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Abstract: A novel dual cure photopolymerizable system was developed by combining two plant-
derived acrylic monomers, acrylated epoxidized soybean oil and vanillin dimethacrylate, as well as
the thiol monomer pentaerythritol tetrakis (3-mercaptopropionate). Carefully selected resin composi-
tion allowed the researchers to overcome earlier stability/premature polymerization problems and to
obtain stable (up to six months at 4 ◦C) and selectively-polymerizable resin. The resin demonstrated
rapid photocuring without an induction period and reached a rigidity of 317.66 MPa, which was more
than 20 times higher than that of the other vanillin-based polymers. Improved mechanical properties
and thermal stability of the resulting cross-linked photopolymer were obtained compared to similar
homo- and copolymers: Young’s modulus reached 4753 MPa, the compression modulus reached
1634 MPa, and the temperature of 10% weight loss was 373 ◦C. The developed photocurable system
was successfully applied in stereolithography and characterized with femtosecond pulsed two-beam
initiation threshold measurement for the first time. The polymerization threshold of the investigated
polymer was determined to be controlled by the sample temperature, making the footprint of the
workstations cheaper, faster, and more reliable.

Keywords: vanillin dimethacrylate; acrylated epoxidized soybean oil; photocross-linking; dual-curing;
stereolithography; two-beam initiation threshold; multiphoton polymerization

1. Introduction

Considering recent challenges related to climate change and the state of the environ-
ment, it is particularly important to develop new materials that combine specific technical
and optional smart properties with sustainability and applicability for high-tech man-
ufacturing. Light-based 3D structuring is a unique contactless fabrication method that
offers material processing precision, flexibility, and the rapid manufacturing of mechani-
cal, medical, and optical components and devices [1]. Real-time synchronization of fast
beam deflection and precise sample positioning can be implemented for state-of-the-art
mesoscale ultrafast laser 3D structuring, namely, the production of submicrometer precision
functional prototypes of practically-applicable millimeter scale dimensions [2]. This break-
through technological advancement makes laser 3D printing suitable and appealing for
both scientific research and industrial scale additive manufacturing. For such a technology,
the replacement of petroleum-based materials by plant-derived materials would provide
immediate ecological and long-term economic benefits.

Although the use of biorenewable polymers is increasing in various applications, the
main challenge remains, to develop biobased polymer analogues with the same or better
technical properties (reactivity, stability, durability, etc.) as petroleum-based polymers [3].
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Plant oils and plant phenolics are great biorenewable sources of starting materials for
polymer synthesis [4,5]. Acrylated epoxidized soybean oil (AESO) with a high number of
functional groups is produced industrially and is widely used in foams, adhesives, coatings,
and even in light-based 3D printing [6,7], including multiple scales and exposure sources [8].
However, the use of pure AESO leads to poor mechanical and thermal properties of the
resulting products [9]. This issue can be solved by adding various comonomers with rigid
structure to the resin composition [10]. In this study, vanillin dimethacrylate was chosen as
a biobased comonomer because of its aromatic structure and high reactivity. Vanillin is one
of the few biobased aromatic compounds that are industrially available [11]. Furthermore,
vanillin-based polymers demonstrate good mechanical and thermal properties, as well as
extraordinary antimicrobial activity similar to that of chitosan-based polymers [12,13]. In
this study, the best features of both biobased monomers, AESO and vanillin dimethacrylate,
were combined in the dual-curing photopolymerizable system. Although dual cure is a very
promising technique for controlling the structure and properties of 3D-printed polymeric
objects, there are only a few examples of the usage of AESO [14] or vanillin derivatives [15]
in dual cure systems.

