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Abstract: This paper explored the injection foaming process of in situ fibrillation reinforced polypropy-
lene composites. Using polypropylene (PP) as the continuous phase, polytetrafluoroethylene (PTFE)
as the dispersed phase, multi–wall carbon nanotubes (MWCNTs) as the conductive filler, and
PP grafted with maleic anhydride (PP–g–MA) as the compatibilizer, a MWCNTs/PP–g–MA mas-
terbatch was prepared by using a solution blending method. Then, a lightweight, conductive
PP/PTFE/MWCNTs composite foam was prepared by means of extruder granulation and super-
critical nitrogen (ScN2) injection foaming. The composite foams were studied in terms of rheology,
morphological, foaming behavior and mechanical properties. The results proved that the in situ
fibrillation of PTFE can have a remarkable effect on melt strength and viscoelasticity, thus improving
the foaming performance; we found that PP/3% PTFE showed excellent performance. Meanwhile,
the addition of MWCNTs endows the material with conductive properties, and the conductivity
reached was 2.73 × 10−5 S/m with the addition of 0.2 wt% MWCNTs. This study’s findings are
expected to be applied in the lightweight, antistatic and high–performance automotive industry.

Keywords: PTFE; PP; MWCNTs; in situ fibrillation; injection foaming

1. Introduction

In recent years, with the development of the economy, the preparation of technology
that combines lightweight and high–performance polymer materials has become an impor-
tant research direction for new energy vehicle materials [1–8]. PP has the largest market
share in the automotive plastics market, accounting for approximately 21%. This is because
PP has the smallest density (0.90~0.91 g/cm3) of all resins, with the density being only
about 10% of steel. It is cost–effective, easy to form and recycle, excellent for heat resistance,
chemical corrosion and stress cracking resistance [9]. However, traditional PP has poor
flame–retardant performance, low–temperature performance and impact resistance, so
now most of the automotive plastic PP is modified PP. PP–based microfibrillated composite
materials have the advantages of light weight and high strength. The use of PP–based
microfibrillated composite materials supplemented with microcellular foam molding can
make a breakthrough in the production of lightweight automobiles.

Different from other polymers, PTFE possesses many desirable properties, such as
excellent solvent resistance, high melting point and low yielding strength. The presence
of fluoroalkyl functional groups in PTFE demonstrate strong thermodynamic affinity for
CO2 [10–12]. The fibrillar network, which is developed by physical entanglements without
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dispersion difficulty for the fibrils with high aspect ratios, is formed from already well–
dispersed phases [13]. Furthermore, PTFE particles can be fibrillated easily under shear
extrusion due to its low inter–facial shear strength [14,15]. Hence, this paper chose PTFE as
dispersed phase.

The in situ fibrillation mechanism of PTFE in PP is that as a dispersed phase, it will
be deformed and oriented in the continuous phase PP due to shearing and stretching, and
thereby form fibers. Park et al. [16] prepared in situ polymer–fibrillar blends of PP/PTFE
and they found that adding only 0.3 wt% of PTFE is sufficient to markedly enhance the
CO2 sorption capacity of the matrix, thereby improving PP foaming performance. In order
to improve the thermal insulation performance of PP, Wang et al. [17] fabricated a thermal
conductivity of as low as 36.5 mW·m−1·K−1 by high pressure foam injection molding,
followed by mold–opening with CO2 as a blowing agent. Their study confirmed that PTFE
fibers are very effective for improving melt strength and, thus, the foaming ability of PP.
Subsequently, Park and Wang et al. have conducted a series of studies [18–26] to explore the
mechanism of in situ fibrillation and its influence on foaming. Xie et al. [27,28] reported that
the in situ fibrillated phase improved the filler’s dispersion and enhanced the reinforcing
effect of the filler phase. Jurczuk et al. reported [15] that PTFE nanofibers nucleated the cells’
formation in long–chain branched (LCB–PP) and participated in controlling the cells growth.
Recently, in situ fibrillation of different matrices has also been studied, such as PC [29],
PLA [30] and so on. However, its application is limited due to its single performance;
therefore, there is an urgent need to increase its field of application.

