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Abstract: During the COVID-19 pandemic, wide use of 3D printing technologies has been enabled.
Fused filament fabrication (FFF) is the most widely used technique in 3D printing communities
worldwide for the fabrication of medical components such as face shields and respiratory valves.
In the current study, the potential of Polyamide 12 (PA12) silver-doped antibacterial nanopowder
(AgDANP) nanocomposites is evaluated for everyday FFF usage. Filling loadings of 1.0-2.0-3.0
and 4.0 wt.% were selected for nanocomposite preparation. Mechanical performance analysis was
conducted on the basis of tensile, flexural, impact, and Vickers microhardness measurements in FFF
3D-printed specimens. Scanning Electron Microscopy (SEM) images were used for morphology and
processing evaluation, as well as thermal performance measurements, conducted by Thermogravi-
metric Analysis (TGA) tests. Finally, the antibacterial performance was tested using the agar-well
diffusion screening method, and the shape effect of the specimens was also investigated. The addition
of 2.0 wt.% AgDANPs resulted in an enhancement of approximately 27% for both tensile and flexural
stresses, while the antibacterial performance was sufficiently high among the nanocomposites tested.
The shape effect exhibited the potential for antibacterial performance at low filling ratios, while the
effect was diminished with increasing filler of AgDANPs.

Keywords: fused filament fabrication (FFF); 3D printing; antibacterial; additive manufacturing (AM);
silver; polyamide 12 (PA12); mechanical; nanocomposites

1. Introduction

Additive manufacturing (AM) describes a family of technologies that can be used to
fabricate parts in a layer-by-layer manner by adding materials [1]. Over the past decades,
the interest of researchers and engineers in AM technologies has enhanced the development
of a wide range of AM techniques [2], as well as an even wider range of composite
materials [3]. AM methods have attracted a great deal of attention, as they offer many
solutions and advantages compared to conventional manufacturing methods [4]. One of the
foremost advantages of using AM technologies is the manufacturability of high-complexity
geometries [5]. This makes it possible to design without compromise [6], while it also makes
it possible to reduce the weight [7] of the structure and, as a result, optimize the necessary
material usage for each component. The commercially accessible AM techniques include
fused filament fabrication (FFF), stereolithography (SLA), and selective laser sintering (SLS).

Among all AM technologies, FFF has attracted much interest not only in the academic
and engineering world [8], but also as an emerging mass-market product [9]. The raw
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materials used in the FFF method are in filament form [10]. Intense interest has emerged in
the last decade in the development of composite materials [11–14]. Such composites are
still being developed to enhance the mechanical [12,15,16], thermal, [17–19], and chemical
resistance performance [20,21], while in parallel, the introduction of new properties in
thermoplastic matrices has been attempted for electrical conductivity [22,23], as well as
antibacterial [4,24] and other properties. In this context, the use of nanotechnology is a
prospective way of attributing properties to polymeric matrices [25,26]. Sufficient research
has been conducted in this direction, focusing both on upgrading existing properties and
on introducing new ones [15,27,28].

Polyamide 12 (PA12) is an engineering-grade material from the polyamide thermo-
plastic family [22]. PA12 has a semi-crystalline internal structure [29]. While it is mainly
used in conventional manufacturing methods, SLS, and similar AM techniques [30], it has
also demonstrated great potential in FFF implementations [17,30–33]. Its semi-crystalline
form and rather stable thermal performance suggest that PA12 does not require any special
setup for 3D printing (i.e., closed-heated printing chamber) [33,34]. As a result, PA12
could be used in “everyday” manufacturing in conventional 3D printers operating with
the FFF method [35]. In addition to its printability, PA12 acts as a fine matrix material for
a wide range of nanoparticles, providing the added-value ability to develop PA12-based
nanocomposites in 3D printing applications.

The recent pandemic has created many difficulties worldwide, both in the transport of
products and in their production [36]. Such difficulties led to absences in many economic
sectors, while the most serious deficits were those in the medical field [37]. 3D printing was
used during this period to create the necessary medical supplies, that is, face shields and
ventilation components [38–40]. Medical applications require high mechanical performance,
while the antibacterial properties of the materials provide added value [41,42]. Such
performance could be achieved using PA12 material combined with metal nanoparticles.
Silver nanoparticles have been introduced in AM implementation mainly in the context
of powder-based AM techniques, that is, SLS and MJF, in order to improve sintering
conditions [43].

