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Abstract: With the advantages of benign mechanical property, electrochemical stability, and low
cost, graphite fibers (GFs) have been widely used as electrodes for vanadium redox flow batteries
(VRFBs). However, GFs usually possess inferior electrochemical activity and ion diffusion kinetics for
electrode reaction, vastly limiting their application in VRFBs. Here, a 3D carbon nanonetwork coated
GFs with multi-heteroatom doping was constructed for application in VRFBs via low temperature
polymerization between linear polymer monomer and phytic acid, and subsequent carbonization
(900 ◦C) on the GFs (GF@PCNs-900). Benefiting from the 3D structural features and multi-heteroatom
doping (O, N and P), the composite electrode displayed sufficient diffusion of vanadium ions, rapid
electron conduction, and highly enhanced electrochemical activity of reactive site on the electrodes.
As a result, the GF@PCNs-900 delivered a high discharge capacity of 21 Ah L−1 and energy efficiency
of above 70% with extraordinary stability during 200 cycles at 200 mA cm−2. Even at a huge current
density of 400 mA cm−2, the GF@PCNs-900 still maintained a discharge capacity of 5.0 Ah L−1,
indicating an excellent rate of performance for VRFBs. Such design strategy opens up a clear view for
further development of energy storage field.

Keywords: graphite fibers electrodes; 3D nanonetwork; multi-heteroatom doping; high-rate property;
vanadium redox flow batteries

1. Introduction

With the continuous progress of the global economy, fossil energy has been consumed
excessively and brings about severe issues such as energy crises and environmental pollu-
tion, hindering the sustainable development of human society [1,2]. Thus, the exploitation
of renewable and clean energy sources will become the ultimate form of energy revolution
in the future due to their inexhaustible and environmentally friendly properties. However,
these renewable and clean energy sources are usually enslaved to the effect of region and
climate, and their energy output shows features of intermittency and volatility [3,4]. As
supporting facilities, energy storage systems play an indispensable role in the practical
application of renewable and clean energy sources. Compared with other energy storage
systems, vanadium redox flow batteries (VRFBs) possess the great advantages of desirable
safety, low cost of maintenance, durable life, and environmentally friendliness [5–7]. In
addition, due to applying the same vanadium element as positive and negative reaction
species, the VRFBs display a negligible cross-contamination effect between cathode and
anode electrolytes in comparison with other flow batteries [8–10], such as zinc-iodine flow
batteries [11,12], zinc-bromine flow batteries [13,14], and iron–based flow batteries [15–17].

As a key component, the electrode materials offer the reaction zone of vanadium
redox, and their electrocatalytic activity is deeply related to the energy efficiency (EE) and
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rate performance of VRFBs [18–20]. The redox reaction on the electrodes can be described
as follows:

Catholyte: VO2+ + 2H+ ↔ VO2
+ + H2O − e− (1)

E0 = 1.0 V vs. SHE

Anolyte: V3+ + e− ↔ V2+ (2)

