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Abstract: Due to their distinctive intrinsic advantages, the nanoaggregates of conjugated polyelec-
trolytes (CPEs) are fascinating and attractive for various luminescence applications. Generally, the
emission luminescence of CPEs is determined by the conjugated backbone structure, i.e., different
conjugated backbones of CPEs produce emission luminescence with different emission wavelength
bands. Here, we polymerized the bis(boronic ester) of benzothiadiazole and an alkyl sulfonate
sodium-substituted dibromobenzothiatriazole to provide PBTBTz-SO3Na with different molecular
weights via controlling the ratio of the monomer and the catalyst. Theoretically, the CPEs with
the same molecular structure usually display similar photoelectronic performances. However, the
resulting PBTBTz-SO3Na reveal a similar light absorption property, but different luminescence. The
higher molecular weight is, the stronger the fluorescence intensity of PBTBTz-SO3Na that occurs.
PBTBTz-SO3Na with different molecular weights have different colors of luminescence. It is well
known that the molecular aggregates often led to weaker luminescent properties for most of the con-
jugated polymers. However, PBTBTz-SO3Na exhibits a higher molecular weight with an increasing
molecular chain aggregation, i.e., the nanoaggregates of PBTBTz-SO3Na are beneficial to emission
luminescence. This work provides a new possible chemical design of CPEs with a controllable,
variable luminescence for further optoelectronics and biomedicine applications.

Keywords: aggregates; luminescence; conjugated polyelectrolytes; optoelectronic properties

1. Introduction

Conjugated polyelectrolytes (CPEs) with a conjugated backbone and a charged flex-
ible side-chain are employed because of their strong light-harvesting ability, excellent
water solubility and good photo-stability, etc. [1–5]. The CPEs possess the properties of
organic semiconductors, providing superior optoelectronic performances in virtue of the
them having the same type of electronic delocalization based on the rigid conjugated
backbones, which makes the utilization of CPEs possible in the fields of biomedicine and
bioimaging, etc. [6–12]. The CPEs in polar media provide possible greener alternatives
for the substitution of toxic solvents, i.e., their special solubilities allow for the possible
fabrication of multilayer electronic devices in combination with the nonpolar conjugated
polymers [4,5,13].

The powerful applications promote the design and synthesis of CPEs through the
structural modifications of the side groups, the conjugated backbone, the ionic counterions
and their functionalities [13–19]. The side groups permit one to modify the average distance
between the charged pendants and the conjugated backbone. Charged pendants can be
anionic or cationic groups, which have a structural handle to modulate the preferential
interactions with the charged surfaces. Local electrostatic fields arising from the charged
pendants result in the aggregates’ formation and charge transfer to take place among
the inter- and intra- molecules [16–19]. The counterions that compensate for the charged
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pendants which are attached to the CPEs play an important role in regulating the charge
carriers of the corresponding photovoltaic devices [19–22]. The conjugated backbone
determines the primary optical properties of the CPEs [20–22]. Additionally, the conjugated
length is also a non-ignorable element in the charge transfer among the molecular chains
and the optical performance of the CPEs.

Developing innovative aggregated states are also another important consideration
that aim to keep abreast with the development of the applied fields for CPEs [16]. The
aggregate states have been suspected to be an important factor in determining the intra- and
inter-molecular charge transfers of CPEs in the biological and optoelectronic devices [16,17].
Generally, the aggregate states of the CPEs are determined by the chemical structure of the
conjugated backbones and the side groups [16–18]. There are few reports on the influence
of the length of the conjugated backbone on their aggregation states, the molecular charge
transfer and the optoelectronic performances of CPEs.

Benzotriazole (BTz) and benzothiadiazole (BT) have been proven to be two of the most
promising units for the D-A conjugated polymers which are used in efficient optoelectronic
devices because of their strong electron affinity [20–23]. E.g., the luminescence perfor-
mances of BTz- and BT-containing copolymers can be regulated via the chemical structure
change of the main and side chains, which is an important theoretical basis for optoelec-
tronic applications [24–29]. BTz is an electron-deficient unit that can be modified via an
alkyl side chain of the middle nitrogen atom on the triazole ring. The neutral homopolymer
based on BTz backbones limits its solubility in common organic solvents, further restricting
its application in the optoelectronic device, etc. The incorporating conjugate unit and
ionic side chain onto the BTz backbone increase the solubilizing and planarity property
of its copolymer [13,14]. In addition, these water-soluble polymers with variable shapes,
sizes and functionalities can be further constructed by the self-assembly approach of the
conjugated molecular long chain [4–9]. Their aggregate formation, twisted inter- and intra-
molecular charge transfers and optoelectronic performance of the copolymers based on the
BTz and BT backbone can be finely regulated without additional assist assembly [30–36].

