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Abstract: Heavy metal ions in industrial sewage constitute a serious threat to human health.
Nanocellulose-based adsorbents are emerging as an environmentally friendly material platform
for heavy metal ion removal based on their unique properties, which include high specific surface
area, excellent mechanical properties, and biocompatibility. In this review, we cover the most recent
works on nanocellulose-based adsorbents for heavy metal ion removal and present an in-depth discus-
sion of the modification technologies for nanocellulose in the process of assembling high-performance
heavy ion adsorbents. By introducing functional groups, such as amino, carboxyl, aldehyde, and
thiol, the assembled nanocellulose-based adsorbents both remove single heavy metal ions and can
selectively adsorb multiple heavy ions in water. Finally, the remaining challenges of nanocellulose-
based adsorbents are pointed out. We anticipate that this review will provide indispensable guidance
on the application of nanocellulose-based adsorbents for the removal of heavy metal ions.

Keywords: nanocellulose-based adsorbents; chemical modification; heavy metal ions; assembling

1. Introduction

Nowadays, heavy metal ions have become the most serious problem in water environ-
ment due to their toxicity and incompatibility, which cause bad environmental problems
and threaten human health [1]. Excessive intake of heavy metal ions can cause body dam-
age and even death through afflictions, such as, Minamata disease in Japan [2] caused by
the excessive intake of organic mercury (Hg), lung or gastrointestinal tract disease caused
by the accumulation of Cd2+ [3], and Alzheimer’s and Parkinson’s diseases [4] caused by
the excessive intake of Fe3+ and Al3+. Furthermore, the increase in nuclear power plants
leads to many radioactive heavy metal pollutants, such as Cs137, Pu239 and U238 [5]
(Table 1). To date, it remains difficult to eliminate such ionic pollutants from heavy metals.

Many methods exist to solve the problem of heavy metal ion pollution in wastewater,
including chemical precipitation, ion exchange, ultrafiltration, flocculation, electrodialysis,
adsorption, reverse osmosis, and more [6]. Among these methods, adsorption is very
popular due to its high removal efficiency, flexibility in the design, and low cost [7].
Adsorbents generally consist of activated carbon, clay, biochar, and polymers [8]. Although
these adsorbents have high adsorption capacities for certain heavy metal ions, they present
drawbacks, such as, undesired non-biodegradability, high energy costs for preparation or
regeneration, and secondary pollution. Therefore, at present it remains highly desirable to
find an excellent means of heavy metal ion adsorption and easily bio-adsorbent regeneration
for green/sustainable development.

Cellulose is a linear biopolymer formed by glucose units connected by β-1,4-glycosidic
bonds, and mainly exists in plants, animals, algae, and fungi [9–15]. Nanocellulose (NC) is
a cellulosic material with at least one dimension within the nanometer size. Depending on
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its cellulose source, processing conditions, size, function, and preparation methods, it can
be classified in three categories (cellulose nanofibrils (CNFs) [16], bacterial nanocellulose
(BNCs) [17] and cellulose nanocrystals (CNCs) [18]). Acid hydrolysis results in nanometer-
long and highly crystalline rod-like fragments, referred to as CNCs. Mechanical shearing
techniques disintegrate cellulose fibers into their substructural nanoscale units, resulting in
CNFs, which are typically longer, being micrometric in length. BNC is produced through
a bottom-up approach using cultures of bacteria to synthesize the material (Figure 1). To
date, NC has been applied in oil-water separation [19], filter materials [20], sensing [21–24],
capacitors [25], bio-scaffolds [26], and drug delivery [27], and has been explored in the
fields of heavy metal ion removal as well [28].

Table 1. Maximum concentrations and hazards of heavy metal ions in drinking water, data from
US EPA.

Pollutants MCLG (Maximum Pollutant
Concentration Index) (mg/L) Potential Health Effects

Sb 0.006 Increases blood cholesterol and decreases the
amount of glucose in the blood

As / Damage the skin and increase the risk of cancer
Ba 2 Elevation of blood pressure
Cd 0.005 Kidney injury
Cr 0.1 /
Cu 1.3 Gastrointestinal pain, liver or kidney injury
Pb 0 Delayed physical or mental development
Inorganic mercury 0.002 Kidney injury
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Figure 1. Atomic force microscope (AFM) images of (a) CNC, (b) BNC, and (c) CNF. Adapted with
permission from [29]. Copyright 2021 Springerlink. Adapted with permission from [30]. Copyright
2021 SpringerLink. Adapted with permission from [31]. Copyright 2016 Elsevier.

NC-based adsorbents have recently become more and more popular, nanocellulose
has a high specific surface area, excellent mechanical properties, and good biocompatibility,
making especially suitable for heavy metal ion adsorbent assembly [32–34]. The total num-
ber of relevant articles on cellulose adsorbents and the keywords used in their description
(eliminating redundant searches) are presented in Figure 2. Adsorbents using cellulose
have been described for a wide range of applications. However, as NC is challenged by
intrinsic hydrophilicity and inferior heavy metal ion adsorption sites [35], it is necessary
to directly/indirectly introduce key functional groups in the NC or assemble an excellent
architecture in order to enhance the heavy metal ion adsorption of NC-based adsorbents.

It has been reported that the adsorption properties of NC for heavy metal ions are
superior to those of macro- and microfibrillar cellulose [36,37]. In order to improve the
binding sites of NC for heavy metal ions, it is necessary to introduce a number of key
functional groups into the NC. With the exception of NC functionalization, methods
for assembling nanocellulose-based adsorbents are very important for improving their
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maximum heavy metal ion adsorption capabilities. It has great application potential as a
green base for adsorbent materials of aerogels, hydrogels [38], films [39], etc. Nanocellulose-
based adsorbents have gradually become an environmentally friendly and appealing
material for heavy metal ion removal.

Qiao et al. [28]. mainly reviewed the surface modification of nanocellulose-based
adsorbents regarding the adsorption of heavy metal ions and dyes, and summarized a
number of adsorption mechanisms. Kose et al. [40] described the methodologies under
current use for such designs and provides a systematic overview of these technologies to
promote more focused research in the future for nanocellulose-based adsorbent materials.
Salama et al. [41] provided an overview of nanocellulose requirements concerning emerg-
ing nanotechnologies in wastewater treatment and purification, i.e., adsorption, absorption,
flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltra-
tion, and reverse osmosis. In this review, we first summarize the functionalization of NC in
the molecular range, including oxidation, esterification, etherification, cationization, etc.,
and summarize the adsorption performance of the adsorbance for heavy metal ions. We
then present the most recent works on nanocellulose-based adsorbents and highlight in
depth the functionalization of nanocellulose and assembling/composing technologies for
nanocellulose-based adsorbents. Finally, we conclude with perspectives on the challenges
and opportunities that remain for nanocellulose-based adsorbents.
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Figure 2. Total number of articles on cellulose adsorbents.

