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Abstract: Taking advantage of the large thermo-optical coefficient of polymer materials, a hybrid-
integrated thermo-optic switch was designed and simulated. It is also compatible with the existing
silica-based planar light-wave circuit (PLC) platform. To further reduce the power consumption,
we introduced the air trench structure and optimized the structural parameters of the heating
region. This scheme is beneficial to solving the problem of the large driving power of silica-based
thermo-optic switches at this stage. Compared with the switching power of all-silica devices, the
power consumption can be reduced from 116.11 mW (TE) and 114.86 mW (TM) to 5.49 mW (TE)
and 5.96 mW (TM), which is close to the driving power of the reported switches adopting polymer
material as the core. For the TE mode, the switch’s rise and fall times were 121 µs and 329 µs. For the
TM mode, the switch times were simulated to be 118 µs (rise) and 329 µs (fall). This device can be
applied to hybrid integration fields such as array switches and reconfigurable add/drop multiplexing
(ROADM) technology.

Keywords: thermo-optic switch; hybrid-integrated; polymer cladding; air trench

1. Introduction

The optical switch is a crucial element of optical computing and optical networks as
well as an essential component of the all-solid-state LIDARs. At this stage, the scale of
the switching array is now limited by loss, power consumption, and other critical indexes.
Currently, optical switches are classified as electro-optic switches or thermo-optic switches
based on their operating principles. Electro-optic switches have a rapid response time,
but free carriers cause additional light absorption and there is 1–2 dB loss per switch. For
this reason, electro-optic switches are not conducive to large-scale array implementation.
The thermo-optic switch is another large-scale array solution. On the material side, in-
organic and polymer materials are the main materials for thermo-optical switches. The
miniaturization requirements can be met by using silicon with a high refractive index [1–3].
However, devices that are too small will introduce coupling loss problems during the
coupling process and increase process costs. Currently, programs such as photonic wire
bonding (PWB) can be used to tackle the loss problem. Due to its low coupling loss with
optical fiber (the refractive index matches the fiber), excellent stability, low transmission
loss, and low cost for the lithography process, silica has emerged as the main material for
current commercial passive components of optical communication. However, because of
the low thermal-optic coefficient of silica, the driving power consumption of silica-based
thermo-optical switches is a bottleneck in the field of large-scale integrated devices [4,5].
Mikko Harjanne et al. reported a 2 × 2 inorganic thermo-optical switch with a response
time of 700 ns and a driving power consumption of 260 mW [4]. Since the thermo-optical
coefficient of polymer is typically ten times greater than that of silica, all-polymer switches
consume less driving power than silica-based switches [6–9]. In 2011, Al-Hetar et al. pro-
posed an all-polymer MMI-MZI thermo-optic switch with a driving power consumption
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of 1.85 mW and a switching time of 0.7 ms [10]. In 2014, Xibin Wang et al. fabricated an
all-polymer thermo-optic switch [8]. The switching power was 5.3 mW at 650 nm and the
switch on–off time was more than 0.9 ms. The all-polymer thermo-optic switch has the
advantage of reducing power consumption, but the response time is long due to the small
thermal conductivity of the polymer.

Combining the advantages and drawbacks of the above two types of switches, a kind
of thermo-optic switch with an organic/inorganic hybrid structure has attracted a great deal
of attention in recent years. N. Keil et al. reported a hybrid polymer/silica thermo-optic
vertical coupler switch with a driving power consumption of 30 mW [11]. In 2012, Yunfei
Yan et al. demonstrated a 2 × 2 thermo-optic switch based on the MMI-MZI structure,
and the device required 6.2 mW per π shift power with a response time of 100 µs [12]. In
2014, Lei Liang et al. fabricated a polymer/silica 2 × 2 directional coupler Mach–Zehnder
interferometer (DC-MZI) thermo-optic switch with a switching power of 7.2 mW and
a response time of ~100 µs [13]. Hybrid structured switches can take advantage of the
complementary benefits of both materials, but at present, more hybrid structured switches
use silica as the lower cladding and other different polymer materials as the core and upper
cladding. It is possible to reduce the power consumption while increasing the response
speed. However, polymer-based thermo-optic switches still have problems with loss in
commercial applications due to the poor stability of polymers. Therefore, polymer-based
switches are not only incompatible with commercially available devices but also cannot
replace silica switches in commercial integrated devices at this stage.