Herein, we report CPEs (PBTBTz-SO3Na) with a sulfonate sodium charged-end side
chain, but they are based on the BTz and BT conjugated backbones with different molecular
weights. The resulting PBTBTz-SO3Na reveal similar light absorption properties, but they
have different fluorescence performances. By measuring their optoelectronic properties
along with the morphology characteristics, which were determined by the UV-vis absorp-
tion, photoluminescence (PL) and transmission electron microscopy (TEM), etc., we can
further investigate the relationship among the lengths of the conjugate backbone, the molec-
ular aggregated states and the luminescence performances of PBTBTz-SO3Na with various
molecular weights. As a result, the molecular weight of PBTBTz-SO3Na plays a critical role
in the intrachain and interchain energy transfer, which result from the various aggregates
and electrostatic stabilization by the charges on the backbone. Such results will be provide
the information about the structure–property relationship, and further insights into the
working mechanisms will be gained for promising luminescence applications of CPEs.

2. Results and Discussions

The synthetic procedure and chemical structure of PBTBTz-SO3Na are exhibited in
Scheme 1. Monomer BTzBr2-SO3Na was synthesized from the commercially available
benzotriazole in two steps, including the alkylation and brominated reactions. Briefly,
Suzuki coupling polymerization of the bis(boronic ester) of benzothiadiazole and an alkyl
sulfonate sodium-substituted dibromobenzothiatriazole yielded PBTBTz-SO3Na, which
is soluble in highly polar solvents, such as water and methanol, etc. All of the synthetic
preparations and representations are demonstrated in detail in Figures S1–S4. The PBTBTz-
SO3Na with different molecular weights was achieved by controlling the ratio of the
monomer and the catalyst as shown in the SI. The ion exchange step further generated
PBTBTz-SO3TBA through the exchange procedure in Scheme 2, in which the original
sodium counter-cations were replaced with the tetrabutylammonium (TBA) to increase
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the solubility of the organic solvents, which was used for the following gel permeation
chromatography (GPC) measurement in the DMF solvent [21,22].
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To examine the role of molecular weight, the ion-charged end and backbone structure
of PBTBTz-SO3Na were maintained. The PBTBTz-SO3Na with larger molecular weights
for P1, P2 and P3 were designed as per Scheme 1. The front and side views of PBTBTz-
SO3Na with different lengths of conjugated backbone are exhibited in Figure 1. With the
lengthening of the conjugated backbones, the molecular chains perform a highly ordered
arrangement, and the twist of the molecular chains shows a gradual increase.

The number average molecular weights of P1, P2 and P3 were obtained, and these
have values of 88 kDa, 94 kDa and 157 kDa, respectively, by GPC in Figures 2a and S5–S7.
The GPC of all of the samples were measured using DMF as the solvent. We note that the
aggregate of the polymer chains in the solution also influences the molecular weight. The
photograph of the P1, P2 and P3 solutions is exhibited in Figure 2b. Figure 2c displays the
optical absorption spectra of the P1, P2 and P3 solutions and thin films. The corresponding
absorption peaks of the P1, P2 and P3 solutions and thin films are summarized in Table 1.
The P1, P2 and P3 solutions display similar UV-vis absorption curves with maximal absorp-
tion peaks at 440 nm, 461 nm and 443 nm, respectively. However, as seen from the inset
illustration, the thin film of P1 reveals a red-shifted absorption peak at 445 nm and a second
absorption peak at 469 nm compared to the P1 solution, which are typically associated with
the presence of aggregated chains. The maximal absorption peak at 445 nm corresponds to
the intramolecular charge transfer band. The absorption spectra of the P2 thin film exhibits
a blue-shifted absorption peak at 451 nm and another two red-shifted peaks at 476 nm and
517 nm, respectively, which is in contrast to the P2 solution, revealing that the aggregate of
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the P2 thin film increases with the lengthing of the conjugated backbone. P3 also shows
three absorption peaks, indicating that more ordered microstructures of PBTBTz-SO3Na
appeared as the molecular weight increased [37]. The optical bandgaps of P1, P2 and P3
are 2.0, 1.9 and 1.8 eV, which were calculated from the absorption edges of the thin films.
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Table 1. The absorption peaks of P1, P2 and P3 solutions and thin films. The λEX is the abbreviation
of corresponding absorption peak.

Polymers Solution Film
λEX2 (nm) λEX1 (nm) λEX2 (nm) λEX3 (nm)

P1 440 445 469 \
P2 461 451 476 517
P3 443 444 481 515

The electrochemical properties of P1, P2 and P3 were investigated by the cyclic voltam-
metry in Figure S8. The highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) levels of P1, P2 and were are extrapolated, and
these are −5.3/−3.3 eV, −5.2/−3.3 eV and −5.2/−3.4 eV, respectively, which are basi-
cally consistent with the optical bandgap results [38–42]. The larger conjugation length of
PBTBTz-SO3Na is more inclined to obtain a smaller bandgap.

