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Abstract: The polymer Parylene combines a variety of excellent properties and, hence, is an object of
intensive research for packaging applications, such as the direct encapsulation of medical implants.
Moreover, in the past years, an increasing interest for establishing new applications for Parylene is
observed. These include the usage of Parylene as a flexible substrate, a dielectric, or a material for
MEMS, e.g., a bonding adhesive. The increasing importance of Parylene raises questions regarding
the long-term reliability and aging of Parylene as well as the impact of the aging on the Parylene
properties. Within this paper, we present the first investigations on non-accelerated Parylene C aging
for a period of about five years. Doing so, free-standing Parylene membranes were fabricated to
investigate the barrier properties, the chemical stability, as well as the optical properties of Parylene in
dependence on different post-treatments to the polymer. These properties were found to be excellent
and with only a minor age-related impact. Additionally, the mechanical properties, i.e., the Young’s
modulus and the hardness, were investigated via nano-indentation over the same period of time. For
both mechanical properties only, minor changes were observed. The results prove that Parylene C is
a highly reliable polymer for applications that needs a high long-term stability.

Keywords: Parylene; aging; stability; barrier properties; FTIR; mechanical properties; nano-indentation;
MEMS; encapsulation; packaging

1. Introduction

For the realization of ongoing trends, such as the “Internet of Things” (IoT), “Industry
4.0”, and “Smart Everything”, new concepts, technologies, and materials are required for
the production of sensors and actuators in the form of microelectromechanical systems
(MEMS). Particularly, the materials should enable miniaturization and an increasing per-
formance of the device at the same time. Hence, materials beside the established silicon
technology are in consideration.

Parylene (Poly-p-xylylene) is a family of thermoplastic polymers that is of increasing
interest due to its combination of excellent properties. These include chemical inertness
against all common acids, bases, and solvents, dielectric properties, optical transparency,
low Young’s modulus and softness, ISO 10993 certified biocompatibility and biostability, as
well as good barrier properties against water vapor or chemicals and good temperature
stability in comparison with other polymers [1–4]. Due to these properties, Parylene is
compatible with most microtechnologies. Furthermore, Parylene is deposited from the
gas phase at room temperature, resulting in highly conformal coatings without internal
stresses [3,5].

Traditionally, Parylene is used for the encapsulation of medical implants or electronics [4,6–11].
However, in the last years, new applications in the field of MEMS also have been established
using Parylene as a functional or structural material, e.g., as an adhesive for wafer and chip
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bonding [1,12,13]. MEMS using Parylene include not only acceleration sensors [14], pres-
sure and force sensors [15,16], acoustics [17,18], optical devices [19,20], microfluidics [21,22],
and lab on chip [23], but also its use as a substrate material for flexible electronics [24,25].
The increased usage of Parylene for the various applications raises the question regarding
the reliability and lifetime of Parylene, i.e., any impacts of aging on its properties.

Existing studies are performed in the context of medical applications and the barrier
properties of Parylene and based on accelerated aging [26–34]. Doing so, the aging of
Parylene is accelerated by elevated temperatures to determine any impact on chemical
or physical properties [35]. The accelerated aging can be converted into equivalent non-
accelerated aging at ambient or body temperature by the “10-degree rule”. This rule is
derived from an Arrhenius function (refer to Appendix A for more details) and states that
for every temperature increase of 10 K the reaction and aging rate will double [6,36,37].

Based on this rule, e.g., the aging behavior of Parylene C layers and composites
based on Al2O3 deposited by atomic layer deposition (ALD) and Parylene C is studied at
temperatures of 37 ◦C, 57 ◦C, 60 ◦C, 67 ◦C, 80 ◦C, and 87 ◦C for up to 260 days while soaking
in phosphate buffered solution (PBS). All samples proved a good stability of Parylene C
and an enhanced stability for the composites [26–31,38]. Other studies compare Parylene
implanted for 3.25 years and acceleratingly aged at 67 ◦C and 87 ◦C in PBS with added
hydrogen peroxide to simulate a reactive environment. The latter is proven to have a
negative impact on Parylene C [32,33]. Only a very limited number of studies based on
non-accelerated aging at ambient temperatures for 276 days and a year, respectively, are
published. These studies show that Parylene C is stable. However, the characterization was
limited to electrical quantities, and the studies are based again on soaking in PBS [39,40].
Finally, accelerated aging at higher temperatures between 125 ◦C and 200 ◦C is proven to
oxidize Parylene C, predicting 130,000 years of lifetime for Parylene C [41].

The aging mechanisms of Parylene are supposed to be based on the formation of
carbonyl groups due to the formation of ester bonds at aliphatic Parylene bonds. This
causes chain scission and further reaction with oxygen. The impact on the mechanical
properties is embrittlement and the reduction in the tensile strength, as well as crack
formation. Another mechanism discussed in the literature is the photocatalytic cleavage
of chlorine that leads to the creation of radical sites in chains and, hence, intramolecular
phenylation and hydrogen abstraction [5,32,42,43].

Due to the limited temperature stability of Parylene as well as the complex reaction
kinetics causing various and partially unknown aging mechanisms, it is doubtful whether
the “10-degree rule” can be applied without limitations. Within this study, the first long-
term and non-accelerated aging of Parylene C is performed for five years (~1800 days)
of aging in ambient temperature. With respect of the usage of Parylene as a material for
MEMS and substrate for flexible electronics, a non-reactive environment is chosen for
aging. Doing so, the barrier properties, optical properties, and the chemical stability are
investigated in dependency of different post-treatments of Parylene C and non-accelerated
aging. Additionally, the mechanical properties of Parylene C are investigated in comparison
for non-accelerated and accelerated aged Parylene C.