To further reduce the power consumption of the device, a thermo-optic switch with
an air trench has been proposed. In 2015, Yufen Liu et al. demonstrated a polymer/silica
hybrid thermo-optical switch with an air trench structure, which can significantly improve
the heating efficiency by nearly three times [14]. On the other hand, the air trench structure
raises the cost of processes such as lithography, masking, and etching.

Moreover, to improve the performance of the thermo-optic switch, polymeric thermo-
optic switches integrated with graphene and other materials have been studied [15–17].
In 2019, Xibin Wang et al. buried graphene electrodes in a polymer waveguide, reducing
the switch power consumption roughly four-fold with rise and fall times of 1.58 ms and
1.57 ms [18]. In 2020, Yue Sun et al. reported a thermo-optic switch with a graphene-assisted
heating layer, which consumed only 0.39 mW, with a rise time of 30 µs and a fall time of
92.4 µs [19]. Device performance can be enhanced by organic–inorganic composite materi-
als such as graphene-doped polymer materials. However, organic–inorganic systems have
large-scale film-forming difficulties, and the application of two-dimensional materials may
cause additional loss, so currently these materials have not been employed commercially
to solve the problem of large-scale device integration.

In recent years, nanoimprint lithography has been widely used in the fields of aug-
mented reality (AR) and virtual reality (VR), which is a low-cost and high-precision pro-
cessing scheme for polymer devices [20–22]. Polymer upper cladding and the air trench
structure can be fabricated at a lower cost on the silica core by nanoimprinting. Therefore,
in this study, a low-power thermo-optic silica-based switch with polymer upper cladding
and an air trench structure was proposed. This method is also compatible with the man-
ufacturing of silica-based PLC chips. Moreover, the design of the heating arm allowed
more distribution of optical power in the polymer layer, improving the heating efficiency.
Compared with the power of an all-silica optical switch, the power consumption of this
device was reduced by about 95%. Compared with the polymer-based device, this device
is more suitable for practical applications due to the low loss and stability of the silica core,
which is also compatible with the current commercial platforms.

2. Design and Optimization
2.1. Device Structure Design

In terms of structure, the switch designed in this paper is divided into two 3 dB
directional couplers, a phase turning area, two taper waveguides, air trenches, and a
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heating electrode, as shown in Figure 1a. A and D are the offset and the length of the bend
waveguide, B and C are the waveguide spacing and the length of the straight waveguide
in the directional coupling area, and E and F are the taper waveguide and the length of
the heating area. The cross-sectional view of the phase turning area is shown in Figure 1b.
The thickness of the upper cladding was d = 2 µm, which is thick enough to minimize the
optical loss caused by the metal electrode. The height of the core was e = 3 µm and the
width of the non-heating arm was f = 3 µm. In the heating region, the width of the core
layer was c = 1 µm. The width of the air trench was a = 6 µm, and b = 2.5 µm was the
distance between the air trench boundary and the core. The width of the electrode was set
to be g = 6 µm. We settled on a heating zone (electrode) length of 5000 µm. The length of
the non-heating zone can be used to change the operational state of the switch when the
switch is not heated. For the finalized device structure, modulation arm lengths of 5020 µm
and 5030 µm were selected to fulfill the switching states for the TE and TM modes when
unheated. In terms of material, we selected a doped silica core layer (n1 = 1.48) and silica as
the substrate (n2 = 1.44). To ensure a greater optical field distribution in the polymer upper
cladding, we set the refractive index of the polymer cladding as n3= 1.45, which is slightly
higher than the refractive index of the substrate.
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Figure 1. The structure of the silica/polymer hybrid thermo-optic switch in (a) a three-dimensional
direction and (b) a cross-sectional direction, including heating arm, non-heating arm, air trenches,
and electrode. A, B, C, D, E, and F are the offset of the bend waveguide, the waveguide spacing in the
directional coupling area, the length of the straight waveguide, the length of the bend waveguide,
the length of the taper waveguide, and the length of the electrode.