In this study, PA12, silver (Ag)-doped antibacterial nanoparticle nanocomposite ma-
terials were developed, and their mechanical performance was tested. Specifically, ten-
sile, flexural, and impact tests were conducted on 3D-printed specimens, while surface
microhardness measurements were also conducted. The antibacterial performance of
PA12/Ag-doped antibacterial nanoparticles (PA12/AgDANP) nanocomposites was also
tested, using a screening method for agar well diffusion. Antibacterial tests were conducted
on 3D-printed specimens with different geometries in order to investigate the effect of each
shape on the antibacterial performance of the nanocomposites. Finally, to elaborate the
processability of the nanocomposite materials, scanning electron microscopy (SEM) was
used to capture the fracture area of the tensile specimens, while atomic force microscopy
(AFM) measurements were conducted in the extruded filament. Thermogravimetric analy-
sis (TGA) was conducted on the nanocomposites for the thermal performance study. To
the best of our knowledge, there are no other similar studies on PA12/AgDANP nanocom-
posites in terms of mechanical and antibacterial performance analysis, considering the
geometric complexity and effectiveness of antibacterial action. All the nanocomposite
loadings tested exhibited antibacterial performance, while the filler significantly affected
the mechanical response of the polymer, with an enhancement of up to about 27% being
recorded for tensile strength.

2. Materials and Methods

The procedure of the current study for the preparation of the nanomaterials, the
manufacturing of the 3D-printed specimens, and the characterization process, is presented
in Figure 1.
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Figure 1. Presentation of the overall procedure followed for the preparation, measurement, and char-
acterization of PA12/AgDANP nanocomposites: (1) matrix material and filler powder; (2) after the
mixture of the matrix material and the nano-filler, nanopowders are dried; (3) the filament extrusion
process; (4) the filament drying process; (5) specimens’ 3D printing process; (6) tensile testing of
specimens; (7) investigation of nanocomposites’ thermal properties in the thermogravimetric analysis
device; (8) flexural testing of the manufactured specimens; (9) filament surface roughness investiga-
tion in the atomic force microscopy device; (10) investigation of specimens’ surface morphology in
scanning electron microscopy device; (11,12) investigation of the antibacterial performance of the
nanocomposites for E. coli bacterium with the agar well diffusion screening process.

2.1. Materials

Medical-grade Polyamide 12 procured from Arkema (Arkema, Colombes, France),
and specifically, Rilsamid PA12 AESNO TL grade, was used as a matrix material. Ac-
cording to the manufacturer’s technical datasheet for Rilsamid PA12 AESNO TL, which
is the commercial brand name for the procured matrix thermoplastic, the density was
1.01 g/cm3 (ISO 1183), with a melt volume flow rate (MVR) of 8.0 cm3/10 min (ISO 1133) at
235 ◦C/5.0 kg, and a Vicat softening temperature of 142 ◦C (ISO 306/B50), while the melting
temperature was 180 ◦C (ISO 11357-3). The procured grade was stated to have additives
of heat, lubrication, and UV stabilizers. The filler material procured for the current study
consisted of nanoparticles (NPs) under the commercial name “silver (Ag)-doped antibac-
terial” (AgDANP), which was acquired from Nanografi Ltd. (Nanografi Ltd., Ankara,
Turkey). These NPs are a rather low-cost mixture of metal oxides and other materials with
antibacterial properties including, according to the manufacturer, Al2O3, HfO2, N2O, P2O5,
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TiO2, ZrO2, and Ag, with the elemental analysis being as follows: P 16.15%, Zr 37.30%,
Ag 4.00%, Y 0.55%, Sc 0.20%, and Al 0.14%. AgDANP was in nanopowder form with
an average particle size of 100 nm. According to the manufacturer’s datasheet, the bulk
density was 0.39 g/cm3, its pH was 5.7, and it could withstand temperatures up to 350 ◦C,
which are higher than the processing temperatures for extrusion and 3D printing used in
the current work.