2. Functionalized Modified Nanocellulose Adsorbents for Heavy Metal Ions

There are three hydroxyl groups on each cellulose glucose ring, the hydroxyl groups
on C2 and C3, and the primary hydroxyl groups on C6. Their response capacity is differ-
ent because of their different positions. The secondary hydroxyl groups are larger than
the primary alcohols, and etherification, esterification, oxidation, graft copolymerization,
and other reactions may occur. The combination of biotechnology and nanotechnology
provides a new and green way of solving the old problems. To improve the heavy metal
adsorption sites and affinities of NC, there are a lot of emerging technologies for NC modi-
fication, mainly containing the introduction of carboxyl, carboxymethyl, aldehyde, cationic,
phospho-containing, and sulfur-containing groups.

2.1. Oxidation Reaction

TEMPO (2,2,6,6-Tetramethylpiperidine-1-oxyl)-mediated oxidation [42] has opened a
field of efficient and selective chemistry for converting C6 primary hydroxyls into carboxy-



Polymers 2022, 14, 5479 4 of 23

late groups on the surface of cellulose microfibrils under mild conditions (Figure 3A). The
common TEMPO-mediated oxidation system is prepared using TEMPO, NaBr, NaClO, etc.
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Ma et al. [46] used the TEMPO oxidation approach to prepare an aqueous suspension
of 0.05 wt% ultrafine cellulose nanofiber. The average aspect ratio of the nanofiber was
about 160, and its carboxyl group content was 1.4 mmol/g. Because the carboxyl group was
introduced in the ultrafine cellulose nanofiber, its maximum adsorption capacity for UO2

2+

was able to reach 167 mg/g, dominated by the chelation reaction between the carboxyl
group and UO2

2+. Furthermore, following the adsorption of UO2
2+, the surface of the

cellulose nanofibers was covered by metal ionic crystals. This indicates that UO2
2+ could

likely be used as a “cross-linker” to convert “aqueous CNF” into “gel” (Figure 4a,b).
Sometimes, nanocellulose containing different carboxylic groups can be obtained by

controlling the oxidation time and the measurement of oxidizing agent. Li et al. [47] used
TEMPO to oxidize hardwood kraft pulp and obtain TOCNF with different carboxyl content
by adding different amounts of NaClO solutions (150–310 g) to the oxidation process. The
obtained TOCNFs had the typical width of 5–8 nm and length of 1000–2000 nm, and their
carboxylate contents were 0.70, 1.40, and 1.67 mmol/g (named TOCNF 0.70/1.40/1.67),
respectively. The maximum adsorption capacity of TOCNF-1.40 on Cu2+ and Zn2+ reached
102.9 mg/g and 73.9 mg/g, respectively (Table 2), leading to a superfast adsorption process
which can reach adsorption equilibrium within 2 min due to the high carboxyl content.

Liu et al. [48] obtained two kinds of TOCNFs from cellulose sludge with different
carboxyl contents (0.6, 1.5 mmol/g) by controlling the amount of TEMPO oxidizer. At pH 8,
the lowest Zeta potential of TOCNF1.5 was −70.6 mV (Table 2). Analysis of the properties
of Cu2+ revealed that Cu2+ was first adsorbed on the surface by carboxyl groups, then
reduced to copper (0) or assembled copper oxide nanoparticles by microprecipitation. After
the adsorption of Cu2+, TOCNF1.5 turned superhydrophilic and copper oxide nanoparticles
appeared on the surface (Figure 4c,d). The maximum adsorption capabilities of TOCNF0.6
and TOCNF1.5 for Cu2+ were 44.2 and 75 mg/g, respectively (Table 2).

In general, H2O2 can destroy the amorphous region of cellulose and oxidize hydroxyl
groups on cellulose to create carboxyl groups. Fan et al. [43] obtained CNCs with differ-
ent carboxyl contents by controlling the oxidation time (0–8 h) of MCC by Fe2+/H2O2
(Figure 3B). SEM images showed that the length and width ranges of the obtained CNCs
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were 92–140 nm and 19–23 nm, respectively. Their results indicated that the carboxyl
content reached the highest value (2.2 mmol/g) with a zeta potential of –41 ± 3.3 mV and
an oxidation time of 6 h (CNCs-6h). CNCs-6h showed a maximum adsorption capacity of
51.1 mg/g for Cu2+ due to its more numerous carboxylic acid groups (Table 2).
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In the presence of excess acid, the reaction of HNO3 (an oxidizing agent) and NaNO2
produces even more HNO2 and releases nitrogen nitrate ions (NO+). The resulting nitrous
ions can attack the primary hydroxyl group at C6 of cellulose to form aldehyde groups
(intermediates) and carboxylic groups. Sharma et al. [49] used nitric acid/sodium nitrite to
oxidize untreated jute fibers to obtain NOCNF slurry. It had very low crystallinity (35%),
and had carboxyl content and surface loading of 1.15 mmol/g and −70 mV, respectively
(Table 2). At a low NOCNF suspension concentration (0.23 wt%), room temperature, and
pH = 7, the NOCNF was able to remove sharply Pb2+ ions from 50 to 5000 ppm in the
initial steps, and finally its maximum adsorption capacity was as high as 2270 mg/g. In the
same way, Sharma et al. [50] used nitric acid/sodium nitrite to oxidize untreated Australian
spinifex grass to obtain NOCNF, which had low crystallinity of around 50%, a high surface
charge of –68 mV, and high hydrophilicity (static contact angle 38◦). The suspension
(0.20 wt%) was able to remove Cd2+ in a large concentration range (50–5000 ppm) within
a short time (≤5 min). When the Cd2+ concentration was 250 ppm, the removal rate was
84%. Depending on the Langmuir curve, the maximum adsorptive capacity for Cd2+ was
up to 2550 mg/g.

Periodate is considered as a highly selective oxidant, and can convert vicinal hy-
droxyl groups on the C2 and C3 positions of the anhydrous glucose units (AGU) to paired
aldehyde groups without significant side reactions, simultaneously cleaving the C2-C3
bond. Lei et al. [51] treated endoglucanase hydrolyzed BSKP using a grinder, the con-
centration of sodium periodate was adjusted to 10 g/L (DNFC-1) and 40 g/L (DNFC-2)
to adjust the content of the aldehyde group. DNFC-2 had the largest aldehyde content
(1.95 mmol/g), largest specific surface area (2.73± 0.08 m2/g), and a surface charge density
of−(1.14 ± 0.07) × 10−5 eq/g. The maximum adsorption capacity of DNFC-2 for Cu2+ was
26 mg/g. Generally, a more negative charge on the fibrils contributes to greater electrostatic
attraction to metal ions.
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Table 2. Preparation method and properties of carboxyl-containing nanocellulose.

