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Abstract: In this paper, experiments and finite element analysis methods were adopted to study the
flexural performance of shape memory alloy hybrid composites (SMAHC). The effect of embedding
content and position of shape memory alloy (SMA) wire on the flexural properties of composite
laminates was analyzed, and the optimal content and position of SMA wire were obtained. The
optimal number of SMA wires for SMAHC laminates (B-2) is four. Compared with GFRP laminates,
the flexural modulus of B-2-4 laminates increases by 5.19%, while the strength decreases by 5.76% on
average. The finite element model of the SMAHC laminate was established by using ABAQUS finite
element analysis software, and the validity of the model was verified by the comparison between the
simulation results and the experimental results. The microscopic morphology results show that the
weak interface between the matrix and SMA has a certain influence on the flexural performance of
SMAHC specimens.

Keywords: SMAHC; finite element model; flexural properties; optimal content; optimal position

1. Introduction

Smart materials and structures have brought forth a paradigm shift in design, mostly
to the fields of structural engineering, robotics, and aerospace, due to which the demand for
highly functional and lightweight, adaptive systems is continuously growing [1,2]. Shape
memory alloys (SMAs) are a unique class of metal exhibiting two fundamental properties,
namely, superelasticity (SE) and shape-memory effect (SME) [3,4]. Due to the two special
characteristics, SMAs have been successfully commercialized in the aerospace, medical,
electrical, and oil industries.

The fiber-reinforced resin-based composite material is embedded with SMA; the
composite material can acquire the ability to adapt to the environment under the control of
the induction unit [5,6]. Due to the excellent superelasticity and shape memory effect, the
performance of low-speed impact resistance, damage resistance, vibration, noise reduction
and flexural resistance can be significantly improved by embedding shape memory alloy
into the composites [7,8].

Many scholars have systematically studied the shape memory effect. Lagoudas and
Tadjbaksh [9] studied the bending performance of a flexible rod embedded with SMA
wire, obtained the deformation shape of a flexible rod, and determined the critical value
of phase transition-induced strain. Auricchio et al. [10] used numerical methods to study
the shape memory effect of SMA beams under complex stress conditions and calculated
the deformation of beams under bending and thermal cycling loads. Lal and Markad [11]
considered the finite element governing equation-based higher order shear deformation
theory with the principle of virtual work. They used micromechanical methods to calculate
the mechanical properties of composite plates, revealing the effects of SMA volume fraction,
restoring stress, presence or absence of SMA layers, and temperature on critical buckling
loads. Lu et al. [12] presented a theoretical model for the bending of a laminated beam
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embedded with an SMA fiber-reinforced layer. They discussed the bending of the laminated
beam and provided the relationship between bending moment, curvature and temperature.
Viet and Zaki [13] proposed a bending model for a laminated composite cantilever beam
with multiple embedded SMA layers presenting tensile–compressive asymmetry. They
highlighted the necessity of considering asymmetry in the accurate simulation of laminated
beams with SMA layers. Tsukamoto [14] investigated the mechanical behavior of NiTi
long-fiber reinforced aluminum (Al) matrix composites, experimentally and numerically. It
was concluded that internal stresses in the composites, which were introduced during the
fabrication processes, highly affected the subsequent mechanical behavior of the composites.
Zhang et al. [15] prepared epoxy resin matrix composites filled with NiTi alloy staple fibers
and particles and studied their mechanical properties. Due to the addition of SMA filler, the
flexural stiffness of SMA/ epoxy composites is increased. Experimental results show that
adding only 3.5% SMA filler to epoxy resin results in a significant increase in energy storage
modulus, which is six times larger than the epoxy resin body (ER3). Scholars’ research
mainly focused on the control of SMA on the bending deformation of its composites and
the influence of SMA short wires and particles on the bending properties of composites.
The influence of SMA content and position on the overall properties of the composite was
not considered.