E0 = −0.26 V vs. SHE

The processes were initially investigated by Sun and Skyllas-Kazacos [21,22]. Due
to low cost, superior corrosion resistance, and electrochemical stability, graphite fibers
(GFs) have been widely applied as electrode materials in VRFBs. However, the original
GFs usually present poor electrochemical activity and sluggish kinetics of electron and
ion transport, largely restricting the rate performance and cycling stability of VRFBs. To
enhance the electrochemical performance of GFs, various methods, including surface func-
tional groups [23–28], metal and metallic oxides deposition [29–31], element doping [32–34],
and functional carbon nanomaterial [35–37] have been applied to modify the composite
electrodes for VRFBs. Firstly, the surface functionalization, such as acid treatment, heat
treatment electrochemical oxidation, and oxygen plasma treatment, mainly introduce
oxygen-containing functional groups on the electrode surface, and the abundant oxygen-
containing functional groups can effectively improve the hydrophily of GFs [38,39], which
prompts the sufficient wettability between electrolyte and GFs, and enhances the redox
reaction of vanadium ions. Due to better electrocatalytic activity or electronic conductivity,
metal and metallic oxides deposition has been used to elevate the electrochemical per-
formance of GFs [40–42], but their worse stability and expensive cost will challenge their
practical application. Owing to the difference in electronegativity and atomic size with
substrate atoms, hetero-atoms doping can break the Π bond conjugated system among
carbon atoms in GFs, and then bring about defect sites in the graphite carbon skeleton,
which contribute to boosting the electrochemical activity of composite electrodes [43–45].
Moreover, the element doped GFs still maintain stable electrochemical performance during
long-term cycling because the hetero-atoms in the form of covalent bond are introduced
into composite electrodes [46]. The functional carbon nanomaterials, such as biomedi-
cal carbon [7,33], graphene [47], reduced graphene oxide (rGO) [48], carbon nanotube
(CNTs) [49] and carbon nanofiber (CNFs) [50], are also used to modify GFs electrodes for
VRFBs. Attributing to high surface area and excellent electronic conductivity, the functional
carbon nanomaterial can accelerate charge transfer and ion diffusion during vanadium
ions redox reaction, which is conductive to stimulate a high rate performance and energy
efficiency of VRFBs [51]. Although various strategies have made great progress in the
electrode research, a single way is hard to satisfy overall performance requirements of
VRFBs. Thus, the optimal integration of multiple strategies for GFs is of great significance
to elevate the electrochemical property of VRFBs.

Herein, this work prepared a 3D carbon nanonetwork coated GFs combined with
multi-heteroatom doping (O, N and P) by cross-linking polymerization between linear
polymer monomer and phytic acid, and finally carbonization on the GFs (GF@PCNs). In
the polymerization process, the phytic acid molecule served as a cross-linking agent, not
only to participate in the construction of 3D nanonetwork structure, but also to achieve the
effective doping of oxygen and phosphorus element. On the one hand, the 3D nanonetwork
contributed to the sufficient diffusion of vanadium ions and rapid electron conduction
along the GFs surface. On the other hand, the multi-heteroatom doping highly improves the
electrocatalytic activity of composite electrodes toward vanadium ions redox reaction. Due
to the synergistic effect, the VRFBs based on GF@PCNs exhibited higher energy efficiency of
above 70% during 200 cycles at 200 mA cm−2 and excellent rate performance for discharge
capacity of 5.0 Ah L−1 at huge current density of 400 mA cm−2.
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2. Experimental
2.1. Preparation of GF@PCNs

Firstly, the phytic acid solution (Aladdin, Shanghai, China) of 70 wt% was diluted to
6 wt% with deionized water, and 5mL of pyrrole monomer (Aladdin, Shanghai, China)
was added into 50 mL of the diluted solution with intensive mixing. The graphite fiber
electrode (3 cm × 4 cm) was immersed in the above solution under continuous stirring,
and then 10 mL of ammonium persulfate solution (1.92 g, Aladdin, Shanghai, China) as
initiator was slowly added. Next, the obtained graphite fiber electrode (GF, (Hunan Yinfeng
Co., Ltd., Changsha, China) and pulpy products were transferred to Teflon-lined autoclave
(100 mL) after low temperature polymerization at 4 ◦C for 12 h. After hydrothermal reaction
in 100 ◦C oven for 5 h, the GF was taken out and cleaned with deionized water, and then
dried in 80 ◦C oven for 12 h. After that, the GF was placed in the tube furnace (OTF-1200X,
Hefei, China) with argon as the protective gas, and the carbonization temperature was
set to 800 ◦C, 900 ◦C and 1000 ◦C for 2 h, respectively. Finally, the resulting GF was
cleaned with deionized water three times and dried at 80 ◦C to constant weight. The
target electrodes were named GF@PCNs-800, GF@PCNs-900 and GF@PCNs-1000 according
to the carbonization temperature. For contrastive analysis, the original GF was treated
by the same process of GF@PCNs-900 without adding phytic acid solution, which is
named GF@CG-900.