Sample Method
Zeta
Potential
(mV)

Carboxyl
Content
(mmol/g)

pH Temperature
(◦C)

Adsorbent
Dose

Adsorption
Capacity
(mg/g)

Ref

CNCs-6h Fe2+/H2O2
oxidation

−41 ± 3.3 2.2 / / / Cu2+: 51.1 [43]

7-CNF Esterification −36 ± 3 1.18 ± 0.1 / / / Cu2+: 45.053 [44]

CMCNF-2.7 Etherification
(Carboxymethylation) −88.3 2.7 5 Room

temperature 0.3 g/L Cu2+: 115.3 [45]

TOCNF1.5 TEMPO oxidation −70.6 1.5 5 Room
temperature / Cu2+: 75 [48]

NOCNF Nitro-oxidation −70 1.15 ~7 Room
temperature 0.23 wt% Pb2+: 2270 [49]

CNF-MA 2% Esterification / 278 5.6 25 100 mg Cu2+: 84.12 [52]

2.2. Esterification/Etherification

In addition, the combined action of hydrochloric acid/citric acid can convert hydroxyl
groups on cellulose into carboxyl groups. The introduction of citric acid into the C6 primary
hydroxyl group by the Fischer esterification reaction preserves the integrity of the cellulosic
glycoside ring. Wang et al. [44] obtained 9-CNF, 7-CNF, and 5-CNF with different carboxyl
contents according to different ratios of hydrochloric acid/citric acid (v/v = 9/1, 7/3, 5/5)
from waste ginger fiber (Figure 3C). Among them, 7-CNF had the highest aspect ratio
(144), the largest carboxyl content (1.18 ± 0.1 mmol/g), and the greatest negative zeta
potential (−36 ± 3 mV). Afterwards, in a lyophilized CNF suspension for aerogels. The
three-dimensional (3D) network structures of all aerogels were physically cross-linked by
hydrogen bonding with macropore mesopores. Due to the network capture effect, load
neutralization, and chain bridging of the high aspect ratio carboxylated CNF, the 7-CNF
aerogel had the highest adsorption capacity for Cu2+ at 45.053 mg/g.

Tang et al. [52] dispersed CNF slurry in different concentrations in liquid nitrogen,
rapidly froze them to form spherical beads, and freeze-dried them to obtain CNF cryogel
beads. Then, carboxylated CNF/maleic anhydride cryogel beads (CNF-MA 2%) were
obtained by mixing and reacting the original CNF cryogel beads and maleic anhydride
(MA) solution (Figure 5). After functionalization and crosslinking of CNF cryogel beads
carboxyl groups through one-step ring-opening reaction of MA, the carboxyl content
reached 2.78 mmol/g and the maximum adsorption capacity for Cu2+ reached 84.12 mg/g
(Table 2). Desorption experiments with EDTA-Na2 indicated that its Cu2+ adsorption
capacity decreased from 68 mg/g to 45 mg/g after four cycles.

Yu et al. [53] obtained CNCs by hydrolyzing cotton with sulfuric acid. Subsequently,
CNCs were modified with succinic anhydride and the resulting SCNCs were converted
into sodic form (NaSCNCs). The maximum adsorption capacities of NaSCNCs for Pb2+

and Cd2+ were 465.1 mg/g and 344.8 mg/g, respectively, which were higher than those
of SCNCs at 367.6 mg/g and 259.7 mg/g. The NaSCNCs could be efficiently regenerated
with a mild saturated NaCl solution with no loss of capacity after two recyclings. The
adsorption mechanism of SCNCs is a complexation process, while ion exchange is the
principal mechanism for the removal of heavy metal ions by NaSCNCs.

Carboxymethylation pretreatment can introduce carboxyl groups into C2, C3 and C6
positions through etherification [54]. It is another alternative approach to prepare CNFs
with higher carboxylate groups thanks to its non-regioselectivity (Figure 3D). Qin et al. [45]
treated different amounts of wood fibers with monochloroacetic acid/sodium hydroxide
and homogenization to obtain carboxymethylation CNF (CMCNFs) with different carboxyl
content. Their CMCNFs showed diameters of 3.40–3.53 nm and lengths of 383.3–1210.6 nm.
The carboxyl group content of CMCNF can reach up to 2.7 mmol/g (CMCNF-2.7), and the
maximum zeta potential value is −88.3 mV (Table 2). Because the carboxylate group of
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CMCNF can capture Cu2+ through electrostatic attraction, ion exchange and complexation
actions, its maximum adsorption capacity for Cu2+ reached 115.3 mg/g at pH 5.
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The charges on the surface of the adsorbent determine the intensity and nature of
the interactions between the adsorption sites and the adsorbents. The zero-charge point
(PZC) is an important parameter that reveals the pH value of the adsorbent surface without
charge [55]. The adsorption of cationic molecules is favorable when the solution pH is
higher than the pHPZC of the adsorbent, while the adsorption of anionic molecules is
favorable at a solution pH < pHPZC. To sum up, the process of oxidation mentioned above
controls the content of carboxyl groups by controlling the oxidant content, oxidation time,
etc. In general, with more carboxyl groups, there are more anions on the surface, and the
electrostatic attraction to metal ions is greater, making for a better adsorption effect.

2.3. Thiol Group Modified Nanocellulose

It has been reported that thiol groups have highly selective adsorption of Hg2+ from
wastewater [56]. According to the theory of hard−soft acid base (HSAB) [57], Hg2+ ions
are classified as a Lewis soft acid, while thiol groups belong to the Lewis hard bases.
Therefore, thiol groups tend to be preferentially complexed with Hg2+. Ram et al. [58]
obtained spherical nanocellulose (SNC) by the treating sequences with NaOH and mixed
H2SO4/HCl acid along with ultrasonication, followed by enzymatic SNC esterification with
3-mercaptopropionic acid (3-MPA) to obtain its ester derivative (SNC-3-MPA) (Figure 6).
Their 13C-NMR (nuclear magnetic resonance) results showed that the thiol group was
grafted onto the C-6-0 of the cellulose monomer rings. Because SNC has a higher specific
surface area than cellulose and the presence of thiol groups has a high affinity for Hg2+,
a removal rate of Hg2+ at a concentration of 100 ppm high as 98.6% could be achieved
within 20 min. The maximum adsorption capacity of Hg2+ was 98.6 mg/g, and it could be
recycled with 0.1 M HCl. The adsorbent could be regenerated and re-used for up to nine
cycles, with a cumulative adsorption capacity of 404.95 mg/g.