In terms of superelastic research, Viet and Zaki [16] propose a novel and simple
exact semi-analytical model for superelastic SMA wire-reinforced composites subjected to
bending loads. The composite is found to behave superelastically under certain conditions
of temperature, SMA volume fraction, and elastic stiffness of the matrix. Viet et al. [17]
also proposed a new analytical model for a superelastic shape memory alloy prismatic
cantilever beam subjected to a concentrated force at the tip. Analytical moment curvature
and shear force–shear strain relations are also derived during the loading and unloading of
the beam. Pattar et al. [18] researched the mechanical properties of glass/epoxy composite
by embedding shape memory alloy and nanoclay. Results show that the flexural strength
of SMA/MMT/glass/epoxy composite was improved by 21%, when it was compared
with composite with glass/epoxy composite. Aslani et al. [19] used four different codes to
calculate the flexural toughness of the shape memory alloy, polypropylene and steel fiber-
reinforced self-compacting concrete. It is found that the shape memory and superelasticity
of NiTi SMA are effective in delaying initial crack formation and limiting crack width.
Pazhanivel et al. [20] adopted the method of embedding nickel–titanium SMA in the cross-
section below the neutral axis of glass fiber-reinforced polymer (GFRP) composites to
enhance the bending resistance of the composites. Under static loading condition, up to 4
wt% of shape memory alloy reinforcement, the GFRP exhibit enhanced flexure resistance.
Katsiropoulos et al. [21] improved the damping behavior of fiber reinforced polymer
composites with embedded superelastic SMA. It was found that the addition of Ni-Ti
wires into the aramid/epoxy composite leads to a significant modification of its damping,
which depends strongly on wire volume fraction. Taheri-Behrooz et al. [22] developed
research to predict stress transfer and interfacial behavior between shape memory alloy
wire, interphase, and matrix. Inhomogeneous interphase and different radial and hoop
stress components in each phase are considered to achieve deeper physical understanding.
Khalili et al. [23] investigated the flexural properties of sandwich composite panels with
glass laminate aluminum-reinforced epoxy facesheets strengthened by SMA wires. The
results represent the advantage effect of shape memory alloy wires on the behavior of
sandwich composite panels in bending. Although there have been many studies on the
influence of SMA content on the mechanics of composite materials, the current researches
on the influence of SMA wire embedding position and content on SMAHC laminates and
the finite element modeling of SMAHC laminates are not detailed enough.

Debski [24] and Wysmulski [25] studied the influence of eccentric compression load
on the stability and bearing capacity of thin-walled composite profiles by experimental
study and finite element method. They investigated the effect of laminate layup and cross-
sectional shape on the buckling load, postbuckling equilibrium path and failure load of
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the structures under compression. Numerical postbuckling equilibrium paths were used
to estimate the critical loads with an approximation method. The experimental results
were used to validate the numerical models. Then, Rozylo and Wysmulski [26] analyzed
the phenomenon of failure of axially compressed thin-walled composite structures with
channel shapes. They carried out experimental tests and advanced finite element numerical
calculations on actual columns. The cohesive zone model (CZM) was used in numerical
studies. The obtained results of the numerical tests showed a high compliance with the
results of the experimental studies. Han et al. [27] used the finite element analysis (FEA)
method to simulate the mechanical behaviors of ultrastrong and tough bulk material
under a tensile state. FEA results showed that water molecules played an active role in
fabricating strong and tough materials, by plasticizing and forming hydrogen bonding
among cellulose nanofibrils. Hu et al. [28] studied the effect of loading type on mechanical
properties, including elastic constants, yield strength and ultimate strength of beech wood.
The results show that the finite element models proposed can predict the mechanical
behaviors of wood in tensile and compressive states. Valachova and Skotnicova [29]
focused on the thermal engineering assessment of light building envelope structures using
the finite element method (FEM). The results demonstrate that it is possible to predict
the thermal behavior of lightweight peripheral buildings with the help of appropriate
simulation programs. The research results of scholars, such as fiber toughening methods,
the establishment of models and boundary conditions, and the setting of cohesion contact,
have good guidance for this paper.