2.2. Structural Characterization

The surface morphology of the electrode material was characterized by scanning
electron microscopy (SEM, SU8020, Japan) operated at 10 kV with energy dispersive
spectroscopy (EDS) for elemental analysis. The graphitization degree and defects of the
electrode material were studied by X-ray diffraction spectra (XRD, D/max 2500, Japan) and
Raman spectra (Lab RAM HR Evolution, France) with a 532 nm laser excitation. The X-ray
photoelectron spectroscopy (XPS, ESCALAB250XI, USA) was used to obtain the elemental
composition, valence, and relative content of the electrode materials.

2.3. Electrochemical Measurements

The cyclic voltammetry test (CV) was performed on the electrochemical workstation
(CHI760D, Shanghai, China), which was applied to analyze the electrode reaction process
via a three-electrode system [5] in the 0.1 M VOSO4 + 3 M H2SO4 electrolyte, and the GF
electrode (0.5 cm× 0.5 cm), platinum and silver chloride (Ag/AgCl) electrodes were used as
the working electrode, the counter, and reference electrodes, respectively. The charge trans-
fer impedance and ion diffusion resistance in electrolyte were analyzed by the impedance
experiments (EIS) with a frequency range of 0.01–100 kHz at an amplitude of 5 mV under
the same test condition as CV. The galvanostatic charging and discharging tests on a battery
test system (Land CT2001A, Wuhan, China) were used to evaluate the overall perfor-
mance of the VRFBs stack, and the design/structure of the flow battery is demonstrated in
Figure S1, Supplementary Materials. The GF or GF@PCN-900 (2 × 2 cm2) served as both
positive and negative electrodes separated by Nafion 115 (DuPont, Wilmington, DE, USA)
as the membrane, and the copper foil and graphite plate were used as current collectors
(6× 6 cm2). The electrolytes at both sides were 0.75 M VOSO4 + 0.375 M V2(SO4)3 + 3 M H2SO4
(15 mL) (Hunan Yinfeng Co., Ltd, Changsha, China), and the flow rate was 30 mL min−1. The
voltage window was set as 1.65-0.8V at the current density range of 100–400 mA cm−2, and
the stability of the cell was verified by a long cycle test at a current density of 200 mA cm−2.

3. Results

As shown in Figure 1a, the GF@PCNs electrode was fabricated via low temperature
polymerization between linear polymer monomer (pyrrole molecule) and phytic acid
served as a cross-linking agent, and subsequent high-temperature carbonization on the GFs.
Figure 1b demonstrated the schematic diagram of cross-linking reaction on the surface of
GF@PCNs. The polypyrrole with linear polymer was obtained by the addition polymeriza-
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tion of pyrrole monomer, and the formed 3D nanonetwork structure was attributed to the
hydrogen bond between the amino group in the polypyrrole chains and the phosphorus-
oxygen functional group in the phytic acid molecule. In addition, the introduction of amino
group and phosphorus-oxygen functional group, the oxygen, nitrogen and phosphorus
elements were successfully doped into the composite electrodes, which is conducive to
boost the electrochemical activity of reactive sites on the GF@PCNs for vanadium ions
redox reaction.
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Figure 1. (a) The preparation process of GF@PCNs electrode, (b) Schematic diagram of cross-linking
reaction on the surface of GF@PCNs.

