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Abstract: To investigate the effects of slag and Na2O content on the macroscopic properties and
pore structure characteristics of alkali-activated metakaolin–slag (AAMS) composite cementitious
materials, this study used X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),
scanning electron microscopy (SEM-EDS), and mercury-pressure (MIP) tests for characterization and
analyzed the hydration product compositions, microstructures, and pore structure characteristics of
AAMS composite cementitious materials. The relationships between the fractal dimension and the
pore structure parameters, compressive strengths, and drying shrinkage rates of AAMS composite
cementitious materials were investigated with the thermodynamic fractal model. The results showed
that at the age of 28 d, the compressive strength and drying shrinkage of the AAMS composite
binder increased by 20.57% and 215.11%, respectively, when the slag content increased from 0 to
50%. When the Na2O content increased from 8% to 12%, the compressive strength and drying
shrinkage of the AAMS composite increased by 24.37% and 129.40%, respectively. The compressive
strengths of AAMS composite cementitious materials increased with increasing slag content and
Na2O content, but the drying shrinkage of the system increased, and the volume stability worsened.
Microscopic analyses showed that with increases in the slag and Na2O contents, the hydration
products of AAMS composite cementitious materials increased, and C-A-S-H and N-A-S-H filled
each other so that the internal structures of AAMS composite cementitious materials were denser,
and the porosities were significantly reduced. By comparing and analyzing the Menger sponge
model and the fractal model based on the thermodynamic relationships, it was found that the fractal
model based on the thermodynamic relationship better reflected the pore size distribution over the
whole pore size determination range, and the correlation coefficients R2 were above 0.99, indicating
that the fractal dimension calculated by the fractal model based on the thermodynamic relationship
provided a comprehensive evaluation index for the pore structure characteristics of AAMS composite
cementitious materials, and the fractal dimension correlated well with the pore structure parameters,
compressive strengths, and drying shrinkage rates of cementitious materials.

Keywords: alkali-activated metakaolin–slag composite cementitious material; mechanical properties;
drying shrinkage; microscopic analysis; fractal dimension

1. Introduction

Alkali-activated cementitious materials are inorganic cementitious materials with
Si-O-Al network structures, which are formed by minerals rich in active aluminosilicate
materials (such as metakaolin, slag, fly ash, and steel slag) under catalysis with alkali activa-
tors (caustic alkali, alkali-containing silicate, etc.) [1,2]. Compared with ordinary Portland
cement, alkali-activated cementitious materials exhibit higher durability and lower envi-
ronmental load [3]. Therefore, the preparation of concrete with the cementitious materials
is considered one of the important directions for sustainable energy savings and emission
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reductions in the civil engineering industry. The main hydration product of alkali-activated
metakaolin cementitious material is N-A-S-H. Alkali-activated metakaolin cementitious
materials have good volumetric stabilities and durabilities but have disadvantages such as
long setting times and low early strengths [4], and metakaolin is a costly nonrenewable
resource with limited reserves [5]. The main hydration products of alkali-activated slag
cementitious materials are C-S-H gel and C-A-S-H gel. Alkali-activated slag cementitious
materials show high early strength and rapid setting and hardening, and slag is a secondary
product and is easy to obtain [6], but it has disadvantages such as large shrinkage of the
hardened body [7]. Therefore, the use of slag to replace some of the metakaolin used to
prepare alkali-activated composite cementitious materials is a reasonable and economical
solution. Moreover, the cementitious materials prepared by using metakaolin slag as a raw
material exhibit complementary features of the two raw materials and give full play to
the advantages of each raw material by producing a cementitious material with excellent
mechanical properties and good volumetric stability to replace ordinary silicate cement.

Recognizing and grasping the fluidity, setting time, compressive strength, and volume
stability of alkali-activated cementitious materials is a necessary prerequisite for realizing
the application of alkali-activated cementitious materials in civil engineering, while the
type and content of the solid powder, the nature and dosage of the alkali activator, and the
composition and pore structure of the hydration products are important factors affecting
the performance of a cementitious material. For example, Nath et al. [8] and Saha et al. [9]
found that the setting time for a fly ash geopolymer was shortened, and the compressive
strength was increased when slag powder was incorporated into the fly ash geopolymer.
Similarly, Marcin et al. [10] and Song et al. [11] found similar phenomena when they studied
fly ash geopolymer mortar. Yip et al. [12] found that the strength of an alkali-activated
geopolymer first increased and then decreased with increasing metakaolin content, and
the optimum content was 80%. Yang et al. [13] concluded that the fly ash–slag composite
system had the highest strength and the densest pore structure with a 50% slag content.
Ma et al. [14] concluded that slag effectively improved the physical and mechanical prop-
erties of metakaolin-based geopolymers and shortened their setting times when the slag
content was 20–30%. Luo et al. [15] controlled the mass fraction of CaO in the system by
adjusting the mass ratio of slag to metakaolin and found that increasing the calcium content
improved the density of the geopolymer, and that the shrinkage rate was controlled at 4%.