Geng et al. [59] oxidized bamboo-derived cellulose with TEMPO to obtain TO-NFC,
then subjected it to facile freeze-drying in MPTs (3-mercaptopropyltrimethoxysilane) sols to
obtain flexible aerogel (TO-NFC-Si-SH). The aerogel had a high SH content of 3.33 mmol/g,
its porosity reached 99.1%, the BET specific surface area was 43.57 m2/g, and the removal
rate reached more than 92% in Hg2+ solution at a range of 0.01–85 mg/g. Its maximum
adsorption capacity for Hg2+ reached 718.5 mg/g. Moreover, its adsorption capacity was
nearly unchanged across a large pH range. After four adsorption/desorption experiments
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with 0.1 M HCl/5 wt% thiourea, its adsorption efficiency retained more than 90%. Rong
et al. [60] prepared CNF-1MPTMS and CNF-2MPTMA sponges with different proportions
of CNF and MPTMS (1:1/1:2) to explore the adsorption effect of Hg2+. The maximum
adsorption capacity of CNF-2MPTMA for Hg2+ reached 700 mg/g, which was higher than
CNF-1MPTMS (480 mg/g). After washing three times using 0.1 M aqueous disodium ede-
tate dihydrate solution to remove Hg2+, the adsorption capacity of CNF-MPTMS sponges
did not decrease significantly.
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2.4. Others

Cr is one of the priority pollutants in water. Cr has two common oxidative states,
of these, Cr6+ is highly toxic, mutagenic, and carcinogenic to the ecosystem, while Cr3+

is a non-toxic substance [61]. For the removal of hexavalent chromium (Cr6+) ions [62],
most adsorbents have a higher efficiency when the pH value is less than 3; however, under
neutral or alkaline conditions the removal efficiency is relatively lower.

Huang et al. [63] oxidized sugarcane bagasse with metaperiodate-oxidization followed
by cationization using Girard’s T reagent to obtain cationic dialdehyde cellulose (c-DAC)
(Figure 7a). There were a high density of quaternary ammonium groups and aldehyde
groups on the surface of the c-DAC. The electrostatic attraction between the positively
charged quaternary ammonium salt group and the negatively charged dichromate was
the main mechanism of adsorption, and there was a strong binding affinity between the
adsorbent and Cr6+. When adsorption reached saturation, the superficial charge on c-DAC
was neutralized to form flocs of c-DAC-chromium, which could easily be removed by
deincandation or low-cost gravity microfiltration. The maximum adsorption capacity
for Cr6+ reached 80.5 mg/g, and it had stable adsorption performance across a wide pH
range (2–10).

To compare the effect of CNCs and CNFs on the adsorption performance of heavy
metal ions, Liu et al. [64] compared the adsorption capacity of Argentum (Ag+) on CNCs
that were obtained by hydrolyzing sludge with H2SO4 and CNFs obtained from grinding.
There are SO3

− groups on the surface of CNCs. The zeta potential of CNC is −44.4 mV at
pH 12.09, while that of CNF is −22.7 mV under acidic conditions (pH = 1.75). The capture
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of heavy metal ions is accomplished by electrostatic attraction. The maximum adsorption
capacities of the CNCs and CNFs for Ag+ reached 34.4 mg/g at pH 6.39 and 15.45 mg/g at
pH 5.45, respectively.

Lignin is a conjugated polymer with a high consistency of aromatic groups that can
interact with cations, moreover, the oxygen-containing groups (the hydroxyl, methoxy,
and phenolic groups) are potential interaction sites of lignin for water purification [65].
Sirvio et al. [66] used DES (sulfamic acid and urea) to treat lignin-rich groundwood pulp
and sawdust to obtain sulfation of sulfated wood nanofibers (SWNFs) and sulfated saw-
dust nanofibers (SSDNFs). As a comparison, lignin-free bleached cellulose fibers were
treated in the same way to obtain sulfated cellulose nanofibers (SCNFs). The surface
of the three obtained CNFs all contained sulfate ester groups. As the result of the pres-
ence of lignin, the adsorption capacity of the SWNFs and SSDNFs was increased. The
maximum adsorption capacity of SWNFs for Cu2+ and Pb2+ was 158.75 and 331.2 mg/g,
respectively, and the maximum adsorption capacity of SSDNFs for the two were 139.7 and
331.2 mg/g, respectively.

Mautner et al. [67] modified cellulose nanofibrils from the fiber sludge with phosphoric
acid to obtain phosphorylated cellulose nanofibrils (Figure 7b), then prepared nanopa-
pers (CNF-P) using papermaking methods. The maximum adsorption capacity for Cu2+

reached 19.6 mg/g through the ion exchange capture action of phosphate groups in CNF-P
(18.6 ± 2.3 mmol/kg). Even after one desorption cycle using 0.1 M H3PO4, the adsorption
capacity of Cu2+ was able to reach 19.4 mg/g.
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Liu et al. [68] prepared CNCSL and CNFSL from cellulose sludge using hexokinase
enzymes as biocatalysts and grafting the phosphate group of adenosine-5′-triphosphate
(ATP) on CNFSL/CNCSL to obtain phos-CNCSL and phos-CNFSL adsorbents. In contrast,
nanocrystals (CNCBE) prepared by bioethanol were used to investigate the adsorption ca-
pacity of Ag+, Cu2+ and Fe3+. The results showed that the maximum adsorption capacities
of Phos-CNFSL for Ag+, Cu2+, and Fe3+ were 12,011,473 mg/g, which were all lower than
the 136,117,115 mg/g of Phos-CNCSL. It was able to remove more than 99% of Cu2+ and
Fe3+ in wastewater from the mirror making industry.
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3. Nanocellulose/Organic Substance Composite Adsorbents for Heavy Metal Ions

Nanocellulose can be used as an adsorbent matrix/substrate, and the structure and
properties can be controlled though cross-linking, additives, or assembly processes. Due
to the high aspect ratio of nanocellulose, it can be entangled with other polymers to form
hydrogels. In order to explore the versatility of nanocellulose-based adsorbents, adsorbents
can be obtained with more functional groups in combination with other materials. Compos-
ites of two or more polymers have become a new development trend in biomaterials, as they
allow certain excellent properties to be obtained that a single polymer cannot achieve [69].
Although nanocellulose has good adsorption capacity for heavy metal ions, the separation
of the nanomaterials after adsorption requires high-speed centrifugation, which limits
their use in large scale processes as well as their cycle performance. Consequently, their
application can be improved by compounding organic or inorganic materials into aerogels,
hydrogels, or other materials with 3D structure.

3.1. Nanocellulose/Bio-Based Organic Composites

Chitin contains polyelectrolytes and organic polymer groups and exhibits numerous
nitrogen-carrying amine groups (-NH2) and hydroxyl groups (-OH) through several mech-
anisms, including chemical interactions such as chelation and electrostatic interactions for
ion exchange or ion pair formation [70]. It is found in the shells of crustaceans, the shells
and skeletons of mollusks and krill, on the exoskeletons of arthropods, and in the cell walls
of fungi. Depending on its source, three different crystalline polymorphic forms of chitin
have been identified: α-chitin, the most abundant (shrimp and crab shells), β-chitin (squid
pens) and γ-chitin (the stomach cuticles of cephalopoda) [1].

Zhang et al. [38] used 1-D negatively charged TEMPO-oxidized CNF and positively
charged partly deacetylated chitin nanofiber to self-assemble a 3D biohybrid hydrogel
(BHH) through electrostatic forces at room temperature. Then, they used freeze-drying
to obtain a biohybrid aerogel (BHA). The specific surface area of the BHA was 54 m2/g.
The amino and carboxyl groups on the surface provide adsorption sites. The maximum
adsorption capacity for As3+ under the neutral pH conditions was 217 mg/g.

