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Abstract: Silk is a wonderful biopolymer that has a long history of medical applications. Surgical
cords and medically authorised human analogues made of silk have a long history of use in man-
agement. We describe the use of silk in the treatment of eye diseases in this review by looking at the
usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes.
During this ancient art endeavour, a reduced engineering project that employed silk as a platform for
medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this
study explores the present usage of silk in ocular-based drug delivery. This paper also examines
emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As
treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases
and degenerations are developed, the trans-scleral route of drug delivery holds great promise for
the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a
swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk
are unveiled. This article finishes with a discussion on potential silk power, which adds to better
ideas and enhanced ocular medicine delivery.

Keywords: Bombyx mori; ocular drug delivery; silk fibroin; macromolecules; tissue engineering

1. Introduction

Silk fabric has been transported for centuries due to its lightness and texture [1]. The
capability of releasing silk fabric has been altered [1]. It has been claimed that the medicinal
application of silk has altered [1,2], particularly in diverse operations such as eye surgery.
Our ability to employ direct and indirect techniques to assemble silk with critical elements
has resulted in a flood of possible applications [3,4]. Recent updates explain current and
rising trends in biomedical silk (composite) and advanced manufacturing [1–4].

The eye is found and protected within the skull by tightening up muscles; thus, the
spaces around the eye provide complete areas that can perform as loading points for the
assembly of products such as silk hydrogels (as long as the view is not disturbed and their
framework does not physically restrict the spinning of the ball). Building materials are
frequently transferred beneath the orbital fascia, similar to the conjunctiva, and stored
within the area between the world and therefore the skull (head injection) or within the ball.
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Subconjunctival injections are a common clinical practise among nursing personnel [5]; for
example, therapy of progressive glaucoma is routinely assessed by subconjunctival injection.
As a result, patient rates of interest may be substantially higher [6]. A good overview of the
usage of this subtenon technique in anaesthesia is provided by Canvan and colleagues [7].
Typically, 2.0 mL quantities are supplied with ease. It may be required to keep the depots
too far apart to avoid wiping techniques, although this lowers infiltration and disrupts the
system. A retrobulbar injection, similar to that used after a football injection, has also been
developed over time [8,9]. Cosmetic surgeons’ attention to the three-dimensional face was
enhanced by accidental awareness, with claims that autologous oil injections might induce
irreparable blindness due to occlusion. In an emergency, several injectable biomaterials,
such as hyaluronate, are frequently shortened. Taking such efforts to properly halt the
matrix in an emergency is a rare and important characteristic. Finally, the amount of space
available is surprising: a full peribulbar injection with internal lubricants is capable of
holding substantial volumes—often 6 to 12 mL. We describe the use of silk in the treatment
of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug
delivery applications and medication transfer to the eyes (Figure 1) (Table 1) [1,10].
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Figure 1. A schematic of a human eye displaying the expanded layers and layers of the retina. Silk
fibroin figures obtained indicate the ocular regions where the silk was investigated. Image reproduced
from reference [10], which was published under a creative common attribution (CC BY) license.

Table 1. Silk-based biomaterial delivery of therapeutics for ocular delivery.

S. No Formulation Outcome Released Agents Ref

01 Hydrogels
Sustained ocular delivery entails releasing the

product over a period of 90 days. Biodegradation
begins three months after intravitreal injection.

Bevacizumab [11]

02 Silk-Derived Protein
(SDP)

Improves the healing of rabbit corneal
epithelial wounds.

Phosphate buffered
saline (PBS) [12]

03 Silk fibroin-coated
liposomes (SLs)

Continuous and rapid adhesion and uptake of SF
and SLs in cornea cells has been reported, with no

detectable cytotoxicity during the experimental
course.

Ibuprofen [13]
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Table 1. Cont.