In order to solve the above problem, this paper uses PP as the continuous phase, PTFE
as the dispersed phase, MWCNTs as the conductive filler, and PP–g–MA as a compatibi-
lizer. The PP–g–MA–MWCNTs masterbatch is prepared by solution blending, granulating
with a twin–screw extruder, and ScN2 injection foaming is used to prepare a lightweight,
conductive composite foam. Different from the previous literature, this work adopted the
MWCNTs selectively dispersed in the phase interface, and a low percolation threshold
was achieved. The morphology, viscosity, and mechanical properties of composites and
composite foams with different PTFE contents were tested. The optimal injection molding
and foaming processing parameters were explored, and the conductivity of composite
foams with different MWCNTs content were tested.

2. Experimental
2.1. Materials

Grade Pro–fax SG702 PP was purchased from LyondellBasell Industries (Rotterdam,
Netherlands). PTFE was purchased from Daikin Industry Co., Ltd. (Osaka, Japan). Multi–
walled carbon nanotubes (MWCNTs) were purchased from Aladdin Company (Shanghai,
China). The nanotubes were >90% pure, with inner diameter of 5–15 nm, outer diameter
of 30–80 nm and <10 µm long. Polypropylene grafted maleic anhydride (0.934 g/mL,
maleic anhydride 8–10 wt%) was purchased from Aldrich Chemical Co., Inc with Mw~9100
(Milwaukee, WI, USA).

2.2. The Preparation of PP/PTFE Composites

In order to study the effect of different PTFE contents on the in situ fibrillation of
PTFE/PP, PP/PTFE composites with PTFE contents of 1%, 3%, and 5% were prepared. PP
and PTFE were weighed according to the mass ratio, then put in a beaker and stirred to
ensure uniform dispersion, and then added to the feed port of the extruder (ZSE–18HP–e,
Leistritz, Germany) for extrusion to obtain a PP/PTFE composite. The feed rate was
80 r/min and the speed was 150 r/min. The temperature of each zone of the extruder is
shown in Table 1.
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Table 1. Extrusion processing temperature.

Zone 1 2 3 4 5 6 7 8

Temperature (◦C) 155 155 160 170 180 180 180 180

2.3. The Preparation of PP–g–MA–MWCNTs Composite

A total of 10 g of MWCNTs was added to 1 L of DMF and then put into an ultrasonic
cleaner with a power of 300 W to sonicate for 10 min to obtain a MWCNTs dispersion. Then
19 g of PP–g–MA was taken and dissolved in 100 g of p–xylene. Blends were added to the
MWCNTs dispersion when they were dissolved, and a magnetic stirrer with the rotating
speed of 1200 r/min was used for 3 h at room temperature to form a uniform dispersed
mixture. The dispersion was poured into 1 L of ice methanol, the supernatant removed
after the black solid was separated out, and a vacuum filtration was performed. Vacuum
drying, at 60 ◦C for 12 h to remove residual DMF and methanol to obtain the sample, was
then performed. The synthetic route is shown in Figure 1.
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2.4. Masterbatch Preparation

The sample obtained above was added to 171 g of PP, after stirring and dispersion,
and was then added to the twin–screw extruder for extrusion granulation to obtain a
masterbatch with a MWCNTs content of 5%. The specific formula is shown in Table 2. The
equipment and processing conditions are consistent with Section 2.2.

Table 2. Masterbatch composition and formula ratio.

Masterbatch
Composition PP (wt%) PP–g–MA (wt%) MWCNTs (wt%)

PP/5% MWCNTs 85.5 9.5 5

2.5. The Preparation of PP/PTFE/MWCNTs Composite

The PP, PTFE and masterbatch were blended according to the formula in Table 3,
and PP/PTFE, PP/PTFE/0.2% MWCNTs, PP/PTFE/0.5% MWCNTs, and PP/PTFE/1%
MWCNTs composites were prepared using a twin–screw extruder, and the final granulation
was used for ScN2 injection foaming.
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Table 3. Sample formula.