Chitosan is produced commercially by the deacetylation of chitin [71], and has strong
ability to chelate heavy metal ions due to the amino and hydroxyl groups on its surface [72].
Rodrigues et al. [73] used chitosan-g-poly (acrylic acid) matrices filled with CNWs (cellulose
nanowhiskers) to obtain hydrogel composites (Chitosan-g-poly(acrylic acid)/CNWs). The
adsorption performance of hydrogels on Pb2+ and Cu2+ was investigated by controlling
the amount of CMWS added. The highest adsorption of Pb2+ (818.4 mg/g) and Cu2+

(325.5 mg/g) was obtained within 30 min at pH 4.0 when using 20 mg of the hydrogel
composite containing 10 w/w-% of CNWs. After washing with 0.1 mol/L HCl solution five
times, the results showed that the adsorption capacity of Pb2+ and Cu2+ remained 89.3%
and 81.8%, respectively.

Polyvinyl alcohol (PVA) is a low-cost polymer with desirable properties such as
water solubility, biocompatibility, and biodegradability. The application of magnetic adsor-
bents technology has become a promising way to solve environmental problems [74]. Zhou
et al. [75] used TEMPO to oxidize MCC to first obtain carboxylated cellulose nanofibrils (CC-
NFs) and then obtain CCNFs-filled magnetic chitosan hydrogel beads (m-CS/PVA/CCNFs)
through an instantaneous gelation method. The carboxyl content of CCNFs was
0.94 mmol/g, and Pb2+ was supported by m-CS /PVA without CCNFs. Because the
surface of m-CS/PVA/CCNFs contains carboxyl groups, the maximum adsorption capacity
was 171 mg/g, which was higher than that of m-CS/PVA/117.6 mg/g. It removed Pb2+

mainly through amino chelation and carboxyl ion exchange. After four cycles with 0.01 M
HNO3 regeneration, its adsorption efficiency remained 90%.

Alginate is a natural anionic polysaccharide, which is a linear chain of β-D-mannuronic
acid (M units) and α-L-guluronic acid (G units) linked via 1,4-glycosidic bond, and is mainly
obtained from brown algae and bacteria. Alginate can be mixed with nanocellulose to
remove heavy ions in water thanks to its non-toxic and biodegradable properties, low cost,
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and rich carboxyl groups [76]. Hydrogels are considered as promising adsorbents for the
removal of heavy metals from wastewater due to their many different functional groups
and three-dimensional network structure [77–79]. Hu et al. [80] cross-linked carboxylated
cellulose nanocrystal (CCN) and sodium alginate under the action of Ca2+ to obtain CCN-
Alg hydrogel. It showed easy separation after adsorption, and had stronger mechanical
strength and durability than pure sodium alginate beads. The proposed adsorption mecha-
nisms could include electrostatic attraction and complexation. Within two hours, 76% of
Pb2+ could be removed and adsorption equilibrium was quickly reached in three hours,
with the highest adsorption capacity being 338.98 mg/g.

Carboxymethyl-chitosan (CMC) is a chitosan derivative containing abundant free hy-
droxyl (-OH), carboxyl (-COOH), and amine (-NH2) groups, and offers strong binding sites
for heavy metal ions. Li et al. [81] prepared NSC gel beads using three carboxyl-containing
materials (TEMPO-oxidized nanocellulose and sodium alginate and carboxymethylated
chitosan under the action of Ca2+ crosslinking agent. The gel exhibited high efficiency
for the adsorption of Cu2+ (169.94 mg/g) and Pb2+ (472.59 mg/g). The gel maintained a
high adsorption capacity for Cu2+ (56 mg/g) and Pb2+ (245 mg/g) after five adsorption–
desorption cycles.

Protein nanofibrils can be an eco-friendly strategy to engineer fully bio-based nano-
materials capable of removing hazardous Hg2+ from water sources. Silva et al. [82] dis-
solved lysozyme protein extracted from egg white in a solution containing 20 mmol/L
glutamic acid and 5% (v/v) DES (choline chloride/acetic acid) to obtain lysozyme nanofib-
rils (LNFs), then mixed it with different proportions of CNFs to obtain dual nanofibrillar
films (CNFs/LNFs). Combining the advantages of CNFs with high specific surface area
and LNFs with a large number of peptide R-groups on their surface, these films have
strong mechanical properties and binding capacity for Hg2+. The removal efficiency is
pH-dependent, reaching a maximum of 99% (50 µg/L) after 24 h at a pH value close to the
isoelectric point of the protein (pH = 11).

Activated carbon (AC) is widely used in the removal of heavy metal ions due to its
high specific surface area and fast adsorption speed [83]. Septevani et al. [84] obtained
cellulose-based EFB and lignin-rich black liquor from Oil Palm EFB by NaOH pulping
method. AC was extracted from black liquor by Sari’s method [85]. NCS was obtained using
the hydrolyzing cellulose with sulfuric acid, and NCP was obtained by phosphoric acid
hydrolysis, then functionalized by AC to obtain NCS/AC or NCP/AC super-adsorbent.
The SEM image revealed that AC was dispersed in the NCS and NCP matrix, forming a
looser embedded network. Its adsorption mechanism was mainly the electrostatic attraction
between adjacent hydroxyl groups and positively charged metal ions on the surface of
the super-adsorbent, and NCS/AC’s maximum adsorption capacity for Pb2+ reached
24.94 mg/g.

3.2. Nanocellulose/Nitrogenous Polymer Composites

Amino groups have a strong chelating ability to heavy metal ions; thus, increasing
the amino group content can increase the adsorption capacity. Because polyethyleneimine
(PEI) has plenty of primary, secondary, and tertiary amines on the macromolecular chains,
it is usually fabricated as a hydrogel or aerogel by crosslinking with an aldehyde or epoxy
group to improve the adsorption capacity [86]. Tang et al. [87] obtained high amine group
content (5.74 mmol/g) cellulose nanofibril/PEI aerogel beads (CGP1.3) with the help
of a cross-linking agent of 3-glycidyloxypropyl) trimethoxy silane (GPTMS) by quickly
freezing with liquid nitrogen and then freeze-drying. The maximum Cu2+ adsorption
capacity reached 163.40 mg/g. Mo et al. [88] used a TO-CNF and Trimethylolpropane-tris-
(2-methyl-1-aziridine) propionate (TMPTAP) ring-opening reaction at room temperature,
then post-crosslinked PEI to obtain a 3D multi-wall structure TO-CNF/TMPTAP/PEI
aerogel (TO-CTP) with pores (Figure 8). Because the aerogel had a large number of amino
groups and oxygen-containing groups on the surface, its maximum adsorption capacity
for Cu2+ was able to reach 485.44 mg/g. Moreover, after being treated with EDTA-2Na,
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the regenerated aerogels retained high removal efficiency for Cu2+ over four desorption-
regeneration cycles.