Dual cure is a technique that combines two simultaneous or sequential curing re-
actions of the same or a different energy source [16]. As a result, interpenetrating or
semi-interpenetrating polymer networks with unique properties are formed [17]. Acrylic
monomers are widely used in dual-curing systems [18] and the resulting polymers with
numerous industrial applications, such as adhesives, coatings, and biomaterials, can be syn-
thesized by carefully selecting the acrylate monomer [19]. The most common comonomers
for acrylates are thiols. They react with acrylates in two different ways, the thiol-acrylate
Michael addition and the radical-mediated thiol-acrylate reaction. Both mechanisms are
appropriate for the formation of dual-curing systems [18].

In this study, radical-mediated thiol-acrylate photopolymerization and acrylate homopoly-
merization were used to compose a novel dual-curing system. Two different biobased monomers,
acrylated epoxidized soybean oil and vanillin dimethacrylate, were used with pentaerythritol
tetrakis(3-mercaptopropionate) for the first time. Diphenyl(2,4,6-trimethylbenzoyl) phos-
phine oxide was selected as the photoinitiator due to its photobleaching effect and its
ability to cure deep layers of resin [20]. The developed photopolymerizable system was
stable and well-suited for the light-based 3D structuring of complex shape objects with
excellent mechanical properties and thermal stability. Furthermore, the order of effective
nonlinear absorption (neff) in photoresists is a key element in the development of materials
with improved sensitivity for additive manufacturing based on multiphoton absorption
polymerization [21]. Z-can, intensity-scan, or a pump and probe technique can be used to
determine the neff. However, it characterizes material properties rather than the order of
undergoing the polymerization reaction process. Other indirect methods such as non-linear
fluorescence excitation or thermal lensing can be implemented for this task; however, they
do not measure the neff directly. Line-width [22] and exposure-time duration (ETM) [23]
techniques allow for the determination of the neff from the polymerized structures; however,
both suffer from the required additional steps such as sample posttreatment and scanning
electron microscopy, which are time consuming for systematic measurements. The pros and
cons of the aforementioned approaches are well-discussed in a review paper by N. Liaros
and J. T. Fourkas [24]. A quick, reliable, and, most importantly, in situ method is highlighted
as a two-beam initiation threshold (2-BIT) [25]. Also, the method includes normalization of
the power of each beam to the polymerization threshold power to correct the differences in
beam size, pulse length, or focal volume. While other scientific groups are looking for ways
to simplify two-photon polymerization techniques via laser systems [26,27], light projection
conditions [28], or photoinitiation agents [29,30], in this work, a method of using impact of
dual cure is presented. The 2-BIT experiment was performed for the in situ measurement
of nonlinear material excitation mechanisms and, in principle, validated its suitability for
laser 3D nanolithography, while revealing important peculiarities of nontrivial material
behaviour depending on sample handling conditions.



Polymers 2022, 14, 5361 3 of 14

2. Materials and Methods
2.1. Materials

Acrylated epoxidized soybean oil (AESO, Fluorochem, Glossop, UK), vanillin dimethacry-
late (VDM, Specific Polymers, Castries, France), pentaerythritol tetrakis(3-mercaptopropionate)
(PETMP, Fluorochem, Glossop, UK), diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide
(TPO, Fluorochem, Glossop, UK), and 2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene (UVB,
MPI Chemie, Houten, The Netherlands) (Figure 1) were used as received.
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Figure 1. Chemical structures of acrylated epoxidized soybean oil (AESO), vanillin dimethacrylate (VDM),
pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), and diphenyl(2,4,6-trimethylbenzoyl) phos-
phine oxide (TPO).

2.2. Preparation of Cross-Linked Polymer Specimens

The mixture containing 3 mol of AESO, 1 mol of VDM, 0.25 mol of PETMP, 2.5 wt.% of
TPO, and 0.08 wt.% of UVB was stirred with magnetic stirrer at room temperature (25 ◦C)
for 5 min. When the homogeneous mixture was obtained, the resin was poured into a
round Teflon mold and cured for 3–5 min in the UV irradiation chamber BS-02 (Opsytec
Dr. Grobel, Ettlinger, Germany) with an intensity of 30 mW/cm2 and a wavelength range
of 280–400 nm. The VS code was assigned to this resin and polymer.