Sample Formula PP (wt%) PTFE (wt%) Masterbatch (wt%)

PP/PTFE 97 3 0
PP/PTFE/0.2% MWCNTs 93.58 3 4
PP/PTFE/0.5% MWCNTs 88.45 3 10
PP/PTFE/1% MWCNTs 79.9 3 20

2.6. PP/PTFE/MWCNTs Composite Injection Foaming

The pellets obtained above were formed under the injection foaming process (All-
rounder 320S, Arburg, Germany). The conditions were as follows: the melt temperature
was 180 ◦C, the mold temperature was 50 ◦C, the filling was 12 cm3, the injection speed
was 50 cm3/s, the N2 concentration was 0.4 wt%, the holding pressure was 15 MPa, the
holding time was 40 s, and the cooling time was 30 s.

2.7. Morphological Characterization
2.7.1. TEM

After ultra–thin sectioning of the PP/PTFE/MWCNTs composite foams, the JEM-1230
transmission electron microscope (TEM, JEM–1230, JEOL Ltd., Tokyo, Japan) was used
to observe the dispersion of PTFE and MWCNTs in the composites under an acceleration
voltage of 200 kV.

2.7.2. SEM

Scanning electron microscopy (SEM, Vega 3, Tescan, Brno, Czech Republic) was used
to observe the cross–sectional morphology of PP/PTFE/MWCNTs composites and their
relevant foamed composites. The samples were placed in liquid nitrogen for brittle fracture
treatment. At the same time, in order to observe the fibrillation of PTFE, the fracture surface
of the PP/PTFE composite was steam etched with p–xylene under the condition of 65 ◦C,
for 2 h. Then, an ion sputtering instrument was used to spray platinum on the surface
of the section to enhance conductivity and observe the morphology of the sample with a
Tescan Vega 3 desktop scanning electron microscope; the voltage was 10 kV.

For the SEM images, the analysis software Digital Micrograph was used to calculate
the average cell size and cell density of the sample, and the Formula (1) was used to
calculate the cell density N (units/cm3).

N =

[(
nM2)

A

] 3
2

(1)

where n is the number of cells in the SEM image, M is the magnification, and A is the area
of the selected SEM area.

2.8. DSC Analysis

DSC (Q2000, TA, DE, USA) was used to calculated the thermal properties of PP/PTFE/
MWCNTs composites. A 5–10 mg sample was weighed and placed in a sealed aluminum
crucible. During the test, N2 was continuously introduced as a protection, and the gas
flow rate was 50 mL/min. The samples were increased from room temperature to 200 ◦C
at a temperature increase rate of 10 ◦C/min to remove thermal history. The samples
were kept at a constant temperature of 200 ◦C for 3 min, then they were cooled down to
room temperature at a cooling rate of 10 ◦C/min, and finally reheated to 200 ◦C for the
second time.

2.9. Rheology Test

The rotary rheometer (AR2000, TA, DE, USA) was used to measure the rheological
properties of the sample under shear flow. Samples were hot pressed into a film with a
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diameter of 25 mm and a thickness of 0.5 mm. The parameter strain value was set to 1%,
the frequency swept from high frequency to low frequency, the angular frequency range
was 0.03–200 rad/s, and the frequency sweep temperature was set to 180 ◦C.

2.10. Density Test

The drainage method was used to measure the density of the samples, the experiment
was carried out at room temperature, and the density bottle was V0 = 25 mL. First, the mass
m0 of the density bottle was measured, and then the mass m1 of the density bottle filled
with water was measured. The mass of the sample as ms was measured, then the sample
was slowly stuffed into the density bottle, the density bottle filled with water and closed,
and the mass m2 of the sample and the density bottle lastly measured. The density ρ of the
composite material was then calculated using Formula (2).