In order to analyze the effect of carbonization temperature on the surface structure
of GFs, the scanning electron microscopy (SEM) was used to characterize the composite
electrodes prepared at different carbonization temperatures. Figure 2a shows the surface
structure of the composite electrode after low temperature polymerization and hydrother-
mal process without high temperature carbonization, and it can be seen that the moss-like
carbon plates were distributed on the surface of the GF, indicating that the cross-linking
polymerization was successfully realized. As show in Figure 2b, the surface of GF@PCNs-
800 via carbonization at 800 ◦C was coated with a thick network structure with small
pore size, by contrast, a 3D cross-linking network structure with developed porosity was
formed on the electrode surface after carbonization at 900 ◦C (Figure 2c), while the net-
work structure disappeared on the composite electrode surface after carbonization at a
higher temperature of 1000 ◦C (Figure 2d). This difference in morphology suggests that
low carbonization temperature is not enough to generate rich porous network structure
on the GFs, and the generated network structure is apt to collapse under the excessive
temperature. Therefore, the suitable carbonization temperature of 900 ◦C can effectively
keep a well structure of 3D nanonetwork on the GF surface. To further verify the adapt-
ability of carbonization temperature, the electrochemical performance of the composite
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electrode prepared at different carbonization temperatures was analyzed by cyclic voltam-
metry test (CV). The ratio of redox peak current (Ipc/Ipa) and the peak potential difference
(∆E = Epa − Epc) can be applied to evaluate the reversibility and electrochemical polar-
ization of vanadium ion redox reaction on different electrodes. As shown in Figure 3, the
GF@PCNs-900 possessed the higher electrical conductivity and smaller electrochemical po-
larization for redox reaction compared with GF@PCNs-800 and GF@PCNs-1000, especially
for the V2+/V3+ redox couple on the negative side. This result is attributed to the fact that
lower carbonization temperature reduces the degree of graphitization, which affects the
electrical conductivity of the composite electrode, but excessive temperature could instead
lead to the partial reduction of the active functional groups, decreasing the electrocatalytic
activity of the electrode materials.
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On the basis of the above analysis, the effect of phytic acid molecule on the structure
and property of GF@PCNs-900 was also studied. As shown in Figure 4a–c, compared
with the smooth surface of the pristine GF, the GF@PCNs-900 is uniformly covered with
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nanonetwork structure, while the surface of GF@CG-900 is simply loaded with fewer carbon
particles. The result exhibits the pyrrole monomer via polymerization and carbonization
was transform into the zero-dimensional carbon particle on the surface of GF, and the phytic
acid molecule served as cross-linking agent can effectively prompt the formation of 3D
nanonetwork structure on the GF during high temperature carbonization. The constructed
3D conductive network is beneficial to improving the interface area between electrode and
electrolyte, increasing the reaction zone for charge transfer and ion diffusion at the surface.
In addition, it can be observed that carbon, oxygen, nitrogen, and phosphorus elements
are evenly distributed on the surface of the GF@PCNs-900, as shown by energy-dispersive
spectroscopy (EDS) (Figure 4d,e).
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The lattice defects of GF, GF@CG-900 and GF@PCNs-900 are analyzed by XRD. As
shown in Figure 5a, the X-ray diffraction pattern shows two strong peaks at the positions
of 26.5◦ and 44.0◦, which belongs to the diffraction peaks of crystal plane (002) and (001) of
graphite lattice. Compared with GF and GF@CG-900, GF@PCNs displays weaker peak in-
tensity and larger half-peak width, indicating more defect sites on the composite electrodes
causing by the multi-heteroatom doping. Similarly, the surface defects of different electrode
materials were also detected by Raman spectroscopy. There are two Raman signals of
1584 cm−1 (G band) and 1340 cm−1 (D band) in the carbon materials, which ascribes the
in-plane vibrations of sp2 carbon atoms and disordered structures, respectively, and the
intensity ratio of the G and D bands (ID/IG) can be used to estimate the defect level of all
samples. Figure 5b displays that the ID/IG values of GF, GF@CG-900 and GF@PCNs-900
are 0.97, 1.00 and 1.02, respectively, implying that more surface defects are present in the
GF@PCNs-900. The resulting defect sites can effectively increase the active sites and charge
transfer efficiency for vanadium ion redox reaction, greatly boosting the electrocatalytic
activity of GF@PCNs-900.
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The element composition and relative content of the electrode material were analyzed
by X-ray photoelectron spectroscopy (XPS). As shown in Figure 6a, the characteristic peaks
of C 1s, O 1s and N 1s appeared in the GF and GF@CG-900 electrodes. In comparison, the
GF@PCNs-900 possessed extra characteristic peaks of P 2p and P 2s, and the relative con-
tents of oxygen and nitrogen were increased, indicating that the multi-element doping of
phosphorus, nitrogen, and oxygen was successfully achieved at GF@PCNs-900. Figure 6b
shows the O 1s spectra of various electrode materials. It can be observed that the charac-
teristic peaks of GF, GF@CG-900, and GF@PCNs-900 electrodes appear at the positions
of 530.6eV, 531.8eV, 532.9eV, and 534 eV, which are attributed to C=O, C-OH, C-C=O and
carbonate, respectively [52]. The relative content of C-OH functional groups on the surface
of GF@PCNs electrode is much higher than that of GF and GF@CG-900 electrode, and
abundant C-OH functional groups can effectively elevate the redox reaction of vanadium
ions. As shown in N 1s spectrum, the main forms of nitrogen in the electrode material
are divided into oxygenated N (402.5 eV), graphitic N (401.0 eV), pyrrolic or pyridonic N
(400.3 eV) and pyridinic N (398.2 eV), respectively [34] (Figure 6c). According to previous
research, the pyrrole nitrogen and pyridine nitrogen has been considered as a more effective
electrocatalytic activity center for vanadium ion redox reaction compared with other N
species [53]. It can be seen that the increased nitrogen content of GF@PCNs-900 is mainly
derived from the enhancement of pyrrolic or pyridonic N and pyridinic N, which suggests
the nitrogen doping in this work is high-efficiency. In addition, Figure 6d demonstrates
the high-resolution XPS P 2p spectrum of GF@PCNs-900, and the phosphorus element
mainly existed in the form of P-O and P-C, located at 133.8eV and 132.7eV, respectively [54].
Owing to larger atomic radius, phosphorus doping can effectively break the π bond con-
jugated system among graphite carbon atoms and introduce more defect sites around
neighboring carbon atoms, which is conductive to promoting the electrocatalytic activity of
GF@PCNs-900 for vanadium ion redox reaction.