2.3. Characterization Techniques

Fourier transformation infrared (FT-IR) spectroscopy spectra were recorded using
a Spectrum BX II FT-IR spectrometer (Perkin Elmer, Llantrisant, UK). Reflection was
measured during the test. The wavenumber range was 650–4000 cm−1.

The Soxhlet extraction was used to determine the yield of the insoluble fraction. A
0.2 g polymer sample was extracted with acetone for 24 h. The insoluble fraction was then
dried under vacuum until no changes in weight were observed. The yield of the insoluble
fraction was calculated as the weight difference before and after extraction and drying.
Three samples of polymer were used to obtain the mean value and standard deviation.

The swelling value of the cross-linked polymer samples was obtained by measuring
the mass of the samples swollen in acetone and toluene at room temperature (25 ◦C). The
initial mass of the polymer sample was measured before placing it into the solvent. The
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change in the mass of the sample was measured every 5 min until no change was obtained.
The swelling value was calculated according to the following equation:

α =
M−M0

M0
·100 (1)

where α is the swelling value (%); M is the mass of the swollen sample (g); M0 is the initial
mass of the sample (g). Three samples of polymer were used to obtain the mean value and
standard deviation.

Thermogravimetrical analysis (TGA) was performed on a TGA 4000 apparatus (Perkin Elmer,
Llantrisant, UK). A heating rate of 20 ◦C/min under nitrogen atmosphere (100 mL/min) was
chosen. The temperature range of 20–800 ◦C was used. Aluminium oxide pans were used.

Dynamical mechanical thermal analysis (DMTA) was performed on an MCR302
rheometer (Anton Paar, Graz, Austria). The Peltier-controlled temperature chamber was
used. The temperature was increased from −20 ◦C to 100 ◦C with a heating rate of
2.0 ◦C/min. The normal force was set at 5 N during the measurement. In all cases, the
shear mode was used with a frequency of 1 Hz and a shear strain of 0.1%. The storage
modulus (G’), the loss modulus (G”), and the loss factor (tan δ) were recorded as a function
of temperature. Three polymer samples were used to obtain the mean value and standard
deviation.

The mechanical characteristics of the synthesized polymer were determined by the
tensile and compression tests. Tensile test was performed on a Testometric M500-50CT
testing machine (Testometric Co Ltd., Rochdale, UK) with flat-faced grips at room tem-
perature (20 ◦C). Bone-shaped polymer specimens with a total length of 70 (±0.0) mm,
a shoulder at each end (length of 15 (±0.0) mm, a width of 10 (±0.0) mm), and a gauge
section width of 5 (±0.0) mm in between were used. Polymer specimens were printed
using the stereolithography technique (SLA) (Section 2.6). The gap between the grips was
set to 40 mm and the test was performed at a speed of 5 mm/min until the specimen broke.
Young’s modulus, tensile strength, and elongation at break were determined. Five polymer
samples were used to obtain the mean value and standard deviation.

The compression test was performed on a Testometric M500-50CT testing machine
(Testometric Co Ltd., Rochdale, UK) with HDGG100 grips at room temperature (25 ◦C). The
dimensions of the round tablets used for the test were 15 (±0.10) × 3 (±0.30). The tablets
were produced using a Teflon mold. The test was carried out at a speed of 5 mm/min until
the sample broke. The compression modulus was determined. Five samples of polymer
were used to obtain the mean value and standard deviation.