Gao et al. [16] found that the setting times for metakaolin-based geopolymers increased
with increasing activator modulus, while the porosity decreased with increasing activator
modulus. Lyu et al. [17] suggested that the strengths of geopolymers were inversely related
to the activator modulus. In contrast, Alonso et al. [18] and Palomo et al. [19] suggested
that the activator concentration was the key factor affecting geopolymer performance. A
higher activator concentration resulted in a higher pH for the alkali solution and slower
polymerization of the geopolymer in the highly alkaline environment, which degraded
the mechanical properties of the geopolymer. Yang et al. [20] concluded that a change in
the activator concentration played a decisive role in determining the composition of the
products, the extent of the morphological order, and the performance of the product. Fu and
Zhan et al. [21,22] found that higher concentrations of activator produced more drying
shrinkage and autogenous shrinkage of alkali-activated cementitious materials and reduced
the volume stabilities of cementitious materials. Puligilla et al. [23] believed that free
calcium prolonged the dissolution of fly ash and enhanced the formation of the geopolymer
gel, thus improving the strength of the geopolymer concrete. Kumar et al. [24,25] analyzed
the hydration products of fly as–slag geopolymer powders by X-ray diffraction and found
that the composite system with fly ash–slag powder did not lead to formation of new
cementitious bodies.

Yang et al. [26] compared and analyzed the Menger sponge model, space-filling model,
pore axis fractal model, and fractal model based on thermodynamic relationships and found
that the fractal model based on thermodynamic relationships described the fractal dimension
of the pore structure in geopolymer mortar well, and incorporation of the slag powder into
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fly ash geopolymers improved the pore structures of the geopolymers. Jiang et al. [27] found
that the fractal dimension of the pore structure of alkali-activated slag powder cementitious
materials ranged from 3.08 to 3.90 with correlation coefficients between 0.8 and 0.98. The
fractal dimensions of the pore structures in the specimens increased with increasing curing
age, and the pore structures and spatial distributions became complex. Bai et al. [28] found
that the porosity, average pore size, most likely pore diameter, and median pore size of alkali-
activated slag mortars decreased with increasing age and alkali content. For the same alkali
activator, the fractal dimension of the alkali-activated slag mortar increased with increasing
alkali content; for different alkali activators with the same alkali content, the influence of
activators on the fractal dimension of alkali-activated slag mortar at 28 d of age decreased in
the order water–glass > sodium sulfate > sodium hydroxide.

Based on the above findings, most studies have been conducted on alkali-slag, alkali-fly
ash, and their composites. However, there are few quantitative analyses of the macroscopic
properties and microscopic pore structure complexities of alkali-activated metakaolin–
slag (AAMS) composite cementitious materials. Therefore, in this study, the effects of
slag content and Na2O content on the macroscopic properties and microstructures of
AAMS composite cementitious materials were investigated, and the macroscopic properties
and microstructures of AAMS composite cementitious materials were analyzed with a
combination of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),
scanning electron microscopy (SEM-EDS), and mercury intrusion porosimetry (MIP). The
compositions, microscopic morphologies, and pore structure fractal characteristics of the
hydration products from composite cementitious materials were analyzed. Finally, the
fractal dimension of the cementitious material was solved based on the fractal model of
the thermodynamic relationships, and the relationships between fractal dimension, pore
structure parameters, compressive strength, and drying shrinkage of the AAMS composite
cementitious material were explored.