To analyze the electrode reaction process of various electrodes, CV curves were tested
and shown in Figure 7. During the positive electrode reaction, compared with GF and
GF@CG-900, the GF@PCNs-900 not only possessed a higher oxidation and reduction peak
current and their ratio closer to 1, but also exhibited a smaller peak voltage difference,
indicating that GF@PCNs-900 has an excellent electrocatalytic activity for the VO2+/VO2

+

couple. Additionally, there is no reversible redox peak on GF electrode during the negative
reaction, while GF@PCNs-900 showed a pair of obvious redox peaks and higher peak
currents than GF@CG-900, which suggests the electrochemical activity of V2+/V3+ couple
has been significantly improved. This outstanding performance is mainly due to that the
3D nanonetwork structure on GF@PCNs-900 can increase the contact area between the
electrode and the electrolyte, facilitating the electron and ion conduction on the electrode
surface. Meanwhile, multi-heteroatom doping can effectively enhance the electrochemical
activity of the reaction site.
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The ion diffusion ability in the electrodes was analyzed by multi-sweep CV curves.
Figure 8a–c displayed the CV curves of GF, GF@CG-900, and GF@PCNs-900 electrodes at
scan rate of 5, 8, 10, 12, and 15 mV s−1, respectively. The relationship curve between the
square root of the scan rate and peak current density is shown in Figure 8c, and their good
linear relationship manifests the diffusion process known to control the electrochemical
reaction of the VO2+/VO2

+ couple. Based on Randles-Sevcik formula [55], it is known that
the ionic diffusion coefficient is able to be reflected by the absolute value of slope of the
relationship curve between the square root of scan rate and peak current density. No matter
the oxidation or reduction process, the GF@PCNs-900 possessed a significantly higher
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slope value of the curve than that of GF and GF@CG-900 (Figure 8d), which highlights an
outstanding vanadium ion diffusion during redox reaction. Moreover, at different scan
rates, the Ipc/Ipa of GF@PCNs-900 is closer to 1 compared with other electrodes, suggesting
a high reversibility of the vanadium ion redox reaction (Figure 8e). Furthermore, the
impedance experiments (EIS) were used to study the charge transfer impedance and ion
diffusion resistance for the composite electrodes. As shown in Figure 8f, the GF@PCNs-900
exhibited a much lower charge transfer impedance of 2.06ohm than that of GF (40.07 ohm)
and GF@CG-900 (10.20 ohm). The accelerated charge transfer largely originated from the
fact that the 3D nanonetwork of the GF@PCNs-900 electrode facilitated the conduction
of electrons and ions at the interface, and the multi-heteroatom doping improved the
electrocatalytic activity of electrodes for the redox reaction.
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density, (e) the relationship between the peak current ratio and scan rate, (f) the Nyquist plots of the
GF, GF@CG-900 and GF@PCNs-900.