2. Materials and Methods
2.1. Sample Preparation for the Investigation of the Impact of Aging on the Barrier Properties, the
Chemical Stability, and the Optical Properties of Parylene C

For the investigation of the impact of aging on the barrier properties, the chemical sta-
bility and the optical properties of Parylene C, large-scale free-standing circular membranes
with a diameter d of 8.1 cm, were fabricated. The fabrication process is depicted in Figure 1
and explained in detail elsewhere [3]. It can be summarized by the following five steps: On
an aluminum plate of ~9 cm diameter (1) liquid glycerine (Brenntag GmbH, Germany) was
spin-coated at 1000 rpm for 10 s (SpinCoater CT62, SÜSS MicroTech AG, Germany). Next,
a cap for a regular screw-top jar that has a hole for the Parylene membrane to be fabricated
was placed on the glycerine-coated aluminum plate (3). Subsequently to this, the sample
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was coated with Parylene C by chemical vapor deposition (CVD) in accordance with the
Gorham process depicted in Figure 2.
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Doing so, first, a solid dimer (Plasma Parylene Systems GmbH, Germany) was sub-
limed at 130 ◦C. Second, the obtained gaseous dimer was thermally cracked into reactive
monomers by pyrolysis at 740 ◦C. In the third step, the monomers react to linear polymer
chains at room temperature. The process was performed in vacuum at pressures <5.5 Pa.
For the fabrication of the samples, a Plasma Parylene LC 300 RW (Plasma Parylene Systems
GmbH, Germany) was used.

In the final step of the sample fabrication, the Parylene was cut on the bottom side of
the sample by a scalpel, so that the cap gets released from the aluminum substrate by the
glycerine to form a free-standing Parylene membrane (5). In order to remove excess glycerine
from the Parylene and the cap, the samples were stored in deionized water overnight.

For sample preparation, the Parylene thickness, the deposition rate, and sublimation
temperature, respectively, as well as the post-treatment, were systematically varied. An
overview of the different samples is given in Table 1. Due to statistic and redundancy
reasons, for all parameter variations listed in Table 1, two identical samples were fabricated,
that were investigated in parallel.

For all samples with a thickness below 3 µm, a dimer mass of 5 g was used. The
thicker Parylene membranes were obtained by increasing the dimer mass to 10 g and 15 g,
respectively. A regular process was performed with a sublimation temperature of 130 ◦C,
since this was the optimized temperature for the deposition of high-quality Parylene C
in a short process time [3]. For one sample, a slow Parylene C deposition was performed
by using a sublimation temperature of 100 ◦C only, in order to investigate any potential
improvement of the barrier properties. The thicknesses of the Parylene membranes given in
Table 1 were measured by profilometry (Alpha-Step 500, KLA Tencor GmbH, Germany) and
reflectometry (F20, Filmetrics Europe GmbH, Germany) on a silicon chip coated in parallel.
Furthermore, IR spectroscopy was used to determine the thickness (see Section 2.4).
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Table 1. Overview of the thicknesses, deposition conditions, and post-treatments of the different
Parylene C samples for the investigation of the barrier properties, optical properties, and chemical
stability. The varied parameter is highlighted in bold.

Parylene Thickness
[µm]

Deposition
Rate/Sublimation

Temperature

Post-Treatment
Parameters

2.15 ± 0.03 Regular/130 ◦C None
4.23 ± 0.13 Regular/130 ◦C None
5.84 ± 0.13 Regular/130 ◦C None
1.82 ± 0.01 Slow/100 ◦C None
2.20 ± 0.16 Regular/130 ◦C Steam sterilization
2.36 ± 0.01 Regular/130 ◦C Electron beam sterilization
1.82 ± 0.04 Regular/130 ◦C Annealing at 200 ◦C
2.19 ± 0.06 Regular/130 ◦C UV treatment

2.2. Post-Treatment and Aging

Furthermore, an application relevant post-processing treatments was applied in order
to investigate, whether they impair the change in Parylene C properties for the short term
or long term. These post-treatments are summarized in Table 1 as well. With respect to
medical applications, steam sterilization with saturated steam of deionized water at 121 ◦C
for 20 min an autoclave (DX-23, Systec GmbH) and electron beam sterilization according
to DIN EN ISO 11137-1:2013-12 and DIN EN ISO 11137-2:2013-09 using a dose of at least
25 kGy were used.

Considering the usage of Parylene as a material for MEMS, annealing in air at 200 ◦C
for 15 min to simulate any thermal budget caused by microfabrication processes, as well as
a treatment in UV light with a wavelength of 254 nm and a power of 40 W for 30 min to
simulate extreme conditions of lithography exposure was performed. The temperature was
chosen, since it is the maximum temperature that Parylene C can endure for the short term
in air [44].

To investigate the impact of aging on the Parylene C barrier properties, the chemical
stability, optical properties, the water vapor transmission rate (see Section 2.3), as well as
UV/VIS and IR spectra (see Section 2.4) were measured directly after fabrication, as well as
after ~600 days, ~1200 days, and ~1800 days of non-accelerated aging. All samples were
stored in a clean room for non-accelerated aging at 22 ◦C and 50 %RH (relative humidity).