The biorenewable carbon (BRC) content was calculated according to the following
equation:

BRC, % =
Bio Sourced Carbon

Bio Sourced Carbon + Fossil Carbon
·100 (2)

2.4. Real-Time Photorheometry

The UV/Vis cure tests of the resin were performed on an MCR302 rheometer (An-
ton Paar, Graz, Austria) equipped with the plate/plate measuring system. The Peltier-
controlled temperature chamber with a glass plate (diameter 38 mm) and a PP15 top plate
(diameter 15 mm) was used. The measurement gap was set to 0.1 mm and the samples
were irradiated with UV/Vis light in a wavelength range of 250–450 nm through the glass
plate using the OmniCure S2000 UV/Vis spot curing system (Lumen Dynamics Group
Inc., Mississauga, ON, Canada). The shear mode was used with a frequency of 10 Hz and
a shear strain of 1%. The storage modulus (G’), the loss modulus (G”), and the complex
viscosity (η*) were recorded as a function of the irradiation time. The gel point (tgel) was
calculated as an intersection point of the G’ and G” curves. The induction period was
measured as the beginning of the increase in G’. The shrinkage was calculated from the
reduction in the height of the sample during the photocuring process. The normal force
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was set to 0 N during the measurement of the sample shrinkage. Five measurements of
each resin were used to obtain the mean value and standard deviation.

The crosslinking density was calculated according to the theory of rubber elasticity
using the following equation:

G′ = νRT (3)

where ν is the cross-linking density (mol/m3); G’ is the steady-state value of the storage
modulus taken from the real-time photorheometry curve after 600 s (Pa); R is the universal
gas constant (8.314 J/mol K); T is the temperature (K) [31]. The experiment was carried out
three times to obtain the mean value and standard deviation.

2.5. Two-Beam Initiation Threshold Experiment

The 2-BIT experiment allows in situ measurement of non-linear material excitation
mechanisms during laser direct writing (LDW) [25]. The 2-BIT experiment was imple-
mented using a Femto second Fiber Laser (FemtoFiber pro NIR, Toptica Photonics AG
emitting at 780 nm with pulse duration 150 fs, average output power 500 mW, and repetition
rate 80 MHz) (TOPTICA Photonics AG, Munich, Germany). An exact experimental setup of
2-BIT was presented previously [32]. The synthesized polymer was placed between two mi-
croscope coverslips (REF VBS638, Biosigma, Cona VE, Italy) separated with a double layer
of polyimide film tape. The sample was fixed on piezoelectricstages Nanocube P-611.3S
(Physik Instrumente, Karlsruhe, Germany). The 3DPoli software, version 6.22, (Femtika,
Vilnius, Lithuania) was used to manage sample positioning. The stages were programmed
to make back-forward movements of 75 µm length at a constant velocity of 20 µm/s.
The combined laser beams were focused to the sample using the Zeiss Plan-Apochromat
oil-immersion, 100×/N.A. = 1.4 objective lens (Carl Zeiss AG, Oberkochen, Germany).
At first, the average power P (mW) of each beam individually was recorded when the
presence of the polymerized features was observed via live imaging and determined as
the polymerization threshold for a single beam (Psingle). Then, two beams were combined
and, while manually controlling the attenuation of both beams with half-waveplates, new
polymerization thresholds were recorded (P2beam). A graph of normalized polymerization
thresholds (P2beam/Psingle) was obtained.

2.6. SLA 3D Printing

The SLA 3D printer Phrozen Sonic Mini 4K with a 405 nm LED source was used for
polymer sample printing. The printing volume was 134 × 75 × 130 mm, the XY resolution
was 35 µm, the layer thickness was 50 µm, and the exposure time was 12 s. After printing,
the polymer samples were washed with isopropyl alcohol for 20 min and post-cured under
an LED lamp (395 nm, 80 W).