ρ =
ms(m1 − m0)

V(ms + m1 − m2)
(2)

2.11. Tensile Stress

The tensile test adopts the standard tensile dumbbell–type samples. According to
ASTMD 638, the tensile speed was 50 mm/min at a temperature of 25 ± 2 ◦C, and each
group of samples was tested at least 5 times, and the average value was finally taken.

2.12. Conductivity Test

A rectangular spline was prepared with length L = 8 mm, width W = 2 mm, and
thickness D = 2 mm; the positive and negative poles of the electrochemical workstation
(RST5000) were connected with copper wires at both ends of the spline, and the single–
potential step chronoamperometry was selected. The measurement voltage was set to
U = 10 V and the measurement time to 10 s. After the current curve was stable, the average
value was taken, and Formula (3) was used to calculate the conductivity σ of the material,
the unit is S/m.

σ =
I

U
× D

LW
(3)

3. Results and Discussion
3.1. TEM

TEM is performed to observe the dispersion of PTFE and MWCNTs. Figure 2a is the
TEM of a melt blending of PTFE/PP. It can be seen that the melt blending only provides
shear force and is not enough to make the fiber in situ fibrillation. Figure 2b displays
the TEM of PP/PTFE/0.2% MWCNTs. The black strips in the red circle are MWCNTs,
with a diameter of about 10 nm and a length of about 400 nm. In comparison with the
purchased MWCNTs, the length is 10–20 µm and the diameter is larger than 50 nm, which
is much smaller. This may be because the MWCNTs are broken by the strong shearing and
stretching action of the screw. It can also be seen that MWCNTs are not all dispersed at
the two–phase interface, but a few are dispersed in the resin. Figure 2c reveals that the
inside of the fiber consists of hollow microspheres, which also proves that it is a PTFE fiber.
The mechanism of in situ fibrillation of PTFE has been reported before [31]. As long as the
processing temperature is lower than the melting point of PTFE, the morphology of PTFE
fiber can be maintained because the molecular chain cannot be relaxed and cannot return to
its original shape. Figure 2d reveals the TEM of PP/PTFE/1% MWCNTs. The red dashed
circle in the figure is MWCNT, which are dispersed in the phase interface of PTFE and PP.
The aspect ratio is similar to Figure 2b and is consistent with the experimental concept. It is
easier to form a conductive network when dispersed in the phase interface, so can achieve
high conductivity under low loading.
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3.2. SEM

Figure 3 is the SEM of PP/1% PTFE and PP/3% PTFE after etching PP with p–xylene.
The diameter of fiber in Figure 3a is about 5 µm and the diameter of fiber in Figure 3b is
nanoscale, which is close to the parameters of the purchased PTFE (the average particle size
is 9 µm, and the primary particle size is 200 nm). It can be seen that the PTFE powder has
constructed in situ fibrillation into fibers by shearing and stretching during the twin–screw
extrusion process. The literature reports that in situ fibrillation of PTFE can greatly improve
the foaming ability of PP by promoting crystallization, and enhancing the viscoelasticity
and strength of the melt [16,17,23,32].

Figure 4 reveals PP/PTFE composites with different contents of PTFE from the in-
jection molding foam skin layer to the core layer. It can be seen that there are obvious
skin layer structures, while the cell diameter and the cell density gradually increase from
the skin layer to the core layer. At the same time, the in situ fibrillation of PTFE has an
obvious promotion effect on PP foaming. With the increase of PTFE contents, the cell
diameter gradually decreases and the cell density gradually increases. This is because PTFE
promotes the crystallization of PP and increases the melt strength.
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Figure 5 displays a SEM picture of PP/PTFE composite foams with different con-
tents of PTFE. It can be seen from that the heterogeneous nucleation efficiency of PTFE is
very high. With the increase of PTFE content, the average cell diameter decreases from
17.31 µm to 7.98 µm, and the average cell density increases from 1.70 × 107 units/cm3

to 9.93 × 107 units/cm3. This is because PTFE promotes the crystallization of PP and im-
proves the viscoelasticity and strength of the melt. At the same time, it can be seen from the
previous TEM and SEM that the aspect ratio of PTFE in situ fibrillation is very high, which
can reduce the free energy barrier of nucleation, increase the nucleation sites and heteroge-
neous nucleation rate, and thereby significantly improve the foaming properties of PP [33].
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3.3. DSC