The molecule chains aggregates of the P1, P2 and P3 films were performed to further
study the relationship between the molecular weight and morphology by TEM [43–46].
As the molecular weight of PBTBTz-SO3Na increases, some small platelet-like molecular
chains occur, as can be obviously seen in Figure 3 and Figure S9. The increasing platelet-
like nanomorphology indicates the stronger aggregation of PBTBTz-SO3Na with a larger
molecular weight, which is consistent with the trend represented by the GPC results.
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The photoluminescence (PL) was further investigated to understand the relationship
between the optical property and the molecular aggregated states of PBTBTz-SO3Na. The
photograph of the P1, P2 and P3 (0.016 mg/mL) solutions used for the PL measurement is
displayed in Figure 4a. P1, P2 and P3 reveal similar emissions under 430 nm irradiation
in Figure 4b. It is worth mentioning that PBTBTz-SO3Na with a higher molecular weight
exhibits a stronger fluorescence intensity, implying that the increasing molecular chain
aggregation of PBTBTz-SO3Na is beneficial to the luminescence. As seen from the anal-
ysis results of λEX, the higher the molecular weight is, the more ordered aggregations of
PBTBTz-SO3Na occur. It is well known that interchain aggregation has led to the decreased
fluorescence intensity for the most conjugated polymer [16–20]. The fluorescence spectra
of the PBTBTz-SO3Na solution illustrates the opposite trend; the nanoaggregates result
in a stronger luminescent emission. The emission maxima of P1, P2 and P3 are located at
560 nm, 620 nm and 565 nm, respectively. The fluorescence photograph of P1, P2 and P3 in
H2O at concentrations of 5 mg/mL is shown in Figure 4c. PBTBTz-SO3Na with different
molecular weights have different colors of luminescence. The fluorescence quantum yields
of P1, P2 and P3 in H2O were determined relative to a reference sample with a known
quantum yield. The reference sample here is rhodamine 101 inner salt in H2O. All of the
PBTBTz-SO3Na solutions retains a strong fluorescence intensity, especially for the P2 and
P3 solutions, and the fluorescence quantum yields of P1, P2 and P3 with the concentration
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of 0.016 mg/mL are 3.4%, 10% and 34%, respectively, as can be seen in Figure 4d. This
phenomenon may be attributed to the twist of the molecular main chain, which inhibits the
photoinduced electron transfer among the conjugated backbones.
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3. Conclusions

PBTBTz-SO3Na samples with different molecular weights were achieved by control-
ling the polarity of the solvent and the ratio of the monomer and the catalyst. The molecular
weight of PBTBTz-SO3Na plays a critical role in the intrachain and interchain energy trans-
fer and photoluminescence as a result of the differences in the electrostatic stabilization by
the charged pendants on the backbone. With the lengthening of the conjugated backbone,
the molecular chain maintains a highly ordered arrangement, and the twist of the molecular
main chain shows a gradual increase. The PBTBTz-SO3Na with a larger molecular weight
shows more absorption peaks, indicating more ordered microstructures of PBTBTz-SO3Na
have appeared as the molecular weight increases. Meanwhile, the increasing platelet-
like nanomorphology indicates a stronger aggregation of PBTBTz-SO3Na with the larger
molecular weight, as seen from the TEM mages. The PL is further investigated to under-
stand the relationship between the optical property and molecular aggregated states of
PBTBTz-SO3Na. PBTBTz-SO3Na with different molecular weights have different colors of
luminescence. All of the PBTBTz-SO3Na solutions retain a strong fluorescence intensity,
especially for the P2 and P3 solutions, and the fluorescence quantum yields of P1, P2 and
P3 with the concentration of 0.016 mg/mL are 3.4%, 10% and 34%, respectively. The higher
the molecular weight is, the stronger the aggregation and luminescence that can occur for
PBTBTz-SO3Na. The phenomenon may be attributed to the twist of the molecular main
chain, which inhibits the photoinduced electron transfer among the conjugated backbone.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14245372/s1, Figure S1: The 1H NMR spectrum of 2-
(C4H8SO3Na)-2H-benzo[1,2,3]triazole in D2O; Figure S2: The mass spectrum of 2-(C4H8SO3Na)-2H-
benzo[1,2,3]triazole in D2O; Figure S3: The 1H NMR spectrum of BTzBr2-SO3Na in D2O; Figure S4: The
mass spectrum of BTzBr2-SO3Na in D2O; Figure S5: The original test picture of P1; Figure S6: The
original test picture of P2; Figure S7: The original test picture of P3; Figure S8: The CV curves of
P1, P2 and P3; Figure S9: The larger TEM images of P1, P2 and P3. Reference [47] are cited in the
supplementary materials.
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