Recently, research interests in using superelasticity SMAs have extended to civil en-
gineering, where particular effort was devoted to the mitigation of seismic effects on
structures [30]. Fang et al. [31] presented a novel type of shape memory alloy (SMA) cable-
restrained high damping rubber (SMA-HDR) bearing. The application of the novel SMA-
HDR bearing can significantly alleviate the pounding effect, especially under near-fault
earthquakes. Chen et al. [32] proposed a novel type of self-centering damper employing
NiTi shape memory alloy (SMA) bars. Compared with the existing types of SMA-based
dampers, the proposed damper offers a tunable hysteretic behavior with amplified de-
formability and hybrid sources of energy dissipation. Fang et al. [33] introduced a new type
of shape memory alloy (SMA) washer spring-based self-centering rocking (SCR) system,
which could be an important addition to the existing rocking pier family. The proposed
system aims to mitigate the damage to the main body of the pier and to eliminate residual
deformation after earthquakes. These research results have guidance for future research on
the application of SMA and SMA-reinforced composites in civil engineering.

In this paper, the influence of the position and content of SMA on the flexural proper-
ties of SMAHC laminates was studied by numerical simulation and experimental methods.
The effectiveness of the model was verified by comparing simulation results with experi-
mental data, and the influence mechanism of SMA on the flexural properties of SMAHC
laminates was further revealed.

2. Experimental and Numerical Simulation
2.1. Materials

The matrix is a polymer mixed with thermosetting epoxy resin, accelerator and curing
agent. The three materials are ethylene oxide resin 411, methyl ethyl ketone peroxide, and
cobalt naphthenate, and the mixing ratio is 1:2:0.5%. A unidirectional glass fiber cloth
with a thickness of 0.2 mm and a surface density of 200 g/m2 is used as a reinforcing
material, bought from Tongxiang Mengtai reinforced composite material Co., Ltd. Supere-
lastic Nitinol with a nickel content of 55.9% has a diameter of 0.2 mm, purchased from
Jiangyin [34,35]. The theoretical stress–strain curve of the SMA wire is shown in Figure 1.
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Figure 1. The stress–strain curve of the SMA wire. (a) Ideal. (b) Experimental.

There are three distinct phases in Figure 1a: The purely elastic behavior of the material
shows when the stress is less than σAM

s . The stress is less than σAM
s , and the material

exhibits pure elastic behavior. At critical stress, the forward transition is caused by a
stress-induced martensitic transformation (austenite-martensitic). Large transformation
strains occur during martensite formation (upper platform). When the stress increases
to σAM

f , SMA is in the martensitic phase, indicating that the forward transformation is
completed. Martensite exhibits elastic behavior when the stress exceeds σAM

f . During
unloading, the reverse phase transition from martensite to austenite begins at σMA

s and
completes at σMA

f . Due to the difference between σAM
f and σAM

s , and the difference between
σMA

s and σMA
f , a hysteresis curve is found in the load/unload stress–strain curve [36–40].

Figure 1b shows the experimental stress–strain curve of the SMA wire. Table 1 shows
the material parameters of the SMA wire [41]. Vacuum-assisted resin injection (VARI)
was used to prepare composite laminates, as shown in Figure 2, with vacuum curing at
room temperature for 9–12 h. The laminate is composed of 10 layers of glass fiber cloth.
The structural arrangement of SMAHC laminates is shown in Figure 3. The size of the
specimen is 80 mm × 25 mm × 2.4 mm. The number of flexural specimens is given in
Table 2. In Table 2, different types of specimens are numbered according to the ply form of
bending specimens. B-1, B-2, B-3 and B-4 represent the type of specimen, and B-2-2/4/6/10
represents the embedding of 2/4/6/10 SMA in B-2 specimens, respectively.