S. No Formulation Outcome Released Agents Ref

04 Silk fibroin
nanoparticles (SFNPs)

SFNP carriers for noninvasive transscleral
administration of macromolecular protein drugs

Fluorescein
isothiocyanate labelled
bovine serum albumin

[14]

05 Silk fibroin
nanoparticles

Bio-macromolecule delivery to the retina
is improved.

Fluorescein
isothiocyanate labelled
bovine serum albumin

(FITC-BSA)

[15]

2. Silk Structure

The cocoons of Bombyx mori worms are made up of two proteins: silk fibroin and
sericin. Heavy chains, light chains, and glycoprotein P25 make up the silk fibroin protein.
The heavy chain of silk fibroin has a molecular weight of roughly 350 kDa [16,17] whereas
sericin is a single hydrophilic protein with a molecular weight of 20 to 400 kDa [18], and it
is the most important unit in determining the strength of a silk fibre [19]. These gleaming
circuits, which are embedded in the amorphous matrix, are made up of well-organised
sheets. The highest frequency of the GAGAGS motif [19,20] might be a sufficient silicon
sequence to contribute to those b sheets. Silk fibroin is made up of a variety of secondary
structures, such as sheets, helices, and curves. As a result, mechanical stresses (such as
shear and strain), chemical solutions (such as solvents, pH, and ions), and temperature may
all affect its compliance [21,22]. There are three varieties of silk fibroin: silk-I, silk-II, and
silk-III. The majority of silk-II is made up of sheets inside the second structure, whereas silk-I
is largely made up of an α-helix. Traditional silk-I has a rather high liquid solubility, around
26–30 wt/% [23,24], followed by refined silk, which mixes in at this high concentration.

3. Biocompatibility and Biodegradation of Regenerated Silk Fibroin

Silk’s strength makes it an ideal polymer for biological applications like stitching
and tissue engineering. The clinically recognised silk in Europe and North America are
silk clothing [25], silk garments for treating skin diseases, and silk invasive tools (SERI®

Surgical Scaffold) [26]. These items employ in vivo spun B. mori fibre. Though, success
has been reported in the usage of preassembled silicon utilising B-silk in a number of
investigations [27]. The cocoons of silk are converted into fibroin stock by extraction, which
has the same traditional qualities as silk threads [28]. To liberate sericin, silk cocoons
are first mined in smaller pieces and cooked with an alkaline solution, such as sodium
carbonate. High-grade silk fibres are soluble in chaotropic salts such as lithium bromide,
urea, guanidine hydrochloride, or salt, and the action of silk fibroin is suspended. The
salt in the silk fibroin solution is dissolved in water, resulting in a liquid silk solution.
Differences in processing factors, such as degumming extraction time, might result in a
composite of recycled silk fibroin compounds with different cellular weights. This also
helps silk fibroin’s activity, which combines mechanical strength [29–31].

For efficacy or in other biopolymer components, the biocompatibility and biodegra-
dation of renewable silk fibroin have been studied in vitro and in vivo [1,32,33]. A great
deal of studies on rats and big animals should be taken into account. The biocompati-
bility of silk fibroin is varied in different forms, such as meshes [26], thin films [34,35],
hydrogels [11,36,37], nanoparticles [38–44], and liquid solutions [45]. Because the material
composition, processing circumstances, and synthetic backdrop are predicted to contribute
to degrading their profile, silk fibroin does not generate substantial contradicting reactions,
corroborating assertions that silk fibroin is an SF-related biopolymer.

