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Supplemental Figures 

 
Figure S1. Stress-strain curves of the hydrogel with different DMAEMA/NIPAM mass ratios after 
6 hours of UV irradiation. 

 
Figure S2. EIS Nyquist diagram of hydrogels membranes with different DMAEMA: NIPAM mass 
ratios. 
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Figure S3. DMAEMA: NIPAM=10:1 interface toughness of the hydrogel after repeated adhesion of 
silicone rubber for 10 times. 

 

Table S1. Summary of various self-powered sensors. 

 Materials Advantages Disadvantages Sensitivity 

Piezoelectric 
sensors 

PS/PDMS[1] Suitable for micro-
systems 

Interface incom-
patibility 59.4mV/kPa 

PZT/PVDF[2] High output volt-
age Poor stability 6.38mV/N 

ZnO[3] Self-power ability Static sensing 0.62V/kPa 

TENG 

P(VDF-TrFE)[4] High power density Electronic signal 
transmission 1.4V/kPa 

AC/PU[5] Miniaturization and 
lightness 

Environment inter-
ferences 0.94V/kPa 

PTFE[6] High conversion 
efficiency Limited durability  

—— 

Our work PDMAEMA/ 
PNIPMA 

Ion signal transmis-
sion 

Accurately sense 
static pressure 

Reversible adhe-
sion 

 106.46mV/MPa 
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