In addition, glutaraldehyde (GA) is a common cross-linking agent [42], Zhang et al. [89]
obtained TOCN by HCl hydrolysis and TEMPO oxidation, followed by cross-linking with
PEI under the action of GA cross-linking agent, then freeze-drying and grinding to obtain
TOCN-PEI adsorbent. Because of the linking between PEI and -COOH, the carboxyl content
of TOCN-PEI decreased from 1.88 to 0.85 mmol/g, and its total amount of amino groups
was 4.06 mmol/g. Its maximum capacity for Cu2+ reached 52.32 mg/g due to its abundant
carboxyl and amino groups. After HCl cleaning, its adsorption capacity could remain able
to reach 33 mg/g.

Li et al. [90] obtained a NFC solution through TEMPO oxidation, then achieved a
physically-crosslinked network NFC/PEI composite hydrogel (NPH13, NPH22, NPH31)
through electrostatic combination with PEI solutions of different weight ratios (1:3, 2:2,
3:1). After freeze-drying, NPA13, NPA22, NPA31 aerogels were obtained. The maximum
specific surface area of the aerogels was 42.5 m2/g, and it had good shape recovery capacity.
The electrostatic attraction and cation exchange between carboxyl and amino groups on
Cu2+ and Pb2+ are the reasons for the high adsorption capacity of aerogels. The maximum
adsorption capacities of NPA22 for Cu2+ and Pb2+ are 175.44 mg/g and 357.44 mg/g,
respectively. After three adsorption/desorption cycles with EDTA solution, the adsorption
capacity of NPAs was maintained at more than 90%.
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multi-wall perforated structure. Adapted with permission from [88]. Copyright 2019 Elsevier.

Polyurethane (PU) has the advantages of high mechanical strength and stability, along
with high specific surface area under different environmental conditions, and can be applied
to the adsorption of heavy metal ions [91]. Hong et al. [92] filled different concentrations of
CMCNFs (2, 3, 4 wt.%) in PU foam as filler to obtain PU/CMCNF (neat-PU, PU/CMCNF-2,
3, 4) foams. SEM images show that the surface of the composite foam material is rough and
porous. The maximum adsorption capacities of CMCNF embedded in PU foam were found
to be 78.7 mg/g and 216.1 mg/g for Cu2+ and Pb2+ removal, respectively, in PU/CMCNF-2,
while PU/CMCNF-3 exhibited maximum removal capacity for Cd2+ (98 mg/g).

Polydopamine (PDA), formed by self-polymerization of dopamine (DA) in weak
alkaline conditions, is rich in catechol and amine groups, which facilitate covalent conjuga-
tion or other noncovalent interactions with organic and inorganic materials [93]. Derami
et al. [94] incorporated of PDA particles into a Gluconacetobacter hansenii broth under aerobic
and static conditions. PDA particles were grown in situ on the BNC membrane. The
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catecholamine group on the surface of PDA particles has a strong affinity to lead ions.
Adsorption of PDA/BNC was tested in a mixed solution of Pb2+, Cd2+. The PDA/BNC
membrane removed 5.3 g of Pb2+ from water per square meter of the membrane area. The
lowest yield was observed for Cd2+, with 2.1 g of the ions removed per square meter of the
membrane area. After regeneration with 0.1 M sodium citrate solution, the regenerated
membranes exhibited excellent contaminant removal efficiency even after ten cycles of
filtration (with about 90% of the initial performance retained).

DA is known as a mussel adhesive protein-inspired molecule. Juntao et al. [95]
introduced PDA particles into the surface of CNFs using a bio-inspired coating strategy
for DA and then cross-linked PEI to form a porous aerogel (PDA-CNF-PEI). Its maximum
adsorption capacity for Cu2+ reached 103.5 mg/g, and its porosity and density were 98.5%
and 25 mg/cm3, respectively. When it was regenerated for four cycles using 0.1 M HCl
treatment, its adsorption efficiency for Cu2+ remained more than 91%.

Polypyrrole (PPY) is an organic polymer formed by polymerization of the pyrrole ring
(C4H5N). Extensive studies on this polymer justify its stability, low cost, and eco-friendly
nature [96]. Shahnaz et al. [97] hydrolysed cellulose with sulfuric acid to obtain spher-
ical NC and coupled it with PPY to obtain an adsorbent (NCPPY) for Cr6+ removal in
water. Compared with 197 m2/g for NC, the specific surface area of NCPY was signifi-
cantly increased to 488 m2/g. The maximum adsorption capacity of NCPPY for Cr6+ was
147.3 mg/g, possibly due to the -OH and -NH2 adsorption sites on its surface.

Electrospinning has been extensively applied to the preparation of nonwoven fabric-
like films [98,99]. Due to preferable spinnability and wide range of inclusiveness of poly-
acrylonitrile (PAN), inorganic filler can be well distributed in the composites by wrapping
and entanglement [100]. Because the nitrile groups on the surface of PAN can react with
hydroxylamine in the aqueous solution at room temperature to form amidoxime groups, it
has attracted widespread attention in the field of heavy metal ion removal.

Yang et al. [101] first obtained the CNFs through TEMPO oxidation, then modified the
mercaptan group with cysteine, and then covered the PAN scaffold obtained by electrostatic
spinning, and finally obtained the m-CNF membrane. The obtained oxidized CNFs through
TEMPO oxidation were in turn grafted with cysteine to obtain the thiol group, which was
embedded in the electrospun PAN scaffold. Ultra cellulose nanofibers have a large surface-
to-volume ratio (~5 nm in diameter and a few hundred nanometers in length), which
makes m-CNF membrane also have a large surface to volume ratio as well. The thiol Group
is contained in m-CNF; the concentration is 0.9 mmol/g, and the maximum adsorption
capacity for Cr6+ and Pb2+ is 87.5 mg/g and 137.7 mg/g, respectively. When the m-CNF
membrane adsorbed by Cr6+ and Pb2+ was regenerated three times by the HCl (2 M) and
EDTA (0.05 M) solutions, the m-CNF membrane continued to possess 93% of its original
Cr6+ adsorption capacity and 95% of its original Pb2+ adsorption capacity.

3.3. Nanocellulose/Other Composites

Organic aerogels can exhibit many remarkable properties, including ultralow density,
high porosity, high specific surface area, and excellent mechanical properties. Zheng
et al. [102] prepared an aerogel from PVA solution and TOCNF under the action of a
glutaraldehyde crosslinking agent. A comparison of the heavy metal ion adsorption
performance of aerogels prepared from PVA solution with and without TOCNF showed
that the maximum adsorption capacity of the PVA/CNF aerogel for Hg2+, Pb2+, Cu2+ and
Ag+ was 157.5, 22, 110.6, and 24.5 mg/g, respectively, and was much higher than pure
PVA aerogel. The carboxyl groups in the porous material showed electrostatic attraction
and chelation for heavy metal ions, and it was possible to carry out adsorption of oils and
organic solvents after silane superhydrophobic treatment.