2.3. Water Vapor Transmission Rate

For the evaluation of the barrier properties of Parylene, the water vapor transmission
rate (WVTR) was measured in accordance to DIN 53122. This DIN describes a gravimetric
method for the determination of the WVTR using samples, which are schematically depicted
in Figure 3, and which allow the application of a humidity gradient over a membrane
material of interest. These samples were stored in a defined climate with high humidity for
a certain time. The drying agent inside the sample absorbed water that permeated through
the membrane to keep a relative humidity of 0 %RH inside the sample. Hence, the sample
mass increased over time.
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To realize the samples according to Figure 3, 100 g of pre-dried (for >2 h at 135 ◦C
in air) silica gel (Engelhard Process Chemicals GmbH, Germany) was used as a drying
agent (water absorption capacity: 36 g per 100 g silica gel) and filled into the glasses. The
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caps with the free-standing Parylene C membrane were screwed on the glasses filled with
silica gel and sealed with gum paste (P.C. Flex Mask, smartTec GmbH, Germany) and
self-vulcanizing rubber tape (Würth GmbH & Co. KG, Germany). For the measurements
of the WVTR of Parylene C, the samples were placed in a climate chamber (CSR-60/600-5,
CTS Clima Temperatur Systeme GmbH, Germany) with climate B of DIN 53,122 (38 ◦C and
90 %RH). The mass of each sample was determined daily over the storage time ∆t of at
least 14 days.

The WVTR finally was calculated according to Equation (1) from the mass increase
∆m by normalizing it on storage time ∆t, the thickness of the Parylene membrane ∆s, as
well as the membrane area (membrane diameter d). To consider the leakage rate of the
samples, i.e., the absorbed water that permeates through the sealing instead of the Parylene
membrane, the mass increase ∆m of two reference samples with a closed cap (no Parylene
membrane) was measured in parallel and subtracted from the mass increase ∆m in the
other samples.

WVTR =
∆m · ∆s

π
4 · d2 · ∆t

(1)

2.4. Spectroscopy

For the investigation of the impact of aging on the chemical stability of Parylene C
and in particular on its oxidation, the free-standing membranes were measured by Fourier-
transform infrared spectroscopy (FTIR) using a VERTEX 70 FTIR spectrometer (Bruker
Corporation, MA, USA) in the range of 3300 cm−1 to 700 cm−1. The FTIR spectrum of the
background was measured separately and subtracted from the spectra of each sample. All
FTIR measurements were performed in transmission through the Parylene membranes.

Doing so, constructive and destructive interference caused the overlap of the char-
acteristic FTIR absorption bands of the obtained spectra with a sinusoidal shape. The
requirement for constructive interference is given in Equation (2) with the wavelength λ,
the refractive index n, the Parylene thickness s, and the integer i.

λ = 2 · n · s
i

(2)

Table A1 in Appendix B compares the calculated Parylene thicknesses according
to Equation (2), using the assumption of constructive interference at the observed sinus
maxima, with the values given in Table 1. Only small differences prove that the sinusoidal
shape was indeed caused by interferences due to measurement setup in transmission.

In order to remove the sinusoidal shape from the FTIR spectra, the obtained raw data
were post-processed by manual fitting of a sinus function for the signal intensity I [a.u.] in
dependence of the wave number k [cm−1] with the general parameters of a sinus function
A [a.u.], B [cm], C [a.u.], and D [a.u.] according to Equation (3). The fitted sinus function
was subtracted from each spectrum as depicted in Figure A1 in Appendix B.

I(k)= I
(

1
λ

)
= A · sin (B · k + C)+D (3)

The impact of aging processes on the optical properties of Parlyene was investigated
by UV/VIS spectroscopy using an UviLine 9400 (SCHOTT Instruments, Germany) and a
UV-3100PC Spectrophotometer (VWR International GmbH, Germany), respectively. The
measured wavelength range was 275 nm to 800 nm. The measurements were performed in
transmission again. Hence, the overlap of the obtained spectrum with a sinusoidal shape
caused by constructive and destructive interferences was observed again. The obtained
sinusoidal shape shows an irregular period and, thus, was impossible to fit by a regular
sinus function. Therefore, the obtained spectra were flattened by fitting the maxima, i.e.,
the points of constructive interference only, as it is depicted in Figure A2 in Appendix B.
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2.5. Sample Preparation for the Investigation of the Mechanical Properties of Parylene C

For the investigation of the mechanical properties of Parylene C, bare silicon chips
obtained from 6” wafers were coated accordingly with the Gorham process described above,
using a sublimation temperature of 130 ◦C. The Young’s modulus as well as the indentation
hardness were measured before and after the end of the non-accelerated aging (~1800 days,
respectively) using nano-indentation. Additionally, these samples are compared with
accelerated aged samples. Doing so, the Parylene samples were annealed in air at 87 ◦C
in an oven (Memmert GmbH & Co. KG, Germany) for 97 h, 291 h, and 472 h to realize
samples that are equivalent to non-accelerated aging for 1, 3, and 5 years as calculated by
the “10-degree rule”. An annealing temperature of 87 ◦C was chosen since this temperature
is the maximum temperature found in the literature about thermally accelerated polymer
aging [6,32,33].