2.2. Optimization of Cross-Sectional Optical Field

We calculated the relationship between the effective refractive index of different modes
and the thickness of the silica waveguide core. As shown in Figure 2, 3 × 3 µm is the
maximum size to ensure single-mode transmission. Thus, the dimension of the core can be
set to 2 × 2 µm or 3 × 3 µm.

According to the principle of thermo-optic switching, one side of the arms is heated to
change the effective mode refractive index of the waveguide, resulting in a shift in phase and
enabling the device to achieve the switching function. After determining the length of the
heating region, the effective mode refractive index difference which is required to achieve a
certain phase difference between the two arms can be calculated by Equation (1) [23]:

∆ϕ =
2π

λ
∆NL, (1)

where ∆ϕ is the waveguide phase change, λ is the optical wavelength, ∆N is the variation
of the phase difference between the two arms due to heating, and L is the length of the
heating region. Due to the higher thermal-optic coefficient of the polymer, heating to the
same temperature can lead to a greater change in the refractive index. Therefore, to spread
more optical power throughout the polymer, the width of the core in the heating region
was reduced. At the same time, the dimension of the core for the other arm remained
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3 × 3 µm, forming an asymmetric structure. For this sort of asymmetric structure, the
initial phase can be adjusted by changing the length of the non-heating region. Accordingly,
we maintained the same length of the electrode (5000 µm) and analyzed the relationship
between the width of the core and the required temperature for switching. The effective
mode refractive index can be easily modified when the width of the core reduces and the
horizontal limit of the optical field decreases, increasing the optical power percentage of
the polymer. Figure 3 illustrates that the smaller the core width, the lower the minimum
temperature to realize the switching function, whether the electrode width is 3 or 6 µm.
Due to the machining accuracy of lithography, the width of the core in the heating region
was set to 1 µm. The optical power percentage was 67.06% when the width-to-height ratio
of the core in the heating area was 1:3 and 61.34% when it was 1:2. Therefore, to achieve
a higher optical power percentage of the polymer, the height of the waveguide core was
set as 3 µm. The optical field distributions were simulated, as shown in Figure 4a,b. In the
non-heating area, to achieve polarization insensitivity, the width of the core was chosen
to be equal to its height. Consequently, the core width and height of the waveguide in
the non-heating area were both chosen as 3 µm. The optical field distribution is shown in
Figure 5, and the proportion of optical power in the polymer was 38.63%.
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2.3. Optimization of Cross-Sectional Thermal Field

To reduce the switching power, the air trench structure was introduced. When we
set the thermal conductivity of the polymer to a general value (0.19 W/mK), the cross-
sectional thermal distribution of the device without an air trench was as shown in Figure 6a.
Figure 6b shows the result with the air trench structure. The electrode was also heated by
10 K. Since the thermal conductivity of air (about 0.023 W/mK) is much lower than that of
polymer, the air trench can diminish the effective width of heat diffusion, preventing heat
loss and reducing driving power.
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an air trench.

The width and location of the air trench need to be optimized. The air trench can
improve the heating efficiency, but as the width increases, the effect of enhancing thermal
field efficiency tends to be gradual. When the air trench width was greater than 6 µm,
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the influence of the width variation on driving power could be ignored, as illustrated in
Figure 7a. Therefore, the width of the air trench was selected to be 6 µm. The heating
electrode width was equal to the waveguide width. After determining the air trench width
to be 6 µm, we investigated the effect of the placement of the air trench on the drive power
consumption. As shown in Figure 7b, when the distance from the air trench to the core
was 2 and 2.5 µm, the required power to modulate the phase shift from 0 to π was the
lowest. With the purpose of decreasing the loss caused by mode mismatch, the distance
was selected to be 2.5 µm.
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2.4. Optimization of the Coupling Structure

The parameters of the directional couplers need to be optimized, and we used the beam
propagation method (BPM) to scan for proper structural parameters. The final structural
parameters were as follows. In the 3 dB directional couplers, the straight waveguide was
105 µm, the bend waveguide length was set at 485 µm, and the waveguide spacing in the
directional coupling area was chosen to be 2 µm. The offset of the bend waveguide was
12 µm to realize a 3 dB wave splitting and combining state. The directional coupler and
heating arm were connected via a taper waveguide, which had a length of 100 µm and was
enough to reduce the loss.