In order to analyze the electrochemical property of full batteries using various elec-
trodes, GF and GF@PCNs-900 electrodes were assembled into VRFBs for the charge-
discharge performance test, respectively (Figure 9). Figure 9a demonstrates the charge-
discharge curve of the GF and GF@PCNs at the current density of 250 mA/cm2. Compared
with pristine GF, the GF@PCNs possessed a higher discharging plateau and lower charg-
ing plateau, and the over potential of GF@PCNs-900 was decreased by 42.0%, and the
discharge capacity was increased by 54.1%, indicating a small polarization effect during
the charge-discharge process. In addition, the voltage efficiency (VE) can also reflect the
polarization effect of VRFBs, which is calculated by the formula (VE = EE/CE). The EE
and CE are energy efficiency and coulombic efficiency of VRFBs during charge/discharge
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process, respectively. As shown in Figure 9b,c, the GF@PCNs-900-based on VRFBs exhib-
ited higher voltage efficiency (VE) and energy efficiency (EE) than GF-based on VRFBs at
various current density, and the VE and EE of GF@PCNs-900-based on VRFBs has been
enhanced by 12.1% and 11.6%, respectively, suggesting an excellent electrocatalytic activity
of electrodes. In addition, the discharge specific capacity of GF and GF@PCNs-900 are
displayed in Figure 9d, the GF-based on VRFBs exhibited the maximum current density of
only 250 mA cm−2, while GF@PCNs-900 still maintained a discharge capacity of 5.0 Ah L−1

at a huge current density of 400 mA cm−2, surpassing most of the reported works (Table
S1) [7,28,31,41–43,47,56–58]. Figure 9e shows the long cycle performance test of GF@PCNs-
900-based on VRFBs at the current density of 200 mA cm−2. After 200 charge-discharge
cycles, the energy efficiency of the GF@PCNs-900-based on VRFBs still maintains the initial
value of 91.0%. The excellent rate performance and cyclic stability of GF@PCNs-900 are
resulted from the enhancement of electron and ion transport ability at the 3D nanonetwork
coated electrode interface, and the multi-heteroatom doping contributed to the improved
electrochemical activity of reaction sites for vanadium ion redox reaction.
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4. Conclusions

In this work, 3D nanonetwork coated GFs with multi-heteroatom doping were pre-
pared for application in VRFBs via low temperature polymerization between linear polymer
monomer and phytic acid, and subsequent carbonization (900 ◦C) on the GFs (GF@PCNs-
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900). Phytic acid played a role in stabilizing the 3D nanonetwork structure, and effectively
realized the high-efficiency doping of nitrogen, oxygen, and phosphorus elements. Via
the carbonization temperature comparison for CF@PCNs, it is known that the suitable car-
bonization temperature of 900 ◦C can effectively keep a well structure of 3D nanonetwork
on the GF surface, and the GF@PCNs-900 possessed a higher electrical conductivity and
smaller electrochemical polarization for the redox reaction. Their excellent electrochemical
performance is mainly due to the fact that the 3D nanonetwork is beneficial to the sufficient
diffusion of vanadium ions and rapid electron conduction along the GFs surface, and
multi-heteroatom doping highly improves the electrocatalytic activity of composite elec-
trodes toward the vanadium ions redox reaction. Finally, the VRFBs based on GF@PCNs
delivered a higher energy efficiency of above 70% during 200 cycles at 200 mA cm−2 and
an excellent rate performance for the discharge capacity of 5.0 Ah L−1 at a huge current
density of 400 mA cm−2, surpassing most of the reported works. Therefore, the superior
performance and materials designed in this work will advance the fundamental research
and commercialization of VRFBs for large-scale energy storage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14235269/s1, Figure S1: The design/structure of the flow
battery, Table S1: Comparison of the rate capability of the GF@PCNs electrode with previous work
on electrodes materials for VRFBs. [7,28,31,41–43,47,56–58].
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