Table 1. Material parameters of SMA wire [41].

Material Parameter Martensite Austenite

Phase transformation stress (MPa) σAM
f = 393.15, σAM

s = 372.08 σMA
f = 57.89, σMA

s = 80.07
Phase transformation strain (%) ε = 0.94, ε = 9.41 ε = 7.09, ε = 0.35

Elasticity modulus (GPa) EM = 19.13 EA = 32.95
Tensile strength (MPa) 1115.26

Failure strain (%) 12
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Table 2. Tensile and bending test specimens.

Specimen Number

[GF10] B-1
[GF4/SMA/GF2/SMA/GF4] B-2-2/4/6/10
[GF3/SMA/GF4/SMA/GF3] B-3-2/4/6/10

[GF5/SMA/GF5] B-4-2/4/6

2.2. Three-Point-Bending Tests

The three-point-bending test specimens of SMAHC were prepared according to the
ASTM-D790 standard. The INSTRON 4505 universal testing system was used to conduct
three-point-bending experiments on composite laminates with different SMA embedment
contents and embedment positions at room temperature [42]. Five specimens of each
laminated composite plate were prepared, and the loading speed was 3 mm/min. Loading
stopped when the specimen was damaged. According to the ASTM-D790 standard, the
test is terminated when the maximum strain in the outer surface of the test specimen has
reached 0.05 mm/mm or at break if a break occurs before reaching the maximum strain. If
no break has occurred in the specimen by the time the maximum strain in the outer surface
of the test specimen has reached 0.05 mm/mm, the test is discontinued. The loading of the
bending test is shown in Figure 4.
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The flexural stress corresponding to any point on the load–deflection curve can be
calculated using the following Equation (1):

σf =
3PL
2bd2 (1)

where σf is the stress in the outer fibers at the midpoint, P is the load at a given point on
the load–deflection curve, L is the length of the support span, b is the width of the tested
specimen, and d is the depth of the tested specimen.

Nominal fractional change in the length of an element of the outer surface of the test
specimen at midspan, where the maximum strain occurs. It may be calculated for any
deflection using Equation (2):

ε f = 6Dd/L2 (2)

where ε f is strain in the outer surface, D is maximum deflection of the center of the beam, L
is support span, and d is depth.

2.3. Finite Element Modeling

Finite element software ABAQUS was used to establish a model to analyze the bending
performance of SMAHC. The three-dimensional continuum element C3D8R was used to
mesh glass fiber-reinforced composites. The meshing of composite laminates is given in
Figure 5a. The meshing of composite laminates is given in Figure 5a. The cylindrical rigid
body in the central part of the laminate represents the indenter to apply the load, and the
cylinders on both sides of the lower part of the laminate represent the base of the three-point-
bending test. These three cylindrical rigid bodies are defined as rigid bodies. The contact
between the rigid body and the upper and lower surfaces of the laminate is defined as
surface-to-surface universal contact (Figure 5a). The mesh of SMA wire adopts 16,000 linear
hexahedral elements of type C3D8R, as shown in Figure 5b. A glass fiber layer with a
thickness of 0.2 mm for each layer is adopted, and a total of 10 layers of laminates are used.
The layering sequence is [0◦]10. The size of the specimen is 80 mm × 25 mm × 2.4 mm. In
this paper, the laminated plate specimens are SMAHC laminated plates with one or two
layers of SMA wire and ten layers of glass fiber cloth. Mechanical property parameters of
GFRP required for finite element analysis are illustrated in Table 3.

Table 3. Material properties of GFRP laminates.