The switch function was simulated by BPM. The optical distributions in different
states are shown in Figure 8. The optical power was launched in port 1. If no driving power
is applied to the heater, the optical power will export from the end of port 1 and the final
output energy of port 2 will be 0. This state is called the “bar state”, as shown in Figure 8a
(for TE mode) and Figure 8b (for TM mode). If an appropriate voltage is applied to the
electrode, the phase change between the two arms will be produced. The optical power can
be output from port 2. This situation is referred to as the “cross state”, as demonstrated in
Figure 8c (for TE mode) and Figure 8d (for TM mode). The transmission loss was measured
at about 0.46 dB.
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3. Device Performance Simulation
3.1. Power Consumption

The driving power consumption adopting different structures (device with or without
an air trench) and variable materials (upper cladding using silica or polymer) was calculated
by the finite element method (FEM). The relationships between the switching power and
different devices are shown in Figure 9. To make the shift of the phase difference achieve
π, the all-silica thermo-optic switch without an air trench needed 116.11 mW for TE
mode and 114.86 mW for TM mode. The all-silica device with an air trench achieved
its intended switching function and the calculated power consumption was 63.15 mW
(TE) and 60.70 mW (TM). Compared with the all-silica switch, the polymer/silica switch
demands a lower driving power. For the polymer/silica switch without an air trench,
the applied electric power as the switching power was 7.06 mW (TE) and 7.55 mW (TM).
The polymer/silica device with an air trench demanded 5.49 mW (TE) and 5.96 mW (TM).
Hence, devices with an air trench have the advantage of low power consumption. In
addition, the polymer upper cladding is beneficial in reducing power consumption because
the thermal-optic coefficient of polymer (−2 × 10−4 K−1) is typically ten times that of
silica (2 × 10−5 K−1). In summary, the hybrid-integrated structure with an air trench
can effectively reduce the driving power for silica-based switches. In this study, through
adjusting the distribution of the optical field in the polymer material and optimizing the
parameters of the heating region, power consumption was reduced by about 95% versus
the switching power of an all-silica device.
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without an air trench, (b) a polymer/silica device with an air trench, (c) an all-silica device without
an air trench, and (d) an all-silica device with an air trench.

3.2. Switching Time

When calculating the switching time, we focused on heat conduction versus time, so
transient thermal analysis was chosen for the calculation. The transient temperature change
was obtained using the heat conduction equation [24]:

ρcP
∂T
∂t

= k∇2T + Q(x, y, z, t), (2)

where ρ is the density of the material, cP is the specific heat capacity, k is the thermal
conductivity of the material, and Q(x, y, z, t) is the heat generation rate per unit volume.
The rise and fall times of the polymer/silica switch with an air trench were simulated, as
shown in Figure 10.
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3.3. Effect of Polymer Thermal Conductivity

According to the equation used to compute the power consumption, it makes sense to
infer that power consumption is proportional to thermal conductivity [25]. With the same
thermo-optic coefficient, the polymer cladding material with lower thermal conductivity
has the advantage of reducing power consumption. However, the switch response time may
be correspondingly increased. Conversely, if more emphasis is placed on the switching time,
polymer materials with high thermal conductivity can be employed. The application of
polymers with high thermal conductivity can bring a significant improvement in response
speed at the cost of higher power consumption. Consequently, various polymers can be
selected in practical applications based on different requirements.