In order to investigate the impact of a thermal budget on Parylene C in comparison
to the impact of aging, two extra samples were added, which were treated using a typical
microfabrication thermal process. An annealing process at 115 ◦C for 100 h in air was
chosen to represent the temperature of a typical sinter process, e.g., for the sintering of
aerosol jet printed silver inks using an extended time to maximize the potentially observed
impact [45,46]. In order to test whether a limit in similarity to a saturation can be observed
for the impact of aging or annealing on the mechanical properties of Parylene C, the
non-accelerated aged sample was additionally annealed applying the parameters of the
sinter process mentioned above. Table 2 summarizes all samples on which the mechanical
properties were measured.

Table 2. Overview of the samples used for investigation of the aging impact on the mechanical properties.

Sample Parameters and Description
Initial Measurement after deposition

5 years non-accelerated aging Storage in clean room at 22 ◦C for ~1800 days
1 year accelerated aging Storage in oven at 87 ◦C for 97 h in air
3 years accelerated aging Storage in oven at 87 ◦C for 291 h in air
5 years accelerated aging Storage in oven at 87 ◦C for 472 h in air

Sintered Sintering at 115 ◦C for 100 h in air

5 years non-accelerated aging and sintered Storage in clean room at 22 ◦C for ~1800 days and
subsequent sintering at 115 ◦C for 100 h in air

2.6. Mechanical Characterisation by Nano-Indentation

The Young’s modulus E and the indentation hardness H were investigated by con-
tinuous stiffness measurement (CSM) for thin films via nano-indentation. The method
is described in detail elsewhere [47] and briefly summarized in Appendix C. Note that
the obtained results of the indentation hardness cannot be converted into the established
mechanical hardness methods, such as Vickers hardness or Brinell hardness. However, they
are still representing the resistance of the Parylene against localized plastic deformation.

In preparation of the measurements, the Parylene C coated chips of about 2 × 2 cm2

size were glued on a glass slide using super glue. For the nano-indentation measurements
a G200 nano-indenter (Agilent Technologies Inc., CA, USA) with an XP load head and a
Berkovich tip (calibrated on fused silica for 2000 nm penetration depth) was used. The
applied load cycle on the tip for each measurement is depicted in Figure 4 and consists of
five parts: (I) increasing the load, (II) holding the maximum force for 10 s, (III) decreasing
the load until 10% of maximum force, (IV) holding 10% of the maximum force for 75 s
(drift correction), and (V) decreasing the load until zero. During the measurement, a depth
limit of 1500 nm, a strain rate of 0.05 s−1, and a peak hold time of 10 s were applied. The
Poisson’s ratios of Parylene C and the silicon substrate were assumed to be 0.4 [48] and
0.3 [49], respectively. The Young’s modulus of the silicon substrate was 170 GPa [50], which
was also verified by indentation on the silicon substrate only. Thin film and drift corrections
were applied as described in Appendix C. For averaging, 25 indents were performed for
each sample and a range of 9.5–10.5% of the film thickness was considered for analysis. For
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microscopic imaging, a regular light microscope Eclipse L200 (Nikon Corporation, Japan)
was used.
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Figure 4. Applied load cycle for the nano-indentation measurements consisting of five parts:
(I) increasing the load, (II) holding the maximum force, (III) decreasing the load until 10% of maximum
force, (IV) holding 10% of the maximum force for 75 s, and (V) decreasing the load until zero.

3. Results
3.1. Impacts of Aging on the Barrier Properties

For all WVTR measurements, the increase in the sample masses over time are depicted
in Figure A1 in Appendix D and show a linear dependency and absorbed water masses up
to 7 g. Hence, it can be concluded that the limit of the water absorption capacity of the silica
gel is not reached, and the complete measurement period can be used for the calculation of
the WVTR. The results of the calculated WVTR are depicted in Figure 5 for all samples of
Table 1 and for the different durations of non-accelerated aging.
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For all samples, the WVTR is in or very close to the typical range of 0.06 g·mm
m2·d to

0.08 g·mm
m2·d given in the literature [44,51], whereas in particular for the used test climate of

38 ◦C and 90 %RH, the higher value is reported [51]. Since the WVTR is normalized on
the thickness of the tested membrane according to Equation (1), the three samples that are
fabricated by a regular deposition process and without any post-treatment can be used
to estimate an accuracy of the determined WVTR of >0.03 g·mm

m2·d . The slight decrease in
the WVTR over aging time suggested by the regularly deposited samples with Parylene
thicknesses >3 µm and without any post-treatment would be in contrast to the thinner
sample of 2.15 µm thickness. For Parylene C, which is fabricated by a slower deposition
process, a decreased WVTR could be slightly indicated. However, this improvement of the
barrier properties would be less than the accuracy of the test method.

Comparing the measurement results after fabrication, it can be concluded that none of
the applied post-treatments has an impact on the WVTR of Parylene C. Furthermore, the
results depicted in Figure 5 show that no impact of non-accelerated aging on the WVTR
of Parylene C can be observed. The deviations in the WVTR over time are less than the
accuracy of the method, except of the annealed sample.

For the annealed sample, a high increase in the WVTR of >65% between ~1200 days and
~1800 days of aging is observed. However, it has to be noted that the Parylene membrane
of these samples were in high mechanical tension, probably due to the reorganization
and increased crystallinity caused by the annealing and reported in the literature [52].
During storage in the climate chamber for the measurement after ~1800 days, the Parylene
membrane of one sample even ruptured. Hence, it is very likely that the second sample,
depicted in Figure 5, also shows cracks or defects on a microscale, which would increase
the WVTR. Considering that the thinnest untreated Parylene membrane has a similar
membrane thickness compared to the annealed sample but does not show an increase in the
WVTR over time in the same dimension, it can be concluded that the effect is particularly
caused by the annealing. If defects on the microscale would be caused by annealing, this
would be a limitation to be considered when performing accelerated aging.