2. Materials and Methods
2.1. Materials
2.1.1. Metakaolin and Slag

In this study, metakaolin was used as the main binder. The metakaolin was produced
by the Inner Mongolia Chao Brand Company, Hohhot, China, and was a highly active
amorphous aluminosilicate material obtained by calcining kaolin-containing clay at a suit-
able temperature (600–900 ◦C). Its density and specific surface area were 2300 kg·m−3

and 800 m2·kg−1, respectively. The slag used in this study was finely ground granulated
blast furnace slag. Slag was used as the composite binder in this study. The slag was
produced by the Ningxia Iron and Steel Group in Zhongwei City, China; it is a byproduct
of the blast furnace iron-making process and mainly consists of calcium aluminosilicate
material. Its density and specific surface area were 2890 kg·m−3 and 410 m2·kg−1, re-
spectively. The chemical composition and particle size distribution of metakaolin and
slag were determined by X-ray fluorescence (XRF) and with a laser particle size analyzer,
respectively. The chemical composition and particle size distribution are shown in Table 1
and Figure 1, respectively.

Table 1. Chemical composition and physical index of metakaolin and slag.

Material
Mass Fraction (%)

K2O Na2O SO3 SiO2 Fe2O3 Al2O3 MgO CaO TiO2 LOI

Metakaolin 0.44 0.41 - 49.78 0.93 34.63 2.58 - 1.01 1.1
Slag 0.83 0.73 0.13 35.88 0.46 10.65 11.43 33.54 1.14 1.3



Polymers 2022, 14, 5217 4 of 26

Polymers 2022, 15, x FOR PEER REVIEW  4  of  28 
 

 

Table 1. Chemical composition and physical index of metakaolin and slag. 

Material 
Mass Fraction (%) 

K2O  Na2O  SO3  SiO2  Fe2O3  Al2O3  MgO  CaO  TiO2  LOI 

Metakaolin  0.44  0.41  ‐  49.78  0.93  34.63  2.58  ‐  1.01  1.1 

Slag  0.83  0.73  0.13  35.88  0.46  10.65  11.43  33.54  1.14  1.3 

 

  

(a)  (b) 

  

(c)  (d) 

  

(e)  (f) 

Figure 1. Physicochemical properties of the raw materials. (a) Metakaolin. (b) Slag. (c) SEM image of
metakaolin. (d) SEM image of slag. (e) Particle size distributions of slag and metakaolin. (f) XRD
results for slag and metakaolin.

2.1.2. Alkaline Activator

The alkaline activator was a solution consisting of sodium silicate, solid sodium
hydroxide, and water. The water–glass solution used in this study was produced by Linyi
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Lvsen Chemical Co., Ltd., in China, with a SiO2 content of 29.94 wt.%, Na2O content of
8.86 wt.%, and water content of 61.9 wt.%. Sodium hydroxide flakes with a purity of 99%
were produced by the Ningxia Jinyuyuan Chemical Group Co., Ltd., and they were used to
adjust the modulus of the water–glass. The water used was deionized water.

2.1.3. Experimental Sand

Standard sand was used to prepare the AAMS. It was produced by the Xiamen
Aisiou Standard Sand Co., Ltd. (Xiamen, China), and it conformed to the specifications of
GB/T 17671–2021 for cement mortar strength [29]. Its particle diameter, specific gravity,
and fineness modulus were 0.08–2 mm, 1.41, and 2.30, respectively.

2.2. Sample Preparation

The preparation of AAMS composite cementitious material was carried out with
reference to the standard “Cementitious Sand Strength Test Method”, GB/T17671-2021 [29].
In this experiment, the modulus of the fixed activator (Ms = n(SiO2)/n(Na2O)) was 1.5.
First, sodium silicate solution, solid sodium hydroxide, and deionized water were mixed
to prepare alkali activators with Na2O mass fractions of 8%, 10%, and 12%, respectively,
and aged for 24 h. Then, the slag was mixed into metakaolin according at 0, 10%, 30%,
and 50% of the total binder mass and poured into the star mixer for premixing so that the
metakaolin and slag were mixed evenly, and then the corresponding mass of the activator
was weighed into the mixer to establish a water/binder ratio of 0.45 (i.e., the ratio of water
to binder in the activator). Finally, the corresponding mass of standard sand was added
according to a binder/sand ratio (the ratio of binder to standard sand) of 1:2 and mixed at
low speed for 2 min and then at high speed for 3 min. Then, the mixed mortar was poured
into a mold with length × width × height dimensions of 40 mm × 40 mm × 40 mm, and
then the mold filled with mortar was placed on the vibration table for 3 min to discharge
the air bubbles inside the mortar. After the pouring of the specimen was completed, it was
placed in a standard curing box (temperature 20 ± 2 ◦C, relative humidity > 90%) for 24 h
and then demolded and cured to the test age. The mixing proportions of AAMS composite
cementitious materials are detailed in Table 2.