E11
(GPa)

E22 = E33
(GPa) ν12 = ν13 ν23

G12 = G13
(GPa)

G23
(GPa)

24.43 7.11 0.3 0.34 6.34 1.41

XT
(MPa)

XC
(MPa)

YT = ZT
(MPa)

YC = ZC
(MPa)

S12 = S13
(MPa)

S23
(MPa)

666.44 320.44 70.8 188.9 51.7 51.7

To predict the damage of composite materials, such as matrix tensile failure, matrix
compression failure, fiber tensile failure and fiber compression failure, a composite material
damage model based on Hashin [43,44] was adopted, as follows:

Fiber tension (σ11 ≥ 0)(
σ11

XT

)2
+

(
σ12

S12

)2
+

(
σ13

S13

)2
≥ 1 (3)
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Fiber compression (σ11 < 0)
σ11

XC
≥ 1 (4)

Matrix tension and compression(
σ11

2XT

)2
+

(
σ12

S12

)2
+

(
σ2

22
YTYC

)
+

σ22

YT
+

σ22

YC
≥ 1 (5)

where the tensile strength and compressive strength in the longitudinal and transverse
directions are XT , XC, YT and YC, respectively. The fiber shear strength measured in the
1–3 and 1–2 directions are S13 and S12, respectively.
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The surface-based cohesive contact model in ABAQUS was used to simulate the
composite effect of laminates [45–47]. The interface behavior is governed by a mix-mode
bilinear traction–separation law, which assumes an initially linear elastic response followed
by the linear evolution of damage, as displayed in Figure 6.
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3. Results and Discussion
3.1. Experimental Results

Figure 7 shows the flexural stress–strain curves of different types of SMAHC and
GFRP specimens. It can be seen from the figure that the curve shows a linear response
near the origin, and then a nonlinear response until it breaks. The transition from linear
response to nonlinear response is often caused by matrix cracking [15]. In Figure 7, the
flexural strength of all SMAHC laminated plate specimens is lower than that of GFRP. This
is due to the material difference between the matrix and SMA, which will form a weak
interface between SMA and the matrix, resulting in stress concentration on the surface
of the SMA wire. All specimens of SMAHC laminates show good ductility, which is
also due to the presence of SMA, so that the specimens do not suddenly lose the bearing
capacity as with GFRP laminates. It can be observed that SMAHC laminates (B-2-4) have
the highest bending performance. The flexural performance of SMAHC laminates is given
in Table 4 [27]. The flexural strength of SMAHC laminates (B-2-2/4/6) is 368.62 MPa,
369.17 MPa and 318.73 MPa, respectively. Compared with the GFRP laminate, the flexural
strength is decreased by 5.84%, 5.76% and 18.63%, respectively. However, the flexural
modulus increased from 22.73 GPa to 23.91 GPa, 23.73 GPa and 23.74 GPa, respectively. In
addition, the flexural performance of B-2-6 and B-2-10 laminates decreases more obviously
than that of GFRP laminates.

Figure 8 shows SEM micrographs of fracture surfaces of different B-2 specimens.
Figure 8a–d corresponds to SEM images at the interfaces of laminated plate specimens
(B-2-2/4/6/10) respectively. In Figure 8a, a small amount of resin remains on the surface
of the SMA, and the adhesion between the SMA and the matrix is good. As shown in
Figure 7b, the resin is wrapped around the SMA well; therefore, the SMA and the matrix
are not completely debonded at the fracture surface (B-2-4). In Figure 8c, there is no
excessive adhesion of the resin matrix on the surface of the SMA wire, and there is obvious
debonding on the tensile side and slight debonding on the compression side. In Figure 8d,
the interface between the SMA and the matrix on the compression side and the tensile side
is significantly debonded.
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Figure 7. Comparison of the flexural stress-strain curves of different types of SMAHC laminates and
GFRP. (a) Two wires, (b) four wires, (c) six wires, (d) ten wires.

Table 4. Flexural properties of different types of SMAHC laminates.