In summary, the barrier properties of Parylene C are not affected by non-accelerated
aging. Furthermore, this result is independent of post-treatment, such as sterilization or
UV-treatment. Even though annealing as post-treatment does not seem to affect either
the initial barrier properties or their non-accelerated aging behavior, a more detailed
investigation is required to determine how the barrier properties are related to defects
induced by annealing. Additionally, a reduced deposition rate of Parylene C does not cause
any improvement with respect to the WVTR or the aging behavior of Parylene C.

3.2. Impacts of Aging on Chemical Stability

The measured FTIR spectra are depicted in Figure 6 and show the typical bands
according to the literature [32,42,51,53–55]. The detailed assignment of the wave numbers
to the vibrational modes are summarized in Table A1 in Appendix E.

Wave numbers above 3000 cm−1 (3020 cm−1) are assigned to aromatic, whereas
wave numbers below 3000 cm−1 (2865 cm−1, 2928 cm−1) are assigned to aliphatic C−H
stretching vibrations [56,57]. However, since the wave number of 3020 cm−1 is very close
to the 3000 cm−1 limit, other scientific literature assigns it to C−H aliphatic stretching as
well [42,53]. Wave numbers of 1897 cm−1, 1745 cm−1, 949 cm−1, 906 cm−1, and 878 cm−1

are assigned with out-of-plane wagging of C−H bonds [42,53,56]. The peak at 1700 cm−1

can be observed due to oxidation of Parylene C and represents the formation of carbonyl
bonds [32,42,53]. C=C stretching vibrations in the aromatic ring are assigned to 1558 cm−1

and 1610 cm−1, whereas semicircle stretching is assigned to 1341 cm−1, 1404 cm−1, and
1495 cm−1, respectively [42,53]. Several absorptions bands are assigned to the p-CH2 groups
on the aromatic ring: 1077 cm−1, 1110 cm−1, 1158 cm−1, 1210 cm−1, and 1267 cm−1 are caused
by wagging [42,53], whereas 1452 cm−1 can be assigned either to CH2 deformation [42,53]
or to the bonding of this group to the ring [56]. C−C aromatic and aliphatic stretching
vibrations are assigned to 1493 cm−1 and 826 cm−1, respectively [57]. However, the
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band at 826 cm−1 can also be assigned to two neighboring hydrogen atoms bonded to the
ring [56]. Finally, C−H groups can be observed at 826 cm−1 with out-of-plane wagging or at
1004 cm−1 and 1050 cm−1 with in-plane bending [42,53]. Additionally, the absorption band at
1050 cm−1 is characteristic for the chlorine bonded to the aromatic ring in Parylene C [56].
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In conclusion of the spectra given in Figure 6, no difference is observed for all samples
without post-treatment and, hence, no impact of non-accelerated aging up to ~1800 days.
This is independent of the Parylene thickness and whether the Parylene is deposited by a
regular or a slow process (130 ◦C and 100 ◦C sublimation temperature, respectively). These
samples show an increase in the peak intensity with increasing thickness of the Parylene
membrane due to more material transmitted by the IR laser beam.

Furthermore, neither the two tested sterilization methods nor the annealing post-
treatment alter the chemical composition of Parylene C, nor do they cause any negative
long-term impact on the aging behavior of Parylene C. However, for a sample that was post-
treated by UV radiation, a small oxidation peak is observed directly after the fabrication
of the sample. Additionally, this oxidation peak slightly increases during non-accelerated
aging. Hence, the chemical composition of Parylene C is changed in the short term and
with a negative long-term impact due to UV-induced oxidation. This impact is important
for the integration of Parylene C into MEMS considering UV exposure due to lithography.
Based on this, lithography under inert conditions could be advantageous. In conclusion,
besides the negative impact of UV radiation on its long-term stability, Parylene C shows
an excellent stability of its chemical composition against the tested post-treatments and
against non-accelerated aging over at least around five years.

3.3. Impacts of Aging on the Optical Properties

The obtained and post-processed UV-VIS spectra are depicted in Figure 7. The spectra
of the samples with thickness variation only are not considered, since no deviation from
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the spectrum measured at the sample, which was deposited regularly and received no
post-treatment, is expected. Due to the low dose during the measurements, it is unlikely
that the samples will be altered by the UV-VIS measurement itself. Furthermore, and in
case an alteration takes place during the measurements, due to the small spot size of the
beam used in comparison with the large membrane, it is unlikely that during the different
measurements performed on one sample at different times that the same sample position is
measured twice.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 7. UV-VIS spectra for the different samples after correction of the sinusoidal overlap. The 
solid lines represent the spectra after fabrication, whereas the dashed lines represent the spectra 
after a non-accelerated aging time of ~1800 days. 

Note that due to the measurement setup, the samples are not perpendicular to the 
beam path of the spectrometer. Hence, the fraction of reflection and absorption is 
increased due to a longer penetration path of the beam. In particular, since the angle 
between the sample and the beam path is slightly different for each measurement, a direct 
comparison of the absolute transmission percentage is not possible. This is also indicated 
by the fact that some samples show initially a higher transmission compared to their 
spectra after non-accelerated aging, whereas for other samples, the opposite tendency is 
observed. Nevertheless, all samples have a high transmission of ≥80% over the whole 
visible wavelength range, most even ≥90%. This is independent of the post-treatment and 
also of aging. 