Polymer materials can achieve low or high thermal conductivity by using modification
techniques. Based on published reports, the thermal conductivity of the polymer can be
reduced to 0.0125 W/mK [26]. At the same time, studies on polymers with high heat
conductivity have also made some progress [27–29]. A kind of polymer with high thermal
conductivity (about 16 W/mK) has been reported [27]. The influence of polymer materials
with special physical properties on the thermo-optic switch indexes was analyzed, as shown
in Figure 11. For polymer materials with low thermal conductivity, we selected a value of
0.0125 W/mK for analysis. The device required a heating power as low as 2.77 mW for TE
mode and 3.00 mW for TM mode. Nevertheless, the response times both exceeded 1.3 ms,
which were much longer than that of the device using polymer cladding with general
thermal conductivity (0.19 W/mK). For a high thermal conductivity, the value was set to
16 W/mK to simulate. The device required 14.41 mW and 15.56 mW per π shift power for
TE mode and TM mode. However, the rise times were reduced to 6.0 µs and 6.5 µs, and the
fall times were decreased to 121 µs and 123 µs. The response speed remarkably improved.
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4. Discussion and Conclusions

The results of the thermal optical switch in this paper are also compared with those of
other reported thermal optical switches based on other waveguide structures, as shown in
Table 1. Polymer cladding and the air trench can reduce the power consumption of this
silica-based thermo-optic switch. We can see that the power consumption of the switch
that we proposed in this paper was the lowest versus other thermal optical switches with
inorganic material as the waveguide core. At the same time, the switching power was
also close to that of most polymer-based switches reported at this stage. The polymer
cladding also allowed the device to achieve loss compensation or all-optical control by later
doping in the polymer cladding. The use of polymer cladding not only reduced the power
consumption of the switch but also provided more possibilities and potential prospects for
the application of this device.
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Table 1. Comparisons among the performances of this thermal optical switch and those of other
reported thermal optical switches.

Reference Structure
(Core/Upper Cladding/Under Cladding)

Wavelength
(nm) PC (mW) 1 RT (µs) 2 FT (µs) 3

[5] Silicon/Silica/Silica 1520–1630 40 30 (total)
[4] Silicon/Silica/Silica 1550 260 0.725 0.700
[8] Doped PMMA/PMMA/PMMA 650 5.3 464.4 448

[30] EpoCore/EpoClad/EpoClad 850 4.5 400 600
[13] SU-8/PMMA/Silica 1550 7.8 100 (total)
[31] SU-8/PMMA/Silica 1550 7.2 106 93
[14] SU-8/PMMA/Silica 1550 3.4 183.1 139.9

This work Doped Silica/Polymer/Silica 1550 5.49/5.96 121/118 329/329
1 PC, power consumption; 2 RT, rise time; 3 FT, fall time.

In this article, a silica/polymer hybrid thermo-optic switch that is compatible with
the silica PLC chip was proposed. In terms of the waveguide structure, the optimization
of the waveguide structure (the width-to-height ratio of the core was 1:3) improved the
optical power proportion in the heating area by around 1.7 times. In terms of the device
structure, by introducing taper, an air trench, and polymer upper cladding, the power
consumption of the silica thermo-optic device was significantly reduced. At the wavelength
of 1550 nm, the power consumption was 5.49 mW and 5.96 mW, which was approximately
95% of power saved compared with that of an all-silica switch. For TE mode, the rise and
fall times were 121 µs and 329 µs. For TM mode, the rise and fall times were 118 µs and
329 µs. To compare with the reported devices, the device performance when the length of
the electrode is 1 mm was also calculated. The power consumptions for TE and TM modes
were 5.135 mW and 5.828 mW. The switch responded in around 430 µs. This switch showed
a low power consumption and fast response speed in comparison to the reported switches.
In terms of material, we also discussed the effect of special polymer thermal conductivity
on the thermo-optic switching performance. The results showed that when the polymer
with a lower thermal conductivity was selected, the switching power consumption could
be reduced (by about 50%), but the switching response time may be longer. On the contrary,
the device using a higher thermal conductivity polymer could provide a faster response
speed at the expense of increased power consumption.
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