3. Results and Discussion
3.1. Selection of Resin Composition

A complex composition of the photocurable resin was made in order to obtain a stable
and highly biorenewable carbon content resin suitable for SLA 3D printing of mechanically
strong and stiff, but not brittle, polymer objects. The selection of resin components was
based on the known features of the compounds and the results of our previous research
on this topic. AESO was selected as the main component of the resin due to its biobased
origin, the high number of functional groups, the photocuring rate suitable for light-based
3D printing, and the formation of stiff polymer [33]. However, the pure AESO polymer is
known to be brittle [9]. VDM was chosen as a biobased aromatic comonomer that improves
the mechanical characteristics of the pure AESO polymer [34]. Although pure VDM is
not well-suited for SLA 3D printing due to its too-rapid curing and poor stability of the
resin during storage [35], in the present study, the aforementioned disadvantages of VDM
were not expressed, probably due to its low content in the resin. PETMP, which has four
functional groups capable of forming flexible thioether linkages, was added to the mixture
of AESO and VDM because it can not only provide flexibility to the rigid polymer network,
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but also define the shape memory properties of the resulting polymers [36]. The lower-than-
stoichiometric amount of thiol groups and acrylic groups allowed for the domination of
radical homopolymerization of acrylates and thus obtaining more rigid and mechanically
stronger polymers [15]. The flexible aliphatic chains of AESO and PETMP lowered the glass
transition temperature of the polymer, while the benzene rings present in VDM and the
high amount of AESO functional groups, responsible for the high crosslinking density, led
to the high thermal stability of the polymer. Also, the mechanical strength of the polymer is
determined by high cross-linking density and aromatic structural fragments. The influence
of the amount of each component on some values of the polymer parameters is summarized
in Figure 2. Therefore, taking into account all known features of the components, the
photocurable resin VS was composed of 3 mol of AESO, 1 mol of VDM, and 0.25 mol
of PETMP (acrylic:thiol groups ratio: 2:1), including 2.5 wt.% of the photoinitiator TPO.
The resin of such a composition was stable and did not cure during storage for at least
six months at a temperature of 4 ◦C. The calculated biorenewable carbon content of the
polymer VS was 76.45%.
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3.2. Monitoring of Photocuring Kinetics by Real-Time Photorheometry

The photocuring kinetics of the resin VS was studied by real-time photorheometry.
This method was chosen to determine the photocuring rate, the rigidity of the resulting
polymer, and also the shrinkage of the sample during photocuring, which are the main
factors for the successf of the optical 3D printing process. Figure 3 shows the evolution of
the storage modulus G’, loss modulus G”, loss factor tan δ, and complex viscosity η* of the
resin VS during UV/Vis irradiation. The cross-linking process began when the values of G’,
G”, and η* started to increase. The gel point (tgel) (defined as G’ = G”) [37] of the resin was
reached after 1.5 s from the onset of UV/Vis irradiation. No induction period was obtained,
as the values of G’ and G” started to increase at the same time as UV irradiation started.
As the resin irradiation continued, the values of G’, G”, and η* were increasing due to gel
aging and then settled into steady state, indicating the end of the cross-linking process.
The irradiation was maintained for 600 s. The storage modulus value, which indicates
the rigidity of the resulted polymer, reached 317.66 MPa and was more than 20 times
higher than those of the other vanillin dimethacrylate- and thiol-based polymers [15].
The shrinkage during photocuring was relatively low and reached 5.5%, which is very
important in optical 3D printing technology to produce right-sized objects [38]. Overall,



Polymers 2022, 14, 5361 7 of 14

the rheological characteristics make the resin VS a very promising candidate for light-based
3D structuring due to low shrinkage, very high rigidity, and almost instantaneous curing
after the start of UV irradiation.
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3.3. Characterization of the Photocross-Linked Polymer Structure

The chemical structure of the polymer VS was identified by FT-IR spectroscopy. The
signals of the C = C group which were present at 1605 cm−1 in the FT-IR spectra of AESO
and VDM were reduced in their polymer spectra. The signal of the S-H group that was
present at 2569 cm−1 in the PEMPT spectrum completely disappeared in the polymer VS
spectrum, indicating that all S-H groups were consumed in the formation of a polymer
network. The FT-IR spectra of AESO, PETMP, VDM, and the cross-linked polymer VS are
presented in Figure S1.