Figure 7. UV-VIS spectra for the different samples after correction of the sinusoidal overlap. The
solid lines represent the spectra after fabrication, whereas the dashed lines represent the spectra after
a non-accelerated aging time of ~1800 days.



Polymers 2022, 14, 5246 11 of 21

Note that due to the measurement setup, the samples are not perpendicular to the beam
path of the spectrometer. Hence, the fraction of reflection and absorption is increased due to
a longer penetration path of the beam. In particular, since the angle between the sample and
the beam path is slightly different for each measurement, a direct comparison of the absolute
transmission percentage is not possible. This is also indicated by the fact that some samples
show initially a higher transmission compared to their spectra after non-accelerated aging,
whereas for other samples, the opposite tendency is observed. Nevertheless, all samples
have a high transmission of ≥80% over the whole visible wavelength range, most even
≥90%. This is independent of the post-treatment and also of aging.

However, a direct comparison of the cutoff in the UV range is possible. This cutoff is in
the range of 285 nm to 290 nm (50% absorption) for all samples except the UV post-treated
Parylene C. Hence, neither sterilization treatments nor annealing or a slowed Parylene C
deposition have any impact on the spectra in the visible wavelength range. In contrast
to this, for a UV-treatment, a shift of the absorption bandto values between 355 nm and
360 nm (50% absorption) is observed, even though the samples appear optically to be as
transparent as the other samples. This impact of UV treatments has to be considered when
machining Parylene C with UV exposing processes, such as lithography. Additionally,
this effect could be intentionally used for processes, such as selective laser ablation, since
the wavelength of the used laser should be below the absorption band for the ablation of
Parylene using a UV laser, e.g., with a wavelength of 266 nm. However, these lasers are
expensive and have a short lifetime only due to high deterioration. Shifting the absorption
band to values between 355 nm and 360 nm by a UV post-treatment could enable the usage
of a laser with a higher wavelength, e.g., 355 nm. Still, it needs to be investigated in detail,
whether the Parylene C is just altered on its surface only or in its bulk. The additional
oxidation peak of the UV-treated Parylene C in the FTIR spectrum depicted in Figure 6
could be an indication for an alteration of the Parylene C bulk properties since an alteration
that would be limited to the surface properties would cause an almost negligible oxidation
peak in the FTIR spectrum. Furthermore, the tunability of the shift of the absorption band
by varying the UV intensity or exposing duration of the UV post-treatment needs to be the
subject of a more detailed investigation.

Finally, for all samples, independent of their post-treatments, no impact of non-
accelerated aging over ~1800 days on the optical properties is observed.

3.4. Impacts of Aging on the Mechanical Properties

Figure 8 summarizes the results of the nano-indentation measurements. The obtained
Young’s modulus of 3.56 GPa of Parylene C as deposited (initial) shows a deviation of
~10% to the value of 3.20 GPa given in the literature [44]. Hence, and in consideration that
the deviation of the Young’s modulus measured by nano-indentation and tensile test can
be up to 20% due to measuring on thin films and the influence of the rigid substrate, the
obtained values are in good accordance with the literature. Even though the values for the
indentation hardness cannot be compared with other methods for mechanical hardness,
such as Vickers or Brinell hardness, the low values for both, the indentation hardness, and
the Young’s modulus indicate the softness of Parylene.

The typical bulges, called pile-ups, depicted in Figure 9 that can be observed after
nano-indentation are an additional feature for soft materials. This softness of Parylene C
is advantageous when using the material as a substrate for flexible electronics and when
integrating it into MEMS for the realization of highly sensitive sensors and actuators. Note
that the pile-ups are not considered quantitatively for the evaluation.

Five years of non-accelerated aging increase the Young’s modulus significantly by 10%
to a value of 3.93 GPa; however, the indentation hardness is not altered. Compared to this,
five years of accelerated aging cause a similar increase in the Young’s modulus to 4.04 GPa;
however, in contrast to non-accelerated aging, the indentation hardness is increased as well.
This is in accordance with the altering of the mechanical properties at elevated temperatures
described in the literature [53]. Additionally, it is interesting to note that also the samples
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of free-standing Parylene membranes used for the WVTR measurements showed a more
stressed membrane after annealing at 200 ◦C.
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However, it is still noteworthy that within our experiments the material alteration can
be observed for annealing temperatures lower than the temperature for long-term exposure
of 125 ◦C given in the literature [44]. The increase in the indentation hardness could be due
to recrystallization processes caused by increased temperatures and leading to a higher
share of crystalline material in the regularly partly crystalline polymer [52]. In contrast
to that, an impact on the unit cell of the crystalline domains is unlikely. For the different
durations of accelerated aging, neither for the Young’s modulus nor for the indentation
hardness a time dependency is observed.
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In comparison with the impact of aging, for annealing a slightly higher increase in the
Young’s modulus and a significantly increase in the indentation hardness are observed. This
effect has to be considered when processing Parylene C by microtechnologies. Interestingly,
the sample that is aged and sintered subsequently shows no further increase in the Young’s
modulus and a lower indentation hardness compared with the sample that is sintered after
deposition. This could suggest either a kind of saturation of the Young’s modulus or a
reduced impact of elevated temperatures on (non-accelerated) aged Parylene C.