2.2. Filament and Specimen Fabrication

The matrix material was first dried at 80 ◦C for 24 h using a laboratory oven in open-
loop mode. PA12 and AgDANP were dry-mixed using a high-shear-force laboratory mixer
for approximately 20 min. For the extrusion process, a 3D Evo Composer 450 procured
from 3D EVO B.V. (3D EVO B.V., Utrecht, The Netherlands) was used. Composer 450
uses four (4) heating zones, which were set up at temperatures from the hopper to the
nozzle of 185 ◦C, 220 ◦C, 220 ◦C, and 215 ◦C, respectively. The extruder’s screw rotational
speed was set at 7.5 rpm, while the filament’s built-in winder device was automatically
controlled through feedback from the optical sensor of the filament diameter. A built-in
cooling unit consisting of two (2) centrifugal airflow systems was set at 50% to cool the
extruded filament before entering the winding system.

For the necessary specimen fabrication, a Craftbot Plus Pro (Craftbot Ltd., Budapest,
Hungary) 3D printer was used. The 3D printer was equipped with all-metal hot-end
assembly, and the 3D printing platform was further enhanced with masking tape (3M
101+) to reduce the wrapping effect. Figure 2, below, presents the fundamental 3D printing
processing settings, while all other necessary settings of the 3D printing procedure were set
automatically using Craftware slicing software, by selecting PA as the 3D printing material.
It should be mentioned that the hot-end cooling fans were completely closed to enhance
thermal stability during 3D printing, thuse reducing wrapping effects. All specimens were
3D printed in the horizontal direction.
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2.3. Mechanical Performance Testing

Mechanical performance was studied through tensile, flexural, impact, and Vickers
microhardness tests. Tensile tests were conducted according to the ASTM D638-02a inter-
national standard, by fabricating with FFF five (5) type V specimens with 3.2 mm thickness.
Imada MX2 (Imada Inc., Northbrook, Illinois, United States) was used in a tension mode
setup using standardized grips. The elongation speed was set to 10 mm/min according to
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the standard specifications. Tests were conducted at room temperature of 21 ◦C and 50%
RH. The same Imada MX2 apparatus was used for the flexural tests. In this case, a three-
point-bending setup was used following the ASTM D790-10 international standard. Five (5)
flexural specimens with a thickness of 3.2 mm were also tested according to the referenced
standard with a chuck speed of 10 mm/min. Impact specimens were tested according to
the ASTM D6110-04 international standard. Five (5) Charpy notched specimens were tested
using a Terco MT220 apparatus (Terco AB, Huddinge, Sweden). Vickers microhardness
measurements were conducted on specimens polished with 400 grit sandpaper. The ASTM
E384-17 international standard was followed, and five (5) measurements were taken on
each studied material after randomly selecting the tested specimen. Microhardness was
measured since it is a strong indication of the material’s mechanical response [44].

2.4. Antibacterial, Morphological and Thermal Analysis

The antibacterial performance of the developed nanocomposites was investigated
using the agar well diffusion screening method [45] in a microbiological lab for two (2) dif-
ferent bacteria, i.e., Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylo-
coccus aureus (S. aureus), in Petri dishes with a diameter of 85 mm. Each bacterium was
cultivated with a specific growth material in different Petri dishes. 3D-printed specimens
with a height of 5.00 mm with four different geometries (circle, triangle, half-moon, and
flower) were placed in each petri dish to investigate the effect of geometry in the antibacte-
rial performance. Petri dishes were placed in an oven at 37 ◦C for a period of 24 h, targeting
the optimized diffusion of antimicrobial agents in the agar and inhibiting germination and
growth of the test microorganism. Subsequently, the inhibition zones at the periphery of
the 3D-printed specimens were measured using optical equipment.