Table 2. Proportions of AAMS composite cementitious materials.

Mixtures Metakaolin (%) Slag (%) Na2O (%) Metakaolin (g) Slag (g) NaOH (g) Na2SiO3 (g) H2O (g) Sand (g)

M1S0 100 0 10 450 0 32.33 231.15 66.12

900

M9S1 90 10 10 405 45 32.33 231.15 66.12
M7S3 70 30 10 315 135 32.33 231.15 66.12
M5S5 50 50 10 225 225 32.33 231.15 66.12

M7S3-8 70 30 8 315 135 25.86 198.42 93.40
M7S3-12 70 30 12 315 135 38.79 277.38 38.85

2.3. Test Methods
2.3.1. Fluidity

Fluidity tests were carried out according to the “test method for fluidity and working
time of cement asphalt mortar” [30]. The “funnel method” was used with a volume of
640 mL, a diameter of 70 mm at the top and 10 mm at the bottom, and a height of 450 mm.
The sample was prepared by referring to the proportions in Table 2 and the method for
sample preparation in Section 2.2 (the same as below). The prepared sample was poured
into the conical funnel, and the time taken for mortar flowing out from the funnel was
taken as the degree of fluidity.

2.3.2. Setting Time

The setting time of the AAMS composite cementitious material was measured with
reference to the “test method for water consumption, setting time, and settlement of cement
standard consistency” (GB/T 1346-2011) [31]. The prepared mortar was placed in a curing
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box to measure its setting time. The initial setting time was measured every 5 min, and
the final setting time was measured every 15 min. The initial setting time was when the
needle sank to 4 ± l mm from the bottom plate. The final setting time was 0.5 mm when
the specimen was immersed. The setting time took on the paste (binder only).

2.3.3. Compressive Strength

The AAMS composite cementitious material strength test was carried out with refer-
ence to the standard “cementitious sand strength test method” (GB/T17671-2021) [29]. The
prepared specimens were placed in a standard curing box and cured to 3, 7, 14, and 28 d
test ages. The compressive strengths of the specimens were tested with a constant stress
pressure test using a loading rate of 2.4 kN/s, and the test results were taken as the average
of three specimens.

2.3.4. Drying Shrinkage

The drying shrinkage test of the AAMS composite cementitious material was carried
out according to the standard “dry shrinkage test method of cement mortar” [32]. The
homogeneous mortar was injected into a mold with length × width × height dimensions
of 25 mm × 25 mm × 28 mm. The mold was removed 24 h after the test block was formed,
and the initial length Li was measured. Then, it was moved into a standard curing box
to cure for 48 h and then moved into a drying shrinkage chamber with a temperature of
20 ± 3 ◦C and a relative humidity of 65%. The lengths of the 3, 7, 14, 28, and 56 d specimens
were measured and recorded as Lx, three specimens were formed for each ratio, and the
average value of the three specimens was taken as the drying shrinkage value of the AAMS
composite cementitious material. The drying shrinkage rate Lc was calculated as shown
in Equation (1).

Lc = (Li − Lx)/Li × 100% (1)

2.3.5. Microstructural Tests

Microstructure tests of cementitious material mortar specimens were performed ac-
cording to the mix proportions in Table 2. After reaching the test age of 28 d, the mortar
specimens were broken, placed in anhydrous ethanol for 3 days to terminate hydration,
and then placed in a vacuum drying oven for 24 h. Finally, XRD, FT-IR, SEM-EDS, and
MIP studies were performed. A Rigaku D/MAX2500 V X-ray diffractometer (made by
Rigaku Japan, with a scan rate of 0.02◦/s and a scan angle of 5◦–70◦) was used to ana-
lyze the hydration products. A Tensor 27 infrared spectrometer (Bruker, Billerica, MA,
USA; 4000–400 cm−1 test range; 2 cm−1 resolution) was used for phase analyses with
sample particle sizes < 74 µm. A Quanta 200 scanning electron microscope (FEI, Hillsboro,
OR, USA; 5 nm resolution; 20–10,000 magnification) was used to observe the specimen
microstructure period, and the mineral types and chemical composition characteristics
of specific hydration products in the micron range were analyzed by energy dispersive
spectrometry (EDS). Finally, an Auto Pore IV 9510 automatic Mercury porosimeter (Nocros
Corporation, Norcross, GA, USA; 5 nm–0.34 mm measurement range) was used for pore
structure analyses.