4. Ocular Wound Healing

Around 50 million individuals worldwide suffer from corneal blindness each year,
with an estimated 2.5 million eye injuries per year in the United States, resulting in severe
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environmental harm today [46]. Furthermore, it is estimated that 337 million individuals
globally suffer from the depressed symptoms of dry eye each year, making it a substantial
risk factor for ocular injury [47]. Eye drop compositions, such as steroids to decrease inflam-
mation, antibiotics to prevent infection, and synthetic tears including ointments to improve
comfort are used at this level of treatment for ocular damage and dry disease [10,48,49].
Although eye drops are convenient to apply and have a wide range of applications, they
do not directly encourage tissue regeneration, may hinder wound healing with long-term
usage, and only give a brief alleviation of symptoms [50]. Corneal homeostasis entails a
slew of tightly controlled cell behaviours as well as a scientific sequence of systematic activ-
ities that necessitate corneal tissue care and enable diagnostics [51]. The corneal epithelium
is the most sensitive tissue engaged in the selection of painful scars and illnesses from
chemical, mechanical, and environmental stimuli produced by damage or surgery since
the outer layer covers the ocular region [52]. Corneal diseases are excruciatingly painful,
and severe ocular injuries can compromise the corneal tissue’s inherent ability to restore
a healthy epithelial environment [53]. Chronic corneal disease and loss of vision from
visual ocular acuity can occur as a result of this disorder [54]. Due to its high solubility of
soluble materials and stability profile, it produces a combination of soluble fibres termed
Silk-Derived Protein (SDP), which turns it into a state of viscosity [55].

The attributes of silk fibroin regeneration in ocular tissue engineering are often used
in a variety of ocular management systems, such as wound repair in the area of attention.
In the wound area, the movement of epithelial cells is often followed by the replication
and division of limbal stem cells to substitute injured tissue in ocular wound healing. Silk
fibroin, in comparison to its role in tissue engineering, does not act as a specialised cell
and develops in the wound-healing process; relatively, it acts as a therapeutic effect that
brings healthy epithelial cells closer to the injured region. To initiate the in vitro healing
process, epithelial cell transplantation, enlargement, and adhesion to the wound site were
demonstrated using epithelial cells and wound examination [12,44]. The ability of silk
protein to repair wounds was tested in a rabbit wound model [12] (Figure 2). The rabbit
corneas were stripped of their epithelial layer and treated with silk protein containing
0.5 percent and 2.0 percent concentrate in the eye; the PBS drops acted as a complete
spectrum, and in the treatment groups, the rabbits showed >95 percent cardiac fixation
within 48 h of treatment, though the rate of correction was significantly higher after a silk
protein treatment.

Silk fibroin wounds are considered to have therapeutic effects on dry skin due to their
healing ability. This condition is characterised by the severe deterioration of the tear film,
leading to injury to corneal epithelial cells and damage to connective tissue cells in the lower
extremities and, eventually, impairment to corneal epithelial cells and injury of conjunctival
shell cells [45,56]. The authors also looked at the effects of silica fibroin on tear production,
corneal dysfunction, corneal vegetative cell division, conjunctival cell congestion, and
inflammatory factors in the lacrimal gland using a dry-eye mouse model. In 12-week-old
mice, dry eye conditions were implicated by immersing them in 30–40 percent humidity
for 10 days and injecting them with scopolamine hydrobromide. Two experimental groups
obtained a silk fibroin solution of 1–5 mg/mL and one control group received PBS in this
study. The liquid silk fibroin solution found in B-fibres was used. Moreover, the whole
building was made alive in an eye-catching way.
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Figure 2. Treatment of rabbit ulcers with silk protein. Fluorescein signal (i.e., the site of the wound)
within the presence of the areas mentioned in rabbits after epithelial rupture. (A) Representative
post-surgical fluorescein staining, (B) summary of wound closure (percent over time), and (C) nor-
malized healing rates between 6 and 24 h post debridement increasing in healing rate with both SDP
concentrations. Image reproduced from reference [12], which was published under a CC BY license.