The Soxhlet extraction was performed, and the crosslinking density was calculated to
confirm the crosslinked structure of the polymer. The polymer VS showed a high yield of
insoluble fraction (95%) and a high crosslinking density (127,825 ± 206 mol/m3), which
confirmed that all monomers participated in the formation of the cross-linked structure.
The high crosslinking density resulted in low swelling values of the polymer, which were
in the range of 8–10% in two solvents of different polarity (Figure 4). The swelling value in
toluene was slightly higher than that in acetone. The reason for this is the polymer-solvent
interaction, as toluene is a nonpolar solvent and its structure is more similar to the polymer
VS in comparison to the polar solvent acetone.
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3.4. Thermal Properties of Cross-Linked Polymer

DMTA and TGA were used to study the thermal characteristics of the photocross-
linked polymer VS, and the results are presented in Figure S2. These tests were chosen
to determine the glass transition and thermal stability of the polymer, which exerted a
huge influence on the selection of the application areas of the polymers. The thermal
decomposition of the polymer VS occurred in one step. The temperature of 10% weight loss
(Tdec -10%) was 373 ◦C. The high thermal stability of the polymer was the result of a high
yield of the insoluble fraction and a high cross-linking density. The thermal stability of the
polymer VS was higher than that of the pure AESO polymer (Tdec -10% = 340 ◦C) [33] and
AESO polymers with varying amounts of VDM (Tdec -10% = 268–340 ◦C) [34] (Figure 5). The
polymer VS also demonstrated higher thermal stability than the pure VDM polymer and
the VDM and thiol copolymer [15,35]. The glass transition temperature (Tg) of the polymer
VS was 9 ◦C. The low value of Tg is due to the high amount of AESO in the polymer. The
Tg of the pure AESO polymer was reported to be −4.1 ◦C and the addition of VDM could
increase it to 102.9 ◦C [34] (Figure 4). In this study, the addition of VDM increased Tg;
however, the addition of PETMP contributed to a decrease, which resulted in a Tg value of
the polymer VS which was close to room temperature, making it both rigid and flexible at
this temperature.
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3.5. Mechanical Characteristics of Cross-Linked Polymers

The most commonly-used tensile and compression tests were performed to deter-
mine the mechanical characteristics of the polymer VS for the evaluation of its mechanical
strength, stiffness, and brittleness. The results are presented in Table S1 and Figure S3. The
high value of Young’s modulus and the low value of elongation at break show that the poly-
mer VS is a rigid and stiff material (Table S1). Compared to other vanillin dimethacrylate-
and thiol-based polymer VDM/THIOL, the polymer VS is more rigid and less flexible, as
the other polymer based on VDM reached a lower Young’s modulus value (3952.3 MPa)
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and a higher elongation at break value (9.7%) [15] (Figure 6). The polymer VS is also
mechanically stronger than the pure AESO polymer, which demonstrated a lower value of
Young’s modulus. The compression test confirmed that the polymer VS was a less brittle
material. The compression modulus reached 1633.72 MPa and was much higher than that
of the other vanillin dimethacrylate- and thiol-based polymer VDM/THIOL [39], the pure
AESO polymer, and the polymer AESO/VDM [40]. These results show that the polymer
VS can be used in applications that require mechanically-strong polymers.
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3.6. SLA 3D Printing

The composed resin VS was successfully applied in the SLA 3D printing technology.
Complex shape structures were printed with high accuracy and a smooth surface finish,
confirming the suitability of this biobased resin for the SLA 3D printing technology. The
images of the 3D printed ‘Ameralabs Town’ are presented in Figure 7.
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The main limitation of the application of the VS resin in SLA 3D printing was the high
viscosity, which resulted in a relatively slow 3D printing process at room temperature due
to the necessary long wait period to recoat a new layer [41]. However, a high viscosity
of the photocurable resin is preferred in laser direct writing technology, as it limits the
mobility of oxygen and radicals that terminate the propagation, resulting in a decrease in
polymerization thresholds and an increased dynamic range (difference between polymer-
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ization and optical damage thresholds) [42]. Moreover, the results of the 2-BIT experiment
showed that high viscosity can be overcome by using a 3D printer with a heating function,
as increasing the temperature also increases the rate of photopolymerization.