SEM images were acquired at different magnification levels for both the fracture
and the side surfaces of the tensile specimens. A JEOL 6362LV (Jeol Ltd., Norwood, MA,
USA) was used for this purpose. The samples were sputter-coated with gold (Au) to
avoid charging effects. The electron microscope was set in high vacuum mode at 20 kV
acceleration voltage. Energy-dispersive X-ray analysis (EDS) was also conducted on the
same device, on un-sputtered specimens, to determine the elemental composition of the
materials. The filament surface topology was analyzed by AFM using a MicroscopeSolver
P47H Pro (NT-MDT, Moscow, Russia) apparatus. Commercially available silicon cantilevers
with a scanning frequency of 1 Hz, cantilever spring constant of 35 N/m, tip cone angle
of 20◦ and tip radius of 10 nm were used at a resonant frequency of 300 kHz. TGA
measurements were conducted from a part of 3D printed tensile specimens in samples of
approximately 10 mg. A Perkin Elmer Diamond TGA/DTGA (Perkin Elmer Inc., Waltham,
Massachusetts, United States ) apparatus was used with a temperature range of 40 ◦C to
550 ◦C. The temperature ramp was set to 10 ◦C/min.

3. Results
3.1. Mechanical Performance Results

Figure 3 presents the results of the developed nanocomposite materials tensile per-
formance compared to pure PA12. The addition of AgDANP has a clear effect on the
tensile performance of the nanocomposites. Specifically, a sufficient increase in the tensile
strength was exhibited for the PA12/AgDANP 2.0 wt.% nanocomposite, which was mea-
sured to be approximately 27% higher than neat PA12. The same nanocomposite exhibited
the highest calculated elastic modulus, which was approximately 7% higher than that of
pure PA12. AgDANP also increased the ductility of the developed materials, as the strain
until the breakage of the tested specimens increased under all studied cases, except for
PA12/AgDANP 4.0 wt.%. This nanocomposite exhibited the lowest values in all tensile
performance measurements. This effect implies a plausible saturation in the loading for the
filler in this matrix material.
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Figure 4 presents the results of the flexural tests conducted on the 3D-printed nanocom-
posite specimens, compared to the neat PA12 material. The flexural performance of
PA12/AgDANP 2.0 wt.% nanocomposite displayed the highest values among the studied
materials. The enhancement of the fractural stress at 5.0% strain (where the experiment was
terminated, according to the standard instructions) was measured to be approximately 26%
higher than that of pure PA12, while a similar trend was exhibited by the flexural modulus
of elasticity for the same material. AgDANP loading over 2.0 wt.% resulted in plausible
agglomeration effects in micro or nanoscale, which could consequently enhance the already
anisotropic behavior of FFF 3D-printed specimens.
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A similar trend was also observed for the tensile toughness, which was calculated as
the average integral of the stress–strain curve of the tested specimens for each nanocom-
posite. Figure 5 shows the results of tensile toughness (MJ/m3), where the PA12/AgDANP
2.0 wt.% nanocomposite exhibits an extreme difference when compared to the other studied
materials. This effect can be attributed to the fine dispersion of the filler in the polymer
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matrix, which increased strain before breakage occurred. The impact performance, which
is shown in Figure 6, has a different behavior compared to the other tests. According to the
results, the addition of AgDANP did not enhance the impact strength. Pure PA12, which
is a well-known viscoelastic material, absorbed the highest energy during the impact test.
Sudden stresses applied to the specimens can plausibly create tiny fractions in this interface
area, in this way resulting the specimen being able to withstand lower amounts of stress
before breaking.
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3.2. Morphological, Thermal, and Antibacterial Analysis
3.2.1. Morphological Results