Graphene oxide (GO) was used to remove heavy metal ions due to its high specific
surface area and large number of functional oxygen groups that could provide active sites
for heavy metal ions [103]. Yu et al. [104] used Fe3+ as a crosslinking agent, carboxymethyl
cellulose nanofibril as a filler, and the wet-spinning method to obtain GO/CMCNF compos-
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ite fiber (CF). The fiber exhibited enhanced tensile strength up to 452 MPa. Its maximum
adsorption capacity for Pb2+ reached 99.0 mg/g by electrostatic attraction, ion exchange,
and complexation of carboxyl groups and Pb2+.

Wood is one of the most abundant materials in nature, and has with excellent mechan-
ical and anisotropy properties [20]. Mo et al. [105] prepared an aerogel with a biomimetic
honeycomb architecture and specific covalent bonding networks following a wood-inspired
method of directional freezing of liquid nitrogen. First, they mixed TCNF with different
proportions of GO solution, then used TMPTAP for the ring-opening reaction to obtain a
TCNF/TMPTAP/GO aerogel (TCTGAs). The maximum adsorption capacity of Pb2+ was
571 mg/g, the removal rate reached 100% within ten minutes for the selective adsorption
of Pb2+.

Carbon dots (CDs) have been the subject of extensive research due to their chemical
stability, excellent biocompatibility, non-toxicity, and colorful photoluminescence [106].
Guo et al. [107] obtained Carboxymethylated Cellulose Nanofibrils (CM-CNFs) from car-
boxymethylated Eucalyptus Kraft Pulp by sodium hydroxide/chloroacetic acid treatment
and homogenization. The CM-CNFs were further modified with CDs based on a typ-
ical condensation reaction. The carboxyl group on the surface of CMCNFs reacts with
the amino group on the surface of CDs to form -CO-NH and water. A series of fluo-
rescent nanocellulosic hydrogels (FNH-1, 2, 3, 4, 5, 6) were prepared through radical
polymerization of CM-CNF-CDs, AA (acrylic acid), AM (acrylamide) and MBA (N’, N-
methylenebisacrylamide) using PPS (potassium persulfate) as the initiator. The resulting
high content of amino, hydroxyl, and carboxyl groups provides adsorption sites, and the
3D network structure of the hydrogel promotes the adsorption of metal ions from the
outside to the inside. The maximum adsorption capacity of the FNH-5 for Fe3+, Ba2+, Pb2+

and Cu2+ ions was tested, and the results were 769 mg/g, 212 mg/g, 2056 mg/g, and 1246
mg/g, respectively.

4. Nanocellulose/Inorganic Composite Adsorbents

The design of organic−inorganic hybrid materials currently plays a substantial role in
the evaluation of innovative advanced materials.

4.1. Nanocellulose/Iron Composites

The magnetic separation technique is widely employed for separation and purification.
Superbmagnetic ion materials include Ni, Co, Fe, Fe2O3, Fe3O4, Fe-Co, and Ni-Fe [108].
Among these, the Fe3O4 nano-ion is stable and widely used in culture mediums due to its
low toxicity. BC (bacterial cellulose) is primarily synthesized from low molecular weight
carbohydrates by Gluconobacter and Acetobacter [109]. Zhu et al. [108] synthesized BC from
Xylobacteria by agitated fermentation method and biosynthesized a spherical Fe3O4/BC
nanocomposite using a pH-controlled embedding method. The maximum adsorption
capacities of Fe3O4/BC spheres for Pb2+, manganate (Mn2+), and Cr3+ were 65, 33, and
25 mg/g, respectively. Because the superparamagnetic spherical Fe3O4/BC nanocompos-
ites are recycled using magnetic field separation, they can be utilized repeatedly. After
recycling with 0.1 mol/L sodium citrate, the adsorption capacity of Fe3O4/BC spheres for
the three ions decreased slightly.

Anirudhan et al. [110] used EGDMA (Ethyleneglycol dimethacrylate) as a crosslinking
agent and K2S2O8 as a free radical initiator, which was grafted onto magnetite nanocellulose
by itaconic acid and then further modified by 2-mercaptobenzamide to obtain a new type
of thiol and carboxyl functionalized magnetite nanocellulose composite particle (P(MB-
IA)-g-MNCC) for removal of Hg2+ from chlor-alkaline industrial wastewater (Figure 9A).
MNCC was obtained by in situ growth of Fe3O4 on NC hydrolyzed by sulfuric acid. Hg2+

is removed by the ion exchange of carboxyl groups and the complexation of thiol groups,
and its maximum adsorption capacity is 240.0 mg/g. They used the same adsorbent to
remove Cd2+ [111] (Figure 9B)and Co2+ [112], with a maximum adsorption capacity of
262.27 mg/g and 349.62 mg/g, respectively.
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Prussian blue (PB), with the formula Fe4
III[FeII(CN)6]3, contains polar FeII−C−N−FeIII

units [113] and is considered to be a promising material thanks to its excellent adsorption
properties and high selectivity for Cs ions [114]. However, the use of PB nanoparticles
to remove Cs from a radioactive waste solution is limited by separation problems. Eun
et al. [115] first used Fe3+ as a crosslinking agent to crosslink CMCNF membrane, then
used Fe3+ ions as a precursor to prepare in-situ growth of PB. The PB nanoparticles, which
exhibit an irregular morphology, densely cover the surface of the PB-CMCNF sample. The
removal mechanism of Cs3+ due to ion exchange between Cs and K. The 0.5 M-PB-CMCNF
membranes exhibited excellent Cs3+ uptakes of approximately 130 mg/gPB-CMCNF.
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4.2. Nanocellulose /MoS2 Composites

MoS2 is a transition metal hydrogen disulfide, a layered structure composed of stacked
two-dimensional nanosheets [120]; this film displays a large number of sulfide (S2−) sites,
making it easy to bind heavy metal ions by electrostatic, hydrophobic, or chemical com-
plexation interactions.

Ferreira-Neto et al. [121] prepared a hybrid functional photocatalyst by supporting
MoS2 nanostructures on flexible self-standing macro-mesoporous bacterial nanocellulose
aerogel membrane. Its specific surface area and pore volume were 97–137 m2/g and
0.28–0.36 cm3/g, respectively. Cr6+ was removed through an adsorptive–photocatalytic
mechanism, with MoS2 showing effective visible light photoactivity and removing Cr6+

ions (88% removal within 120 min, Kobs (apparent rate constant) = 0.0012 min−1) in photo-
assisted inflow.