3. Results and Discussion
3.1. Fluidity and Setting Time

The effects of different slag contents and Na2O contents on the flow time of the AAMS
composite cementitious material are shown in Figure 2, which shows that the flow time of
the AAMS composite cementitious material decreased from 35.4 s to 12.5 s with an increase
in the slag content from 0 to 50%, which constituted a decrease of 64.69%. With increasing
slag content, the flow time of AAMS composite cementitious material decreased, which
was consistent with the results of Fu et al. [33]. This may be because metakaolin is a clay
mineral with an obvious layered silicate structure, so when the content of metakaolin was
higher, it adsorbed a large amount of water, thus significantly hindering mortar flow and
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increasing the mortar flow time; with the increase in slag content, the mortar viscosity was
lower, which led to decreases in the AAMS composite cementitious material flow times.
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Figure 2b shows that the flow time of the AAMS composite cementitious material
decreased from 23.5 s to 16.2 s with an increase in Na2O content from 8% to 12%, which
constituted a decrease of 31.06%. With the increase in Na2O content, the flow time of
AAMS composite cementitious material decreased, which was consistent with the results of
Lin et al. [34]. The reason is that the higher the Na2O content is, the stronger the alkalinity
of the solution and the more readily metakaolin and slag will dissolve, which leads to a
reduction in the flow time of the AAMS material.

The effects of different slag contents and Na2O contents on the setting times of the
AAMS materials are shown in Figure 3, which shows that the initial setting time of the
AAMS material decreased from 181 min to 63 min, and the final setting time decreased from
273 min to 96 min when the slag content was increased from 0 to 50%, so the initial and final
setting times decreased by 65.19% and 64.84%, respectively. The setting time of the AAMS
material decreased with increasing slag content, which was consistent with the results of
Ma et al. [14]. This was due to the increased slag content; as more Ca2+ was introduced,
formation of the C-S-H gel and C-A-S-H gel under the action of Ca2+ became faster, and
the setting time was shorter. Ye et al. [35] found that calcium-containing substances had
a procoagulant effect on alkali-activated cementitious materials because Ca2+ caused the
generated Ca(OH)2 to crystallize and precipitate rapidly; this induced the rapid formation
of C-A-S-H gels, with the Ca(OH)2 crystals serving as the nucleation matrix, which led to
shortening of the coagulation time of alkali-activated cementitious materials.

Figure 3b shows that the initial setting time of the AAMS material increased from
57 min to 121 min, and the final setting time increased from 88 min to 175 min when
the Na2O content was increased from 8% to 12%, and the initial and final setting times
increased by 112.28% and 98.86%, respectively. With increasing Na2O content, the setting
time of the AAMS material increased, which was consistent with the results of Guo [36].
The reason is that within the AAMS composite cementitious material system, the Ca-O
bonds and Mg-O bonds were weaker than the Si-O bonds and Al-O bonds, so during the
hydration process, the rates of Ca2+ and Mg2+ dissolution were faster than those of Si4+

and Al3+; an aluminum-rich film layer was formed quickly on the surface of the solid
precursor slag, which prevented further hydration of the composite system and reduced
the hydrolysis rates of metakaolin and slag. When the alkali content was increased, the
OH– concentration in the mortar increased, the Ca2+ dissolution rate increased, and the
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hydration product film formed on the surface of the solid precursor was denser, so the
setting time of the composite cementitious material increased [37,38]. However, Yang [39]
found that the setting times of alkali-activated slag cementitious materials decreased with
increasing Na2O content; Dodiomov [40] and Xu et al. [41] found that the setting times of
alkali-activated cementitious materials tended to decrease and then increase with increasing
Na2O content. With increases in the Na2O content, the results of different scholars differed,
and this may be related to the reductions in concentrations and raw materials.
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3.2. Compressive Strength