To determine the morphology of the 3D-printed specimens, SEM analysis was con-
ducted on randomly selected tensile specimens. In Figure 7, images of the side and the
fracture areas of pure PA12 tensile specimens are presented. The ductile performance of
PA12 was observed in the fracture area of the specimens. On the basis of the side surface
images, it is shown that the overall processing settings were appropriately selected. The
interlayer fusion in Figure 7c is in agreement with the 3D printing specifications, while in
Figure 7b, despite the deformation of the specimen due to the tensile stresses, it is shown
that the intralayer quality was also appropriate in the specimens.
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Figure 8 shows the SEM images of the PA12/AgDANP nanocomposites. On the basis
of Figure 8, it is shown that the settings selected for the 3D printing process, as well as the
filament extrusion settings, resulted in fine-quality specimens. The 1.0 wt.% and 2.0 wt.%
PA12/AgDANP nanocomposite specimens had a few tiny voids and inconsistencies in
the side surfaces. As the PA12/AgDANPs with higher filler ratios (Figure 8e–h) did
not exhibit any faulty surfaces, the tiny voids presented in PA12/AgDANP at 1.0 wt.%
and 2.0 wt.% could be plausibly attributed to tiny particles present in the 3D printer’s
nozzle. Considering that the mechanical performance results were not influenced by these
inconsistencies, they can be reported as local non-significant failures.

Figure 9 presents the fracture area of the PA12/AgDANP tensile specimens. The
intralayer quality of the tensile specimens of the studied nanocomposites was observed
to be good. A slight difference is presented between PA12/AgDANPs nanocomposites of
3.0 wt.% and 4.0 wt.%. In these cases, the intralayer surface exhibits tiny gaps. Such gaps
normally exist in 3D-printed structures, while in this case they could be plausibly attributed
to a slight change in the flow ratio due to higher filler loadings, which consequently changes
the thermal behavior of the nanocomposites. For this study, the processing temperatures
of either the 3D printing or the filament extrusion procedures were kept constant for
all of the fabricated nanocomposites. A future optimization study of PA12/AgDANP
nanocomposite processing could plausibly suggest slight temperature changes in the
settings. In correspondence to the mechanical performance results, in Figure 9, an increase
in the stiffness of PA12/AgDANPs nanocomposites can be observed. The ductile fracture
presented in neat PA12 decreases continuously with increasing filler loading, which is in
agreement with the measurements.
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Figure 8. SEM 30× magnification side surface images for: (a) PA12/AgDANP 1.0 wt.%;
(c) PA12/AgDANP 2.0 wt.%; (e) PA12/AgDANP 3.0 wt.%; (g) PA12/AgDANP 4.0 wt.%, 150×
magnification of side surface for (b) PA12/AgDANP 1.0 wt.%; (d) PA12/AgDANP 2.0 wt.%;
(f) PA12/AgDANP 3.0 wt.%; (h) PA12/AgDANP 4.0 wt.%.
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Figure 10 presents higher-magnification images from the fracture area of the fabricated
nanocomposites, at a zoom of 5000×. By means of this high magnification level, and in
combination with EDS scanning, a qualitative approach was attempted for the evaluation
of the existence of the filler in the nanocomposites. These results are in good agreement
with the corresponding nanopowder composition. Finally, with respect to the dispersion
of the filler in the nanocomposites, fine dispersion was assumed, as even at the highest
magnification levels, no agglomerations were captured, and the elemental composition
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was in good agreement with the expected levels; finally, the overall processing of the
nanocomposites did not develop any difficulties either in filament extrusion or during
3D printing.
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AFM measurements, contributing to the completeness of the morphology analysis,
were conducted on filaments of all of the fabricated nanocomposites. Figure 11 presents the
AFM measurements of the surface of the filaments. The fine quality of the filaments was
assumed for all studied materials, as the differences were not significant, while the topology
was shown to provide a smooth surface for 3D printing. These measurements provide
a quality factor for the extruded filament, and in combination with the built-in diameter
measurement system of the used extruder, the quality level of the extrusion was confirmed.Polymers 2022, 14, x FOR PEER REVIEW 12 of 18 
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3.2.2. Thermal Results

Figure 12 presents the results of the TGA measurements. Figure 12a shows that after
the degradation phase of the samples, the remnants are in fine coherence with the filler’s
ratio in each nanocomposite. The AgDANPs were not burnt during the TGA measurements,
as the highest temperature achieved during the tests was 550 ◦C. Figure 12b, which presents
the degradation rate during the tests, provides the criteria to formulate that AgDANPs
could plausibly provide the PA12/AgDANPs nanocomposites with thermal resistance
properties, as the highest degradation rate decreased by over 50% for the PA12/AgDANP
4.0 wt.% nanocomposite compared to pure PA12. A similar rate of decrease was calculated
for all PA12/AgDANP nanocomposites even for filler ratios of 1.0 wt.%
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3.2.3. Antibacterial Results