Figure 6 is the DSC curve of PP/PTFE and PP/PTFE/MWCNTs composites with
different contents of PTFE and MWCNTs. Table 4 displays the thermal parameters of DSC.
Crystallinity is the ratio of the enthalpy of melting to the melting enthalpy of PP at 100%
crystallization (209 J·g−1) [34]. It can be seen from Figure 6a that with the addition of PTFE,
the peak shifts to the left and the peak area increases. The crystallinity is largest when
the amount of PTFE is 3%, reaching 42.6%. Meanwhile, Figure 6b plotted the DSC curve
during cooling, and it can be seen that there is an increase in the polymer crystallization
temperature after the addition of PTFE. These phenomena indicate that the PTFE addition
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increases the crystallinity and promotes the crystallization of PP. Hence, PTFE can not only
be used as a nucleating agent, but also can induce PP to crystallize along the direction of
PTFE fibers.
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Table 4. Thermal parameters of DSC.

Crystallization
Temperature (◦C) Melting Temperature (◦C) ∆H (J·g−1) Crystallinity

PP 120.6 168.4 74.64 35.7%
PP/1% PTFE 122.5 165.5 87.58 41.9%
PP/3% PTFE 122.7 165.0 88.95 42.6%
PP/5% PTFE 124.3 165.1 84.35 40.4%

PP/PTFE/0.2% MWCNT 122.2 166.6 80.03 38.3%
PP/PTFE/0.5% MWCNT 121.5 166.3 83.23 39.8%
PP/PTFE/1% MWCNT 122.3 165.7 84.88 40.6%

Figure 6c,d plots the DSC curves of PP/PTFE composites with different contents of
MWCNTs during heating and cooling. It can be seen that with the addition of MWC-
NTs, the crystallization temperature and crystallinity are basically unchanged; this is due
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to the MWCNTs being mainly dispersed at the phase interface and having little effect
on the PP phase.

3.4. Rheology

Figure 7a depicts the tanδ–frequency curves of pure PP, PP/PTFE and PP/PTFE/MWCNTs
composites. It can be seen that pure PP exhibits typical viscoelastic fluid behavior, and tanδ
decreases with increasing frequency over the entire frequency sweep range. As the content
of PTFE increases, its tanδ gradually decreases. Tanδ of PP/PTFE composites increase
with the increase in frequency at low frequency, and this phenomenon is a physical gel
property. In the high–frequency region, the tanδ decreases with the increase in frequency,
showing the same trend as PP. Due to the PTFE fiber, the network is unentangled under
high shear and the composite is transformed into viscoelastic fluid behavior. Figure 7b
is the G’–frequency curve of PP and PP/PTFE composites. It can be seen that, with the
addition of PTFE, the storage modulus G’ increases, and G’ gradually increases with the
increase of PTFE content. This is because the addition of PTFE increases the stiffness
of the material, so that its energy storage modulus gradually increases. Figure 7c is the
G”–frequency curve of PP and PP/PTFE composites, and it reveals that with the addition
of PTFE, the loss modulus G” shows the same trend as the energy storage modulus, which
is also due to the increased rigidity; the energy required for the movement of the molecular
chain increases, and the loss modulus increases [15].
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Figure 7d depicts the tanδ–frequency curves of PP and PP/PTFE/MWCNTs com-
posites. It can be seen that both PP and PP/PTFE/MWCNTs exhibit typical viscoelastic
fluid behavior, and tanδ decreases with increasing frequency over the entire frequency
sweep range. Figure 7e,f are the G’, G”–frequency curves of PP and PP/PTFE/MWCNTs
composites, respectively, it can be seen that with the addition of MWCNTs, their rigidity
increases, the energy storage modulus G’ increases, and the energy required for molecular
chain movement increases, thereby increasing the loss modulus G”. It also can be found
that the curves of G’, G” form a gel point under the addition of 0.2 MWCNTs, which proves
the construction of three–dimensional network and indirectly proves the formation of
conductive network, thus consistence with the high conductivity under low loading.
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3.5. Foam Density