The effects of different slag contents and Na2O contents on the compressive strengths
of the AAMS composite cementitious materials are shown in Figure 4. Figure 4a shows
that the compressive strengths of AAMS composite cementitious materials with 10%, 30%,
and 50% slag content increased by 10.20%, 26.05%, and 32.71%, respectively, after aging
for 3 d compared with that of slag at time 0. At the age of 28 d, the compressive strengths
of AAMS composite cementitious materials with 10%, 30%, and 50% slag content had
increased by 14.60%, 19.59%, and 20.57%, respectively, compared with that of slag at
time 0. The compressive strengths of AAMS composite cementitious materials increased
with increasing slag content, which was consistent with the results of Zhan [22] and
Paulo et al. [42]. The reason is that more slag content produced more C-S-H or C-A-S-H
gels with low Ca/Si via hydration of the slag, and these cementitious products were filled
in the cracks and pores of the AAMS composite cementitious materials, which made the
structure of the composite system denser and thus stronger. However, Cui et al. [43] found
that the compressive strengths of alkali-activated metakaolin geopolymers increased and
then decreased upon increasing slag content from 0 to 100%. The maximum compressive
strength of the geopolymer was found for an age of 28 d and a 40% slag content.

Figure 4b shows that the compressive strengths of AAMS materials with Na2O con-
tents of 10% and 12% increased by 39.98% and 59.44% at age 3 d, respectively, compared
with that for a Na2O content of 8%; at age 28 d, the compressive strengths of AAMS mate-
rials with Na2O contents of 10% and 12% increased by 18.95% and 24.37%, respectively,
compared with that for a Na2O content of 8%. The compressive strength of AAMS compos-
ite cementitious material increased with increasing Na2O content, which was consistent
with the results of Timakul et al. [44]. The reason for this is that when the Na2O content was
higher, the alkali solution contained a large amount of OH−, and the solution pH increased,
which accelerated breakage of the Si-O-Si, Si-O-Al, and A1-O-Al bonds in the silica–alumina
material; this facilitated the reconstruction and reactions of the AAMS composite cementi-
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tious material, thus increasing the compressive strength. Similarly, Bian et al. [45] found
that the compressive strength of alkali-activated slag/fly ash porous concrete increased
with the increase of alkali content.
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3.3. Drying Shrinkage

The effects of different slag contents and Na2O contents on the drying shrinkage of
the AAMS materials are shown in Figure 5. Figure 5a shows that drying shrinkage of the
AAMS composite cementitious material was smallest when the slag content was 0. At
the age of 28 d, the drying shrinkage of the AAMS material with 50% slag content had
increased by 215.11% compared with that for a slag content of 0. The drying shrinkage of
the AAMS material increased with increasing slag content, and after the age of 28 d, the
drying shrinkage showed a stable trend with small increases, which was consistent with
the results of a previous study [7,12,46]. This was due to the increased Ca2+ introduced
by the increase in slag content, and the addition of Ca2+ prompted an increase in the
hydration product, C-A-S-H gel, of the cementitious material, which resulted in a lower
creep modulus due to the viscoelastic–viscoplastic behavior of the C-A-S-H gel. Binding
of the alkali ions also reduced the regularity of the stacking structure, making it easier to
disintegrate and redistribute under drying conditions, so there was more shrinkage [47,48].
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Figure 5b shows that at the age of 28 d, the drying shrinkage of the AAMS composite
cementitious materials with Na2O contents of 10% and 12% had increased by 79.85%
and 129.40%, respectively, compared with a Na2O content of 8%. With the increase in
Na2O content, the drying shrinkage increased, which was consistent with the results
of Fu et al. [21]. This occurred because as the Na2O content was increased, the OH–

concentration in the activator solution increased, and the metakaolin and slag particles
dissolved more quickly to release ions to react with the large number of [SiO4 ]4− ions
provided by the water–glass solution; this consumed water faster to form a gel network
system to generate capillary pressure, which resulted in increased system shrinkage. At
the same time, the ions that dissolved quickly in the pore solution reduced the water
activity, which led to decreases in the internal relative humidity [49]. In addition, the
drying shrinkage of the AAMS composite cementitious materials was also related to the
nature of the reaction product [50] and the pore structure [51]. Therefore, in Section 3.4,
Section 3.5, Section 3.6, Section 3.7, we will discuss the results of drying shrinkage of the
AAMS composite cementitious materials with microstructural analyses.