Specimen Number 0 2 % 4 % 6 % 10 %

B-2
Modulus

(GPa)
22.73 23.81 23.91 ↑ 22.42 22.11
± 0.37 ± 0.4 4.75 ± 0.35 5.19 ± 0.41 −1.32 ± 0.31 −2.73

Strength
(MPa)

391.74 368.86 369.17 318.73 309.23
± 6.94 ± 6.5 −5.84 ± 5.2 −5.76 ± 6.4 −18.63 ± 6.9 −21.06

B-3
Modulus

(GPa)
22.73 23.61 23.73 ↑ 22.38 21.66
± 0.37 ± 0.39 3.87 ± 0.35 4.40 ± 0.42 −1.54 ± 0.32 −4.71

Strength
(MPa)

391.74 334.67 342.57 316.68 289.40
± 6.94 ± 4.14 −14.57 ± 4.56 −12.55 ± 6.51 −19.16 ± 5.82 −26.12

B-4
Modulus

(GPa)
22.73 22.74 23.74↑ 22.21 -
± 0.37 ± 0.3 0.04 ± 0.32 4.4 ± 0.31 −2.89

Strength
(MPa)

391.74 349.69 313.85 304.95 -
± 6.94 ± 5.35 −10.73 ± 4.2 −19.88 ± 6.1 −22.16
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Figure 8. SEM micrograph of the fracture surface of (B-2) specimens. (a) B-2-2, (b) B-2-4, (c) B-2-6,
(d) B-2-10.

Figure 9 shows SEM micrographs of fracture surfaces of different SMAHC specimens
(B-3). The microstructure of the interface between the specimen matrix and SMA wire can
be observed in Figure 9. Figure 9a–d corresponds to SMAHC specimens (B-3-2/4/6/10). In
Figure 9a, only a small amount of resin remains on the surface of the SMA, and significant
debonding is observed between the matrix and the SMA. SEM micrograph of the SMAHC
specimen (B-3-4) is shown in Figure 9b. SMA is well-wrapped by the resin matrix and
only slightly debonded, indicating that the interface at the fracture surface has no obvious
negative effect on the degradation of the specimen properties during loading. In Figure 9c,
there is obvious debonding between SMA and matrix, and the glass fiber is broken and
part of the fiber is pulled out. As shown in Figure 9d, complete debonding occurs between
SMA and matrix, indicating that the specimen has completely failed at this time.
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Figure 10 shows the SEM micrograph of the fracture surface of the GFRP and the
SMAHC specimens (B-4). In Figure 10a, the glass fiber is pulled off, and traces of the glass
fiber being pulled out can be observed. SEM image of the SMAHC specimen (B-4-2) is
shown in Figure 10b. Only slight debonding occurs between SMA and matrix, and SMA is
almost completely wrapped by matrix, indicating that the weak interface between matrix
and SMA does not play a leading role in the failure process of the specimen. In Figure 10c,d,
4 to 6 SMA wires are embedded in the same layer, and the matrix and SMA are completely
debonded and fibers are pulled out. There is no SMA wire to provide tension in the tensile
zone of the specimen, and in the loading process, because of too much SMA embedded
in the same layer, cracks will occur at the interface and rapidly expand, resulting in the
deterioration of the overall performance of the specimen. SEM observation shows that
the main failure modes of SMAHC laminates are delamination and debonding, and the
mechanical properties of SMAHC laminates are greatly affected by these two failure modes.
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3.2. Numerical Results

The convergence of the numerical simulation of the model is tested. The number of
elements in the original model is 50,000, and the number of elements in the new model is
100,000. The new model only adds elements in thickness. Figure 11 presents two models. A
comparison of GFRP laminates between the original and new model is shown in Figure 12.
The new flexuous strength and flexuous modulus of GFRP laminates (B-1) are 375.65 MPa
and 24.73 GPa, respectively. The errors of simulation results and experimental results are
1.59% and 1.47%, respectively, which meet the requirements of accuracy.