In summary, the nano-indentation measurements prove that aging has only a small
impact on the mechanical properties of Parylene C. Furthermore, for the chosen parameters,
the model of accelerated aging is not in accordance with non-accelerated aging. In contrast
to the indentation hardness that depends only on the impact of temperature, the Young’s
modulus additionally depends on the age of the Parylene C. Furthermore, the method
of accelerated aging by increased temperature is only suitable for testing the mechanical
properties of Parylene C within proper limits and not for all mechanical quantities.

3.5. Summary

Table 3 summarizes the investigated properties of Parylene C with respect to their de-
pendency on post-treatments and/or non-accelerated aging. Considering that accelerated
aging is induced by heat treatment, the former was considered as a “post-treatment” for
the classifications within this table.

Table 3. Overview of the samples used for investigation of the aging impact on the mechanical properties.

Post-Treatment
dependent independent

Non-accelerated aging

dependent Young’s modulus

independent

Optical properties when UV
post-treated

Chemical composition when UV
post-treated

Hardness

Optical properties (except for UV
post-treatment)

Chemical composition (except for
UV post-treatment)
Barrier properties

Table 3 suggests the classification of the investigated properties into the three following
groups considering their dependency on post-treatments and/or non-accelerated aging:

1. The property neither depends on a post-treatment nor on non-accelerated aging.
2. The property depends on the post-treatment but not on non-accelerated aging.
3. The property depends on different post-treatments and on non-accelerated aging.

4. Discussion

The results produced in this study show that the non-accelerated aging of Parylene
C does not cause any changes with respect to barrier properties, optical properties, and
chemical composition for a time frame of five years. Hence, this study supports a vast
majority of the scientific literature, which reports the usage of Parylene for encapsulation,
e.g., of medical implants, for its usage in MEMS, electronic components, or sensors as
well as a material for flexible electronics. Particularly, the results prove Parylene to be a
highly reliable material for these applications. At the same time, the results of this study
confirm the compatibility of Parylene C with most of the standard microtechnologies, even
though particular attention has to be drawn on all processes that include UV and thermal
annealing, respectively. The results suggest that UV induces photo-oxidation of Parylene C
in the bulk material, which changes particularly the optical properties. This impact has to
be considered for outdoor applications but can be advantageous for tailoring the absorption
of Parylene C as well.

Within this study, the FTIR spectroscopy was successfully used in transmission on
ultra-thin, free-standing films, and a related post-processing data were established, which
was beyond standard procedures.
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In contrast to the barrier properties, optical properties and chemical stability, the
mechanical properties of Parylene C will be altered by aging, i.e., the Young’s modulus
increases. These alterations caused by aging are not critical for most applications of
Parylene. However, they are still noteworthy and should be in a particular focus when
using Parylene as a free-standing material for MEMS applications. It remains to be seen that
the mechanical alterations can be observed even at temperatures lower than the temperature
limit given for long-term stability in the datasheet for Parylene C [44].

Furthermore, differences between non-accelerated aging and accelerated aging with
respect to its impact on different mechanical properties are observed. Both aging methods
increase the Young’s modulus; however, the hardness is only increased by accelerated aging.
The results indicate that the observed increase in the hardness is caused by the thermal
budget that is connected to the accelerated aging and the required activation energy given
in the Arrhenius equation (Equation (A1)), respectively. Moreover, the results indicate a
dependency of the hardness increases on the chosen temperature and also the point in
time of the thermal treatment. Previous studies determined recrystallization processes
in Parylene to be caused by thermal annealing. It can be concluded, in contrast to non-
acclerated aging, that accelerated aging will enforce recrystallization processes due to its
nature of being a thermal process. Thus, the use of accelerated aging has to be carefully
evaluated with respect to avoid misleading conclusions to the reality and non-accelerated
aging, respectively. Similar effects might be noticeable also for other polymers.

Based on previous studies and the new results obtained within this work, for the aging
mechanism in Parylene C, the following assumptions can be derived:

• The hardness depends significantly on the annealing temperature, which suggests
an increasing fraction of crystalline material and a reduced fraction of amorphous
material with increasing temperature and/or different sizes of the crystallites.

• At a given temperature, a saturation of the increase in hardness can be observed over
time. Hence, it can be assumed that processes changing the microstructure of Parylene
C are time-limited and endure until a certain fraction of crystalline domains and/or a
certain crystallite size is reached.

• Considering that the increase in the hardness observed for a non-accelerated aged
sample and a non-aged sample is significantly different after thermal annealing, it
can be assumed that the processes changing the microstructure of Parylene C are
irreversible, and the final state in the material depends on the thermal history of the
material after deposition; e.g., an immediate thermal annealing after deposition could
cause a larger number of smaller crystallites leading to higher hardness, compared to a
sample that was aged in a non-accelerated way and annealed later featuring a smaller
number of larger crystallites and, hence, a lower hardness (assuming that saturation
of crystallinity was reached each).

The validation or refutation of these assumptions as well as a more detailed investiga-
tion of the aging mechanism of Parylene C has to be the focus of future studies.