5. Silk Fibroin-Based Ocular Drug Delivery

The fibre content of fibroin binds reliably to hydrogel in response to the effect of
a fine polymer delivery of ocular macromolecules, for example antibodies and other
therapeutic proteins [31,57]. One example is the inclusion of bevacizumab in silk hydrogel,
an antibody that prevents the formation of vascular endothelial protein in the treatment of
macular degeneration by dehydration. The hydrogel strength of silk within ocular drug
treatment, which includes sterile processing power, biocompatibility compatibility, and
general strength, was demonstrated in vitreous rabbits and Dutch belts via intravitreal
injections [35,58]. Because silk fibroin is frequently collected in aqueous solutions as
a hydrogel, sterile solid fibre fibroin and bevacizumab are normally combined before
sonication-induced gelation. Although the secret to creating second-generation hydrogel
silk appears unachievable, Lovett and colleagues [11] have highlighted the immense power
of silk hydrogel as a method for the administration of vitreous medicines. The silk hydrogel,
for starters, was absolutely undetectable to the vitreous, placing the observer at risk.
Second, because the capacity for silk hydrogel biodegradation in the vitreous is unclear,
the findings in the literature are suspect because silk hydrogel deterioration might be
attributable to shrinkage rather than disintegration. Furthermore, bevacizumab integrated
in silica hydrogel resulted in a 90-day continuous-release period, compared to 30 days for
commercial bevacizumab solution.

Lyogels are hydrogel compositions that have been lyophilised. The high quantity
of silica fibroin also aids the quick release of lyogel, which regulates solvent penetration
and, as a result, disrupts silica–antibody hydrophobic mixing. Guziewicz and colleagues,
for example, discovered that increasing the saturation of silk fibroin within the genus
lyogel decreased the concentrated release of the murine IgG1 antibody, as well as its
total recovery [59]. This hydrophobic connection might be linked to a pH impact and a
continuous ionic interaction that, albeit mild, increases antibody release and acquisition.
The silk matrix can also harm essential methionine scans with a closed antibody, according
to this study, because the oxidation of these particles increases as the density of silicon
increases. Oxidation increases from 6% to 28% with 3% silk gel and up to 34% with 7%
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lyogel [59]. Despite the fact that the oxidation discovered during the study had no effect on
the model protein’s biological function, such chemical alterations impair other therapeutic
approaches and applications [60–62]. A data spokesperson for liposomes made of silk
fibroin may be the attention-grabbing factor needed to promote the drug delivery system.

For the administration of topical ocular medicines, Dong et al. [13] created a liposomal
structure connected with the unique excipient coating, silk fibroin (SF). Liposomes filled
with liposomes were coated over regenerated silk fibroins (RSFs) with a specific melting
point. In comparison to the regular liposome, SF-coated liposomes (SLs) were studied in
terms of morphology, drug effectiveness, in vitro release, and in vitro corneal permeability.
Human corneal epithelial cells were used for cell adhesion as well as cytotoxicity tests of SF
and SL (HCEC). In addition, the researchers looked at whether SLs displayed continuous
drug release and in vitro ibuprofen corneal penetration as compared to drug and liposome
solutions. After 7 min of SF exposure, the cell fluoresced, and the pressure was steadily
raised for 12 h without evident cytotoxicity. During a brief 15 min period, Nile power of the
red fluorescence on SLs was detected, suggesting acceleration. Using SF-coated liposomes
is also a viable strategy for the administration of ocular medicines due to their appealing
shapes [63–66]. To measure particle size, liposomes loaded with ibuprofen and SL were
filtered using TEM at 2 h SF and 8 h SF (Figure 3).
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Figure 3. TEM images of drug-loaded liposomes (A) and SF-modified SL have a specific termination
time: (B) 2 h; (C) 8 h. Image reproduced with permission from reference [13].

Most unilamellar liposomes with a touch of multilamellar liposomes with particles
smaller than 200 nm were introduced using an ethanol injection approach. Many vesicular
liposomes are collected by SF liposome coagulation to produce a vesicular liposome that
displays the size of big particles in an ordered and filtered way. Additionally, Figure 4
shows the effects of an in vitro corneal permeation of liposomes and SL, and the delay time
was fully detected by liposomal formation. The visible penetration coefficients (Papp × 107)
were 1.11 ± 0.12, 1.16 ± 0.23, 1.26 ± 0.19, and 1.23 ± 0.24 cm/s with a solution of ibuprofen
liposomes in 2 h SLs and 8 h SLs.