3.7. Determination of the Polymerization Threshold Using the 2-BIT Method

The results of the 2-BIT experiment are provided in Figure 8. The normalized power of
beam 2 vs the normalized power of beam 1 is depicted. Normally, it is expected that, when
decreasing the power of beam 2, beam 1 should be proportionally increased to observe
the polymerized features. Eventually, when beam 2 is close to the value of 0, beam 1
should reach the value of 1, which is determined as the polymerization threshold when
a single beam was used. In this study, this value was Psingle = 6.4 mW for beam 1 and
Psingle = 6.6 mW for beam 2. This did not allow for direct assessment of neff in the used
photocurable resin but provided some interesting and useful data while varying sample
preheating conditions.
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In this case, the power of beam 1 converged to 0.8 when beam 2 was close to 0. During
the duration of the experiment of approximately 1 h, a noticeable decrease of 33% was
determined when Psingle was reduced from 6.4–6.6 mW to 4.3–4.4 mW. This prohibits the
determination of effective order or nonlinearity due to the variable photopolymerization
threshold, which might be attributed to thermal effects under ambient conditions. To
confirm that the threshold was changing specifically due to thermal effects (Brownian
motion of molecules that increase photopolymerization efficiency), the resin was placed on
the hot plate for 2 h at 65 ◦C. In this case, Psingle was recorded to be 0.8 mW and 2.8 mW
for beam 1 and beam 2, respectively, resulting in a decrease which was significant more
than 50% in used laser power. This is an important material feature for reducing the
required laser energy consumption in the industrial applications context. A liquid form of
the TPO (TPO-L) photoinitiator was used in the resist composed of tris (2-hydroxy ethyl)
isocyanurate triacrylate and dipentaerythritol pentaacrylate for the 2-BIT experiment by the
authors of reference [24]. The resist was excited with a laser generating 800 nm wavelengths
and neff was determined to be equal to 2, resulting in the absorption of two photons at
400 nm. As both TPO and TPO-L have identical absorption spectra, a similar result was
expected in this work.
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4. Conclusions

A novel stable high biorenewable carbon content photopolymerizable resin was de-
veloped from acrylated epoxidized soybean oil, vanillin dimethacrylate, and pentaerythri-
tol tetrakis(3-mercaptopropionate)-based polymer and was successfully applied in SLA
3D printing technology. The calculated biorenewable carbon content of the synthesized
polymer was 76.45%. The resin demonstrated rapid photocuring without an induction
period and reached a rigidity of 317.66 MPa, which was more than 20 times higher than
that of the other vanillin-based polymers. The polymer with a high crosslinking density
(127,825 ± 206 mol/m3) showed excellent mechanical properties (Young’s modulus was
4753 MPa and the compression modulus was 1634 MPa) and great thermal stability (the
temperature of 10% weight loss was 373 ◦C). The developed stable dual-cure photopoly-
merizable system is suitable for light-based 3D structuring of objects with complex shapes.
Based on the 2-BIT experiment, it was determined that the polymerization threshold of
the investigated polymer can be controlled by sample temperature and was reduced to
the lower values by a f mW (≈50% of the total laser power > 6 mW needed to induce
photocuring). This is a great advantage, as it opens up the employment of dual-cure resins
for low-power laser systems in LDW, making the footprint of the workstations cheaper,
faster, and more reliable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14245361/s1, Figure S1: FT-IR spectra of AESO, PETMP,
VDM, and the polymer VS; Figure S2: Thermogravimetric curve (a) and DMTA thermogram (b) of the
polymer VS; Figure S3: Tensile stress-strain curves of cross-linked polymer (samples 1–5). Table S1:
Mechanical characteristics of the cross-linked polymers [15,25,30,31].
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