and 2.70 eV, respectively.
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3.5. Fluorescence Spectra

To illuminate the influence of alkoxy side chain length on photophysical properties
of prepared sample, we recorded steady-state photoluminescence (PL) spectra by exciting
the sample via 320 nm laser diode. The normalized PL spectra of fabricated samples are
displayed in Figure 11a which show a broad emission in the range 400–575 nm. The peak
emission of I6 sample was observed at 462 nm and noted to be red shifted with increase
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of flexible alkoxy side chain length. The peak emission of I8, I10 and I12 samples were
noted at 467 nm, 473 nm and 480 nm, respectively. The fluorescence decay spectra of these
samples are shown in Figure 11b which were recorded at 465 nm. It can be noted from
the Figure that as the alkyl side change length increases the fluorescence decay becomes
slower. The excited state charge carrier lifetime in these samples were evaluated by fitting
the decay spectra with single exponential decay: I(t) = A + Be−

t
τ , where τ is lifetime.

The charge carrier lifetimes in I6 sample was evaluated to be 107 ns. It can be noted from
Table 4 that with increase of alkyl side chain length the lifetime increases attributed to the
stearic hindrance of alkyl side chain. The lifetime I8, I10 and I12 samples were calculated
to 133 ns, 150 ns and 178 ns, respectively.
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Figure 11. (a) Steady state and (b) time resolved fluorescence spectra of synthesized liquid crystal
thin films.

Table 4. Summary of optical parameters evaluated from absorption and fluorescence spectroscopy.

Sample
Absorption λemission

(nm)
Life Time
τavg (ns)λmax (nm) λShoulder (nm) Eg (eV)

I6 293 361 2.97 462 107

I8 292 365 2.93 467 133

I10 294 383 2.79 473 150

I12 293 392 2.71 480 178

4. Conclusions

New nematiogenic fluorinated liquid crystal homologues series were prepared and
examined for their mesophase and photophysical behavior for energy investigations. All
materials are exhibit purely nematogenic mesophase monotropically except the derivative
I8 possess enantiotropic nematic phase. Theoretical calculations revealed that, the linear-
geometry of the investigated compounds enhances the terminal interactions and resulted in
the production of the N mesophase covering all the terminal chains. The optical band gap of
liquid crystal material was found to be decreases from 2.97 eV for I6 to 2.70 eV I12 attributed
to improved crystallinity with increase of alkoxy side chain. The red shift in steady state
fluorescence spectra and increase of charge carrier lifetime further confirm improvement of
crystallinity of liquid crystal material with increase of terminal side chain length.
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