Despite the fact that the Papp values were not significantly different, the in vitro
corneal permeation curves for the drug solution, nonliposome, and SL gaps showed distinct
behaviours. Drug transport from solution and unclosed liposomes takes approximately
2 h to reach bases, but drug loading from SLs increases rapidly after about 1 h, and SF
coating improves and maintains penetration. SF-labelled FITC and Nile red liposomes were
shown on HCEC and were obtained by confocal microscopy. The SF adherence behaviour
in HCEC for a period of 12 h is shown in Figure 5. After 7 min of exposure to SF, an FITC
green cell fluorescence appeared, and the fluorescence strength steadily rose until 12 h of
incubation. The cellular absorption of SF nanoparticles by murine somatic cell carcinoma
4 cells and SF-coated liposomes by Keloid cells [67,68] was nearly equivalent to the quick
and continuous attachment of SF to HCEC. SF-coated liposomes are a potential medication
delivery technology for the eyes because of all of these characteristics.
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Figure 4. Ibuprofen (a), liposomes (b), and SL produced by 1.0 percent SF at various concentrations
of in vitro corneal permeability: (c) 2 h; (d) 8 h. The data are shown as mean ± SD (n = 3). Image
reproduced with permission from reference [13].
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Retinal and central vein closure, retinal vascular disease, diabetes, and glaucoma, all of
which cause retinal and optic nerve damage, have recently become the most common causes
of vision loss and blindness. ARMD affects around 50 million people worldwide, and the
number of cases is predicted to rise in the next 20 years, indicating that it has become a major
public health concern [69–72]. In general, medicine is administered as soon as possible via
a number of methods [73,74]. Formal therapy is widely employed, but it has harmful side
effects since it frequently fails to identify the eye due to its distinct physical and biological
structure and inherent barrier to eye protection [75]. Several attempts have been undertaken
to improve drug retention and sclerosis in order to improve the therapeutic impact [76–84].
A bioavailability discovery event and a controlled release system are frequently separated
into two phases in these attempts. To improve bioavailability, researchers monitor viscosity
enhancers [85], implant enhancers [86], active medicines [87], and portable technological
devices such as iontophoresis [88] and ultrasounds [89]. Ultrasounds provide a number
of advantages as a noninvasive therapy, including a rapid application procedure, dosage
assessment, and interaction with other medication delivery systems. Several plants [90,91],
chemicals, and delivery methods, such as liposomes [92], micro- or nanoemulsions [93], and
tiny nanoparticles [94] are used in the controlled emission system. Nanoparticles are one of
the most promising forms because they have the advantages of halving the drug’s half life,
lowering high volume and toxicity, reducing volume frequency, boosting biocompatibility,
and injecting a single drug molecule.

A transscleral ultrasound was used by Huang et al. [14] to deliver silk fibroin nanopar-
ticles (SFNPs) for long-term medication delivery. The macromolecular protein model was
fluorescein isothiocyanate bovine albumin (FITC-BSA, MW 66.45 kDa), and SFNPs were
used as nanocarrier systems for complete drug delivery. In vitro transscleral investigations
with ultrasound (1 MHz, 0.5 W/cm2, 5 min continuous wave) were performed on rabbit
sclera that had been separated. The rabbit’s posterior eye region was evaluated for any
adverse effects using a slit lamp and histology. Continuous extraction, bioadhesive quali-
ties, and copermeation were used to create FITC-BSA-SFN. An ultrasound considerably
enhanced the efficacy of the FITC-BSA-SFN entrance when compared to passive administra-
tion; however, it may cause harm to the ocular tissue or the particles themselves. External
scleral tissues attach quickly and last a long time in the SFN delivery profile, followed by
internal migration that lasts up to a week. Researchers are also continuing to look into
in vivo mucoadhesion. Fluorescence imaging equipment was used to examine the in vivo
distribution of fluorescence medication linked to rabbit sclera, as fluorescent light from
FITC is generally generated at 525 nm. After the automated exclusion of the autofluores-
cence tissue from the visible sclera spectrum, the fluorescent light signal displayed a protein
fluorescent sclera after FITC-BSA-SFN suspension, and the FITC-BSA control solution was
shortened to the rabbit sclera region (Figure 6).