The comparison between the stress–strain curve obtained from the bending test of
GFRP laminates and the simulation results is shown in Figure 13. It is found that the
macroscopic stress–strain curves obtained from experimental tests are basically consistent
with those obtained from simulation. The simulated flexural strength and flexural mod-
ulus of GFRP laminates (B-1) are 381.71 MPa and 25.1 GPa, respectively. The errors of
simulation results and experimental results are 2.56% and 10.43%, respectively, which meet
the requirements of accuracy. The experimental and simulation results of GFRP laminates
in failure are given in Figure 14. In Figure 14a, the resin matrix on the compression side
of the laminate is crushed and a white indentation appears, which is consistent with the
simulated failure mode. However, in the tensile side of the laminated plate (Figure 14b), no
obvious damage to the matrix occurred in the experimental results and simulation results.
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Figure 15 shows the comparison curve between simulation results and experimental
results of SMAHC laminates (B-2-4). The stress–strain curve obtained by experiment is
in good agreement with the simulation results. Because of the more serious debonding
between SMA and matrix during simulation, the specimen directly loses the bearing
capacity without the phenomenon of sustained bearing in the experiment. The flexural
strength and flexural modulus of SMAHC laminates (B-2-4) are 385.335 MPa and 24.47 GPa,
respectively. The errors of simulation results and experimental results are 4.38% and 2.34%,
respectively, which meet the requirements of accuracy. In Figure 16a, because the resin
matrix is crushed and the experimental laminate specimen is obviously damaged, the
simulation result is consistent with the experimental phenomenon, and obvious damage
occurred in the compression region. In the tension side of the laminated plate (Figure 16b),
no obvious damage occurred in the matrix in the simulation results, but slight damage
occurred in the experimental results. Figure 17 shows the damage profile of two to five
layers above the neutral layer of SMAHC laminates. It can be clearly observed in Figure 16
that obvious damage also occurred in the second layer, while slight damage occurred in
the third layer, and no obvious damage occurred in the fourth and fifth layers. This is
because the upper side of the neutral layer is the compression side, the matrix is damaged
under pressure, and the existence of the weak interface between SMA and the matrix will
occur debonding damage, then lead to the lamination of the laminated plate, the laminated
plate, as a whole, loses bearing capacity, so the fourth layer and the fifth layer of the matrix
damage is not obvious. It is important to note that the model, here, does not take into
account the degradation of SMA functionality, and it does have some limitations for a
wider range of applications.
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4. Conclusions

In this paper, the flexural behavior of SMAHC laminates was studied experimentally
and numerically. The experimental results and simulation results were compared to verify
the validity of the model. The main conclusions obtained were made as follows:

1. The optimal number of SMA wires for SMAHC laminates (B-2) is four. Compared
with GFRP laminates, the flexural modulus of B-2-4 laminates increases by 5.19%,
while the strength decreases by 5.76% on average. The flexural properties of B-2-6 and
B-2-10 laminates decrease more obviously, and the weak interface between fiber and
matrix is the main reason for the degradation of the flexural properties.

2. The microstructure shows that the material difference between SMA and matrix forms
a weak interface, which produces microcracks and expands rapidly during the loading
process. The interface debonding failure results in matrix delamination and the final
specimen failure. The weak interface between the matrix and SMA increases with
the increase of the number of SMA wires, which is convenient for the formation of
matrix delamination damage. The main failure modes of SMAHC composites are
delamination and debonding, and this failure mode has an obvious influence on the
mechanical properties of the composites.

3. The finite element models of GFRP and SMAHC (B-2-4) laminates were established
and compared with the experimental results. The numerical prediction results were
in good agreement with the experimental results. The errors between the simula-
tion results of GFRP laminates and the experimental results of flexural performance
were 2.56% and 10.43%, respectively. The errors of experimental results and simula-
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tion results of the flexural performance of SMAHC laminates (B-2-4) are 4.38% and
2.34% respectively, which meet the accuracy requirements and verify the validity of
the model.
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