The relationship between compressive strength and drying shrinkage of the AAMS
composite cementitious materials is shown in Figure 6. Figure 6a,b show that the com-
pressive strength drying shrinkage of the AAMS material increased with increasing slag
content and Na2O content. This result is consistent with that of Zhan et al. [22]. However,
from Figure 6a,b, it can be seen that at the age of 3 d, with the increase of slag content
and Na2O content, the compressive strength and drying shrinkage of AAMS composite
cementitious material increased slightly; at 28 d, with the increase of slag content and Na2O
content, the compressive strength and drying shrinkage of AAMS composite cementitious
material increased greatly. This is consistent with the research of Li [52] and Zhan [53]. The
reason may be that with the increase of age, the hydration of AAMS composite cementitious
material is more complete, and more hydration products are generated, which leads to the
increase of compressive strength and drying shrinkage of AAMS composite cementitious
material. The slag content and Na2O content increased the compressive strength of the
AAMS material; however, they also led to increases in drying shrinkage.
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3.4. XRD

The effects of different slag contents and Na2O contents on the XRD data for AAMS
composite cementitious materials are shown in Figure 7. The curves for the AAMS com-
posite cementitious material all showed amorphous dispersion peaks, and the positions
of the main dispersion peaks were basically the same; all of them were between 25◦ and
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35◦, and stronger diffraction peaks for the reaction products in the hardened body of
the cementitious material indicated that more reaction products were formed. As shown
in Figure 7a, the dispersion peak for the AAMS composite cementitious material was
near 26◦ when the slag content was 0. With increasing slag content, the dispersion peak
for the AAMS composite cementitious material was obviously shifted to the right; the
peak appeared near 29◦, and a narrower peak width meant a higher peak. This indicated
that the proportion of C-A-S-H gel in the hydration product continued to increase with
increasing slag content. On the other hand, although the compositions and contents of
the reaction products cannot be accurately judged by XRD analysis alone, the crystalline
material consumption can be used to qualitatively analyze the polymerization reaction
of the cementitious material. Figure 7a indicates that as the slag content was gradually
increased from 0 to 50%, the contents of Ca2Mg(Si2O7), Ca2Al2SiO7, and C-A-S-H gels
increased, and the peak for N-A-S-H did not increase significantly, which indicated that
the slag promoted the geopolymerization reaction of metakaolin under the action of the
alkali activator so that more metakaolin produced geopolymer gels. The reaction product
comprised the geopolymer gel and the C-A-S-H gel generated by slag hydration.
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Figure 7b shows that when the slag content was 0–50%, the Ca2Mg(Si2O7) and
Ca2Al2SiO7 crystallization peaks weakened with increasing Na2O content, which may
have been because the increase in Na2O content promoted hydration of the metakaolin
cementitious material, consumed the above mineral components, and generated more
C-A-S-H gel. Moreover, Figure 7b also shows that the C-A-S-H gel peak tip tended to
move to higher angles with increasing Na2O content, and the trend was more obvious with
higher Na2O contents, while the characteristic peak for the C-A-S-H gel at approximately
30◦ also gradually increased in intensity.

3.5. FT-IR

The effects of different slag contents and Na2O contents on the FT−IR spectra of AAMS
composite cementitious materials are shown in Figure 8. Absorption peaks were observed
at approximately 3443 cm−1, 1645 cm−1, 1015 cm−1, and 447 cm−1. The stretching vibration
peak of –OH occurred at wavenumber 3343 cm−1 and the H-O-H and bending vibration
peaks at wavenumber 1645 cm−1. This indicates that chemically bound water or generated
hydroxyl groups were present in the product gels of the AAMS materials, and these bound
waters had properties similar to those of chemically bound water in N-A-S-H gels and
C-A-S-H gels. As shown in Figure 8a, absorption peaks at approximately 1015 cm−1 were
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very obvious in all groups, and with increasing slag content in the system, the absorption
peaks tended to move in the direction of lower wavenumbers. The absorption peaks at
approximately 1015 cm−1 represent nonuniform stretching vibrations of Si-O. Usually, the
absorption peak shifts from high to low wavenumbers due to doping of the AlO4 structure
during polymerization, which is recognized as a characteristic peak for the polymerization
of inorganic minerals. This indicates that the alkali-activated polymerization reaction
occurred with different slag contents. After adding slag to the metakaolin system, the
absorption peak moved from a high to a low frequency, indicating that the degree of
polymerization decreased, and the increase in slag content influenced the degree of Si-O-Al
chain polymerization. The vibrational peak at approximately 447 cm−1 represented a
symmetric bending vibration of the Si-O-Si functional group, and the intensity gradually
decreased with increasing slag content. This is because incorporation of the slag increased
the consumption of SiO2 in the metakaolin, and this SiO2 may also have reacted with Ca2+

in the slag to form C-S-H gels, in addition to the N-A-S-H gels formed by geopolymerization
of metakaolin.
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Figure 8b shows that the infrared peaks for functional group vibrations in the AAMS
composite cementitious materials were the same for different Na2O contents, and with
increases in Na2O content, the T-O-Si (T = Si or Al) peak at 1015 cm−1 moved to a lower
wavenumber, which indicated that the extent of reaction for the AAMS composite cementi-
tious material was higher under highly alkaline conditions; this proved that the alkaline
environment favored the reaction of metakaolin and slag. Therefore, with greater Na2O
content, more hydration products were generated via reactions of the AAMS composite
cementitious material, and the compressive strength was increased.