The density of PP, PTFE, and MWCNTs are 0.90 g/cm3, 0.40–0.55 g/cm3, 2.20 g/cm3,
respectively. From Table 5, we can see that with the increase in PTFE, the density of
PP/PTFE gradually decreases; when the PTFE content is 5%, the density is reduced to
0.72 g/cm3, and after injection foaming, further weight reduction as low as 0.43 g/cm3, and
the expansion ratio reaches 1.67. This is because PTFE in situ fibrillation, as a heterogeneous
nucleation agent [19], promotes nucleation and improves the foaming ability of PP, which
is consistent with SEM. After the addition of MWCNTs, the density gradually increased.
After injection foaming, its density gradually decreased with the increase in MWCNTs,
as low as 0.35 g/cm3, and the expansion ratio reached 2.46. This is due to the fact that
MWCNTs are distributed at the phase interface and act as nucleating agents to induce
nucleation, further increasing expansion ratio.

Table 5. Density of Composite before and after foaming.

Density before Foaming
(g/cm3)

Density after Foaming
(g/cm3) Expansion Ratio

PP 0.90 0.73 1.23
PP/1% PTFE 0.77 0.55 1.40
PP/3% PTFE 0.75 0.50 1.50
PP/5% PTFE 0.72 0.43 1.67

PP/3% PTFE/0.2% MWCNTs 0.79 0.40 1.98
PP/3% PTFE/0.5% MWCNTs 0.82 0.38 2.16
PP/3% PTFE/1% MWCNTs 0.86 0.35 2.46

3.6. Tensile Testing

It can be seen from Figure 8a that after the addition of PTFE, the tensile strength in-
creases, and gradually increases with the increase in content. The tensile strength increases
from 13.6 MPa to 16.8 MPa when the PTFE content is 3%; his is because the addition of
PTFE enhances the strength. Its elongation at break decreases slightly with the addition of
PTFE, and remains at about 17%, which is relatively brittle. Figure 8b plots the tensile curve
of PP/PTFE composite foams, and it can be seen that the tensile strength is significantly
reduced from 15.4 MPa to 11.1 MPa after foaming. This corresponds to the cortical structure
of SEM, and foamed PP has the thickest cortex thickness; it reaches 250 µm and, therefore,
the highest tensile strength. The elongation at break is slightly increased. Thus PP/3%
PTFE is the optimal component.
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3.7. Conductivity Test

Figure 9 depicts the conductivity of PP/PTFE/MWCNTs composites with different
contents of MWCNTs before and after foaming. It can be seen that, after the addition of 0.2%
MWCNTs, the conductivity suddenly increases to 2.73 × 10−5 S/m, and its conductivity
gradually increases with the increase in MWCNTs, reaching 3.41 × 10−4 S/m under the
addition of 1% MWCNTs. This is because MWCNTs are dispersed between the two phases
of PP and PTFE, so that the content required to form a conductive path is significantly
reduced to as low as 0.2%. However, its conductivity decreases slightly after foaming,
probably because the foaming process destroys fraction conductive networks, making its
conductivity slightly reduced.
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twin–screw extrusion and injection foaming. The effects of different PTFE contents on PP
were explored, and the results revealed that the increase of PTFE content could promote
PP crystallization and improve PP foaming ability. Meanwhile, PTFE with 3% content is
sufficient to obtain excellent performance, so the optimal component is determined to be
3% PP/PTFE/MWCNTs in situ fibrillation composite foams were successfully prepared,
most of which were uniformly distributed at the phase interface of PP/PTFE, which makes
it easier to form a conductive network and achieve high conductivity under low loading.
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