4.3. Clay/Nanocellulose Composites

Clay’s high specific surface area, high cation exchange capacity, and incredible physical
and chemical stability can enhance heavy metal ion adsorption [122]. Hydroxyapatite
(CHA) is an effective adsorbent material due to its capability for simultaneous removal
of cationic and anionic contaminants from water [123]. Sanna et al. [124] used NCC as a
template, with CHA particles and bentonite clay dispersed in a cellulose matrix to obtain
CHA-BENT-NCC particles. The maximum adsorption capacity for Ni2+ and Cd2+ was
22.96 mmol/g, 9.71 mmol/g, respectively. CHA-BENT-NCC can be regenerated by 0.1 M
HNO3. After five cycles, the adsorption capacity of CHA-BENT-NCC was decreased from
97% to 74% for Cd2+ and from 98% to 80% for Ni2+.

Anirudhan et al. [116] used ethylene glycol dimethacrylate (EGDMA) as a crosslinking
agent, potassium peroxydisulfate (KPS) as the initiator, and modified methacrylic acid
(MAA) and itaconic acid (IA) in nanocellulose/nanobentonite (NC/NB) composite to obtain
PIA/MAA-g-NC/NB. U6+ was removed by ion exchange of carboxyl functional groups.
With the increase of initial U6+ concentration from 100 to 250 mg/L, the adsorption capacity
was increased from 49.73 to 121.02 mg/g. Simulated nuclear industry wastewater was used
for practical efficiency and effectiveness tests, and 0.45 g/L adsorbent was observed to be
sufficient for the complete removal of U6+. After six adsorption–desorption cycles with
0.1 M HCl, a slight decrease in adsorption capacity was observed, from 94.22% to 89.60%.
When using the same adsorbent for the removal of Co2+ [117], the maximum adsorption
capacity was 350.8 mg/g. After washing with 0.1 M HCl solution and six adsorption cycles,
there was little loss (from 99.15% to 88.9%), meaning that the adsorbent could be applied in
nuclear industrial wastewater.

5. Organic/Inorganic/Nanocellulose Composites

Hosseini et al. [125] prepared CNFs from date palm tree waste, cellulose nanofibril
cryogel modified with 10% GO, and 10% Fe3O4 nanoparticle as filler (CNFs/GO/Fe3O4),
prepared by facile freeze-drying methodology. CNF can enhance the mechanical strength
and adsorption capacity of adsorbents. The CNFs/GO/Fe3O4 cryogel had a low den-
sity of 0.0139 g/cm3, an ultra-porosity of 99.46%, and appropriate specific surface area
(SBET = 55 m2/g). The maximum adsorption capacity of the CNFs/GO/Fe3O4 cryogels for
Pb2+, Hg2+, Cr6+ at 298 ± 1 K were 126.58, 36.7, and 73.52 mg/g, respectively. After four
cycles of 1 M HCl, the removal rates of Pb2+, Cr6+ and Hg2+ were able to reach 97.3, 96.51,
and 88.5% of the initial run.

Shahnaz et al. [126] hydrolyzed cellulose with sulfuric acid and oxidized sodium
periodate to obtain dialdehyde-based nanocellulose (DANC). Bentonite was converted
into NB (nanobentonite) under ultrasound. Chitosan was modified with chloroacetic
acid to obtain carboxymethyl chitosan (CMC). CMC, DANC, and NB were mixed to
obtain hydrogel slurry, which was freeze-dried to obtain the NB incorporated dialdehyde
nanocellulose-carboxymethyl chitosan aerogel (NBNC). The response surface methodology
(RSM) method was used to analyze the optimal reaction conditions of NBNC to heavy
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metal ions. The adsorption capacity for Cr6+, Co3+, and Cu2+ were 2749.68, 916.65, and
1937.49 mg/g, respectively.

MOFs (metal-organic framework) are a new kind of porous crystalline materials [127],
which are formed by the interaction between inorganic metal ions (metal clusters) and
organic ligands [128]. Due to their high specific surface area, adjustable pore volume,
and pore size distribution, it can be used for heavy metal ion adsorption. ZIF-8 (Zeolitic
Imidazolate Framework-8) is a typical MOF material composed of Zn metal atoms and
2-methylimidazole [129]. Ma et al. [118] grew ZIF-8 on BC aerogel by an in-situ growth
method and obtained a BC@ZIF-8 composite aerogel (Figure 9C). SEM images showed
that the aerogel was composed of BC and ZIF-8 nanoparticles, and XRD results showed
that the ZIF-8 and BC@ZIF-8 had similar crystalline structures. The maximum adsorption
capacities of BC@ZIF-8 aerogel for Pb2+ and Cd2+ were 390 and 220 mg/g, respectively.

Wang et al. [119] synthesized magnetic CNC (MCNC) with CNC and Fe3O4, then
synthesized MCNC@Zn-BTC adsorbent by reaction of Zn and homo-phenic acid with
MCNC through a simple mechanical stirring method to adsorb Pb2+ in water. Scanning
electron microscopy showed that Zn-BTC presented a perfect columnar crystal structure,
and the surface of MCNC@Zn-BTC showed a beaded crystal structure (Figure 9D), in-
dicating that Zn-BTC successfully covered the surface of MCNC. The adsorption results
showed that the maximum adsorption capacity of Pb2+ reached 558.66 mg/g at 298.2 K,
and adsorption equilibrium was reached within 30 min. After five adsorption–desorption
cycles, the adsorption capacity remained able to reach more than 80%.

6. Conclusions

As an emerging materials platform for the removal of heavy metal ions, nanocellulose-
based adsorbents offer many advantages, however, there are challenges that need to
be addressed appropriately in the future. For instance, given the strong negative ion
groups, nanocellulose-based adsorbents have a high electrostatic attractiveness, offering
desired adsorption sites for heavy metal ions. However, negative hydrophilic ion groups
diminish the hydrophobic capacity and stability of water adsorbents. Potential solutions
include, (though are not limited to) modification of nanocellulose or integration of assembly
processes to improve cross-linking behaviours between nanocellulose and other furniture.

Surface modifications of nanocellulose, such as, oxidation, phosphorylation, and
amination, could promote the adsorbing sites of nanocellulose-based adsorbents, although
this would likely result in a rapid decrease in their desorption ability. In order to increase the
recycling times for adsorbents, more acidic washing is necessary, which causes environment
damage. To obtain high desorption capacities, it is firstly necessary to find materials that
have different binding affinities for heavy metal ions, then assemble these substrates
into multilayer 2D/3D nanocellulose-based adsorbent aerogels or composites, and finally
prepare the nanocellulose based adsorbents with high adsorption/desorption ability.

7. Future Direction and Beyond Limitations

To meet the requirements of recycling, selective adsorption, or desorption of different
heavy metal ions, precisely controlled assemblies of nanocellulose-based adsorbents with
tailorable hydrophilicities and mechanical properties are desired for industrial applications.
For example, in order to optimize the assembly process, crosslinking agent, and function,
additive types of adsorbent networks have to be properly selected to modulate the suit-
able porous structures and adsorption capacities (Figure 10). In addition, computational
modeling and advanced in situ characterizations are beneficial for providing further guid-
ance to researchers in the rational design of cellulose-based adsorbents for heavy metal
ion removal.
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