The fluorescent signal steadily grew, resulting in an increase in the adhesion area over
time. At 10, 20, and 40 min after delivery, the FITC-BSA-SFNs group showed a stronger
and more flexible adherence to the sclera than the control group, implying that SFNs
aid medications in treating sclera effectively and efficiently. They also conducted more
studies by taking X-ray pictures that revealed no difficulties inside the visual and anterior
chambers, such as cerebral palsy, keratopathy, or synechia (Figure 7A). Funduscopic testing
found no signs of vitreous opacity, endophthalmitis, retinal detachment, haemorrhage, or
oedema in rabbit eyes after ultrasonography. The retina and optic nerve appeared to be
healthy (Figure 7B). The temperature difference between before and after treatment of the
scleral surface inside the ultrasonic application region was also 0.8 ◦C. Their initial study
demonstrated that an ultrasound could be used to improve the transport of protein-rich
nanoparticles to the sclera and to better understand subsequent release. SFNP formulations
showed rapid adherence, effective breathing, and sustained medication release. SFNs are a
promising carrier of ocular medication delivery because of all of these characteristics. To
establish the feasibility of using a safe trans-scleral ultrasound to enhance the delivery of
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SFNPs loaded with protein medicines for clinical usage, further drug delivery research and
in vivo investigations are needed.
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6. Conclusions

Around 50 million individuals worldwide suffer from corneal blindness each year,
with an estimated 2.5 million eye injuries per year in the United States, resulting in severe
environmental harm today. For efficacy or in other biopolymer components, the biocompat-
ibility and biodegradation of renewable silk fibroin have been studied in vitro and in vivo.
Silk biopolymers have been used in tissue engineering for a few years, and their usage
in drug research has just recently become popular. Silk fibroin is increasingly being used
as an active biological polymer. We should expect a swarm of silk-inspired materials to
enter clinical testing and use on the surface as the secrets of silk are unveiled. Despite the



Polymers 2022, 14, 5475 10 of 14

fact that silk has been used as a stitching material for thousands of years, the introduction
of synthetic silk and the capacity to regenerate silk fibroin has opened up a world of silk
functions in the treatment of eye disorders.

7. Possibilities for Improvement of Silk-Based Biomaterials for the Ocular Drug
Delivery

As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and
other retinal diseases and degenerations are developed, the trans-scleral route of drug
delivery holds great promise for the selective, sustained-release delivery of these novel
therapeutic compounds. Many of the criteria for a competent biomaterial, such as a lack of
direct cytotoxicity, are met by fibroin, and its long use in the human body has supported
regulatory approval. However, significant questions remain unanswered. How much
will choroidal blood flow restrict drug delivery across the sclera? How will transscleral
pressure affect protein and macromolecule diffusion across tissues? Is it possible to develop
a practical delivery system with pharmacokinetics compatible with long-term sustained-
release delivery? Can regional scleral thickness differences be used to optimise trans-scleral
delivery? How will drugs binding to the scleral extracellular matrix affect drug delivery
and sustained release? Determining in vitro to in vivo correlations and scale-up needs are
the next steps towards clinical applications.

8. Future Perspective

Although silk has been used for years as a stitching material, the introduction of
synthetic silk, the advent of recombinant silks, and the ability to regenerate silk fibroin has
opened up a world of silk functions in the treatment of eye disorders. Silk biopolymers
have been studied for decades for tissue engineering applications, but its use in drug
delivery applications has only recently emerged. Silk fibroin is becoming more popular
as a biologically active polymer. As we continue to discover the secrets of silk, more
silk-inspired materials will enter clinical testing and, eventually, clinical use.
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