5. Conclusions

The presented study shows that Parylene C is a highly stable material without any
impact of non-accelerated aging over ~1800 days on its barrier properties, chemical bonds,
and optical properties. Different deposition conditions, Parylene C thicknesses, and various
post-treatments, such as annealing, UV treatment, as well as sterilization by steam or
electron beam, show only minor impact on the freshly prepared Parylene C and no impact
on its aging process. Comparing the various post-treatments, however, an impact of the UV
post-treatment on the initial Parylene C structure before aging is observed: The Parylene C
is oxidized and the cutoff in the UV-VIS spectrum is shifted to higher wavelengths. This
effect has to be considered or can be intentionally used when processing Parylene C with
processes involving UV light. The impact of non-accelerated aging on the mechanical
properties is comparably small, with an increase in the Young’s modulus by ~10% and
no change in the hardness. However, for both mechanical quantities an influence of
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the temperature is observed. Hence, the usage of accelerated aging methods in order
to investigate the reliability of Parylene C might cause misleading results and has to be
carefully evaluated.

In summary, the experiments show that Parylene C is excellently suitable for long-term
usage in applications, such as MEMS. Furthermore, it is compatible with the conditions of
most microtechnologies, even though UV-based processes, such as lithography, can cause
small material changes.
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Appendix A

The accelerated aging can be converted into equivalent non-accelerated aging at
ambient or body temperature using the Arrhenius reaction function given in Equation (A1)
with the reaction rate k, the activation energy Ea, the gas constant R, the temperature T, and
the constant A [6].

k = A · e − Ea
RT (A1)

For accelerated aging, the accelerating factor F can be obtained by dividing two reac-
tion rates k1 and k2 calculated for two different temperatures T1 and T2 using Equation (A1).
For polymers, a “10-degree rule” according to Equation (A2) is commonly used to ap-
proximate the Arrhenius relationship, assuming a first-order or pseudo-first order aging
process [6,36,37].

F =
k1

k2
= 2

T1− T2
10 (A2)

The “10-degree rule” according to Equation (A2) states that for every temperature
increase in 10 K the reaction and aging rate will double [6,36,37].
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Appendix B

Table A1. Comparison of Parylene thicknesses calculated by assuming constructive interference
according to Equation (2) in the measured FTIR spectra and the Parylene thicknesses measured
by profilometry and reflectometry, respectively. For the calculation, a refractive index of n = 1.56
was used.

Sample Description Calculated Parylene Thickness
Parylene Thickness

by Profilome-
try/Reflectormetry

[µm]

Deposition Post-
Treatment

Wave
Number at
Maximum

[cm−1]

Wavelength
[µm] Integer i

Parylene
Thickness

[µm]

Average
Parylene

Thickness
[µm]

2.15 ± 0.03 Regular None
3732 2.68 2 1.72

1.77 ± 0.071768 5.66 1 1.81

4.23 ± 0.13 Regular None
2490 4.02 3 3.86

3.91 ± 0.081657 6.04 2 3.87
799 12.52 1 4.01

5.84 ± 0.13 Regular None
2027 4.93 4 6.32

6.33 ± 0.041527 6.55 3 6.30
1005 9.95 2 6.38

1.82 ± 0.01 Slow None
3364 2.97 2 1.91

1.69 ± 0.312177 4.59 1 1.47

2.20 ± 0.16 Regular Steam
Sterilization

2966 3.37 2 2.16
2.15 ± 0.011495 6.69 1 2.14

2.36 ± 0.01 Regular ElectronBeam
Sterilization

3929 2.55 3 2.45
2.62 ± 0.182449 4.08 2 2.62

1145 8.73 1 2.80

1.82 ± 0.04 Regular Annealing 2777 3.60 2 2.31
2.27 ± 0.051430 6.99 1 2.24

2.19 ± 0.06 Regular UV treatment
2839 3.52 2 2.26

2.19 ± 0.091508 6.63 1 2.13
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Appendix C

Nano-indentation in general monitors the displacement of a tip into the sample surface
in dependency on the load. From the results, a contact depth is calculated considering
the geometry and stiffness of the contact. The latter is calculated from the derivation of
the force and depth at maximum depth at the unloading segment. The CSM method in
particular superimposes a periodic oscillation with a frequency of 45 Hz and an amplitude
of 2 nm with the actual indentation process. This allows a more precise measurement of
the stiffness due to multiple unloading curves across the indentation curve. Hence, a more
reliable value for the indentation hardness can be achieved. As depicted in Figure A1,
the thin film method takes the response of the silicon substrate into account to correct the
calculated values for Young’s modulus and hardness.
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Appendix E

Table A1. Assignment of the FTIR vibrational modes.

Wave Number k
[cm−1] Mode Reference

826
H−C−H two neighboring

hydrogen atoms
bonded to the ring

[56]

826 C−C aliphatic stretching [57]
826 C−H out-of-plane wagging [42,53]

878, 906, 949 C−H single hydrogen to the
ring, out-of-plane wagging [42,53,56]

1004, 1050 C−H in-plane bending [42,53]
1050 C−Cl bonding to the ring [56]

1077, 1110, 1158, 1210, 1267 CH2 wagging [42,53]
1341, 1404, 1495 C=C semicircle stretching [42,53]

1452 CH2 on the benzene ring [56]
1452 CH2 deformation [42,53]
1493 C−C aromatic stretching [57]

1558, 1610 C=C ring stretching [42,53]

1700 Parylene Oxidation
(C=O stretching) [32,42,53]

1745, 1897
Summation bands due to

out-of-plane
C−H wagging modes

[42,53]

2865, 2928 C−H aliphatic stretching [42,53,56,57]
3020 C−H aliphatic stretching [42,53]
3020 C−H aromatic stretching [56,57]
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