Antibacterial performance results are presented in the figures below for the two
bacteria assessed. It should be mentioned that, except for the normally used cylindrical
specimens, different shaped specimens were also fabricated and tested for all studied
nanocomposites. In this way, except for the antibacterial performance of the nanocom-
posites, an extra screening of the effect of the geometry on the antibacterial performance
was attempted. In Figure 13, images from the tests and the corresponding inhibition
zone measurements for the PA12/AgDANP nanocomposites for Gram-negative E. coli
are shown.

The presence of AgDANPs in the nanocomposite enhanced the antibacterial perfor-
mance of the nanocomposites; the higher the filler ratio in the nanocomposite, the higher
the inhibition zone. For Gram-negative E. coli, increases in filler above 2.0 wt.% were found
to have no effect on the antibacterial enhancement, and in this way indicated a saturation
point for filling loading between 2.0 wt.% and 3.0 wt.%. Figure 14 presents the results of
the antibacterial performance test against Gram-positive S. aureus. A similar antibacterial
performance was observed for all nanocomposites. A plausibly higher saturation point is
shown in the case of the Gram-positive S. Aureus bacterium, since, in contrast to Gram-
negative E. coli, filler ratios above 3.0 wt.% still resulted in the increased antibacterial action
of the nanocomposite.
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Shape analysis revealed that shape had a plausible effect on the antibacterial effect of
the fabricated nanocomposites. It should be mentioned that when the filler ratio was higher
than the saturation point mentioned above, meaning that intense antibacterial action exists,
the shape effect was lower. Conversely, at lower filler ratios, for the two tested bacteria, the
shape effect exhibited a factorial behavior for the antibacterial performance. Triangular-
and “flower”-shaped specimens exhibited higher inhibition zones compared to circular-
and “moon”-shaped specimens. In many cases, even though the antibacterial action of
the nanocomposite was low, the specimens with the above-mentioned shaped provided
inhibition zones similar to specimens with double their filler ratios.

4. Discussion

On the basis of the mechanical performance analysis, it is revealed that the addition
of metal–ceramic nanoparticles to PA12 matrices is able to enhance the behavior of the
developed nanocomposites. This enhancement can be attributed to mechanisms related to
the quality of nanoparticle dispersion in the polymer matrix [46], the optimum polymer
melt rheology and temperature during melt processing [47,48], and the interaction of
nanoparticle inclusions with the polymer matrix [49], among other things. The size and
geometry of the fillers also have a significant role in the mechanical properties of the final
composites [50]. The effective surface area of the NPs increases with decreasing NP size, as
do the interactions with the polymer matrix. At higher filler loadings, the polymer chains
become immobilized, while the plausible agglomeration of nanoparticles could result in
concentrations of stress in their regions [51], resulting in points at which the fracture process
could be initiated, thus degrading the overall mechanical performance of the investigated
nanocomposites [8].

PA12/AgDANP 2.0 wt.% nanocomposite was measured to have the highest values
in the tensile and flexural tests conducted. In comparison to the trend of the other tested
nanocomposites, the filler loading of 2.0 wt.% was shown to be the optimal addition
rate for achieving a strengthening effect on the PA12 matrix material. Lower quantities
were shown to have a smaller effect, while higher ratios resulted in the formation of
micro agglomerations and the presence of saturation effects, consequently resulting in the
degradation of the developed materials.

The morphological and thermal analysis of the specimens showed that the selected
processing settings (temperatures and flow ratio values) for filament extrusion and FFF
procedure were suitable. A future optimization study of PA12/AgDANP processing could
potentially provide slightly different optimal temperature settings, as indicated by the
thermal analysis and SEM images of PA12/AgDANP nanocomposites with higher filler
ratios. In the current study, the procedure settings were kept constant for all of the fabricated
materials. The graphs produced during the EDS analysis were reasonable for the tested
materials, and the expected elements were detected and were traceable in the graphs. In the
pure material graph, these elements were not detected. The expected elements exhibited
reasonable peaks, while, when these elements were present in the materials at higher
concentrations, the peaks would also have been higher in the EDS graphs. Increasing the
filler ratio in the nanocomposites resulted in thermal enhancement, consequently altering
the flow of the materials, albeit at a non-significant level.

Regarding the AFM surface roughness measurements, in Figure 11, three different
surface roughness values are provided, Ra, Rq, and Rz. Surface roughness measurements
were obtained in this work using the AFM process on the side surface of the filament
produced with the filament extruder for each nanocomposite. Measurements were taken at
a typical area on the filament surface. On the basis of the calculated values of these three
surface roughness parameters, qualitative conclusions regarding the rheological behavior
of the filament in the 3D printer’s extruder nozzle can be derived, since, with lower
surface roughness values, better rheological behavior is anticipated. As expected, when
the behavior of the matrix material is optimized, it results in a smoother filament surface.
This is a trend for the Rz parameter, since it increases unambiguously with increasing filler
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loading. At the same time, there is also a similar trend in the average surface roughness
values, which increase with increasing filler loading. This trend is slightly reversed for the
Rq and Ra values at a loading of 4 wt.%, which can be attributed to statistical differences,
since Rz reaches its maximum value in this case (415 nm).

Finally, antibacterial screening measurements of the inhibition zones provided the
necessary information for the antibacterial performance of the studied nanocomposites.
The addition of AgDANP to the PA12 matrix provided the nanocomposites with antibacte-
rial activity. Higher filler loadings were found to increase the antibacterial performance.
Additionally, shape screening analysis was used to investigate the effect of the specimens’
geometry on antibacterial performance. However, at higher filler ratios, the shape did
not exhibit a significant antibacterial effect; at lower filler loadings, the shape of the spec-
imens could plausibly make a significant contribution to the antibacterial performance.
Considering the mechanical, thermal, morphological, and antibacterial analyses conducted
during the current study, the addition of Ag-doped antibacterial nanopowder into the
PA12 matrix shows potential in FFF implementations. Significant mechanical performance
enhancement was measured for the PA12/AgDANP 2.0 wt.% nanocomposite, while in
all other measured properties, the same nanocomposite exhibited enhanced performance
compared to pure PA12. Even though the specific nanocomposite with a filler ratio of
2.0 wt.% did not provide the highest antibacterial action, the triangle- and “flower”-shaped
specimens exhibited antibacterial performance similar to that of specimens with 4.0 wt.%
filler loading, which were the highest measured inhibition zones both for Gram-negative
E. coli and Gram-positive S. Aureus bacteria.

5. Conclusions

In the current study, PA12 was used as a matrix material for the preparation of
nanocomposites with the addition of AgDANP at different filling ratios. Analyses of the
mechanical, thermal, and antibacterial performance were conducted in combination with
a morophological analysis using SEM and AFM. Even though PA12 is mostly used in
SLS 3D printing technology, on the basis of the current study, a potential was shown for
employing PA12 nanocomposites in the FFF process. Antibacterial nanopowder doped in
silver enhanced mechanical and antibacterial performance in the prepared nanocomposites.
The procedure followed, which maintained the same settings for filament extrusion and
the FFF process, provided positive feedback on the settings used for the preparation of
the nanocomposites. The ease of processing during 3D printing, in which no warp effects
were present, provides an added-value aspect to the use of PA12 in FFF. Providing further
enhancement to the material properties through nano-additives, PA12 nanocomposites, as
presented in the current study, could even be used for “non-professional” 3D printer users,
minimizing the dangers that lurk in the non-controlled fabrication of medical devices, such
as those presented during the COVID-19 pandemic situation. The overall analysis of the
PA12/AgDANP nanocomposites showed that a filler loading of 2.0 wt.% provided fine
mechanical performance and acceptable antibacterial activity under the circumstances.
Future studies could provide further analysis on the effect of shape on the antibacterial
performance, in order to optimize the filling ratios and minimize the cost and difficulty of
processing entailed by high filler loadings.
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