3.6. SEM-EDS

The effects of different slag contents and Na2O contents on the SEM-EDS data for
AAMS composite cementitious materials are shown in Figure 9. The images M1S0(a)
and M5S5(a) in Figure 9 show that when the slag content was 0, the products of AAMS
composite cementitious materials showed relatively loose morphologies, mainly in the
form of a lamellar structure; this is because the AAMS materials of the pure metakaolin
group had low reaction levels and generated products with three-dimensional network
gels whose structures were close to the structures of zeolites, which led to microstructural
loosening. With increases in the slag content, the internal structure of the AAMS composite
cementitious material became compact and dense because the addition of slag led to the
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generation of large amounts of amorphous C-A-S-H gel inside the composite cementitious
material; this filled the gaps of the three-dimensional mesh structure and made the internal
structure denser, which was beneficial for increasing the density and compressive strength
of the AAMS composite cementitious material. However, a large number of cracks appeared
in the internal structure of the AAMS material when the slag content was increased to
50%, which may have been related to the sample preparation and drying shrinkage of the
C-A-S-H gel. In the polycondensation process generating capillary tension in cementitious
materials, shrinkage may be caused by water evaporation and uneven internal pressures.
Yip et al. [12] also concluded that a high slag content adversely affected the structure of the
cementitious material.
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and the structure was loose due to the cracks generated. With an increase in the Na2O
content to 12%, more C-(N)-A-S-H gel was generated by the system, and some of the gel
formed a more compact structure, making the structure in the system denser; at the same
time, microcracking in the internal structure of the system also increased. This is because
more reaction heat was released at higher Na2O contents, which led to increased shrinkage
and cracking during the rapid hardening process. At the same time, with the increased
Na2O content, more C-A-S-H gel was generated, and the C-A-S-H gel itself shrank more,
which led to shrinkage of the AAMS material and poor volume stability [21]. As shown
in Section 3.3, eight points with different characteristics were selected for EDS analyses to
further reveal the mechanism of these changes, and the results are shown in Table 3.

Table 3. Atomic percentages for the elemental composition at each spot in Figure 9 (wt%).

Number Point Si Al Na Ca O Mg Al/Si Ca/Si Na/Si

M1S0
1 22.63 21.09 0.37 0.01 55.88 0.01 0.93 0 0.016
2 31.95 21.35 6.25 0.11 40.25 0.10 0.67 0 0.20

M5S5
1 17.29 15.75 6.71 4.32 54.56 1.37 0.91 0.38 0.39
2 17.19 8.34 0.43 18.78 48.41 6.84 0.49 1.09 0.025

M7S3-8
1 20.53 13.46 5.53 3.16 56.22 1.11 0.66 0.15 0.27
2 20.01 13.4 5.14 2.24 58.12 0.81 0.67 0.11 0.26

M7S3-12
1 22.36 10.98 8.29 1.88 55.74 0.75 0.49 0.084 0.37
2 16.94 9.17 7.2 1.48 64.47 0.74 0.54 0.087 0.43

Images M1S0(b) and M5S5(b) in Figure 9 and Table 3 confirm that with increasing
slag content, the Ca content in the AAMS material system increased significantly, and
the Al and Si contents decreased because the increase in slag content introduced more Ca
and promoted the reactions of metakaolin cementitious material. Images M7S3-8(b) and
M7S3-12(b) in Figure 9 and Table 3 show that the contents of Ca, Al, and Si decreased with
increasing Na2O content, which was due to the enhanced alkalinity of the solution and
generation of more hydration products. The Al/Si ratio in the AAMS composite cementi-
tious material gradually decreased with increasing Ca/Si, indicating that the increase in
Ca/Si hindered the combination with aluminum ions. In addition, Na/Si increased slightly
with increasing Ca/Si. Qin et al. [54] concluded that flocculent N-A-S-H gels can coexist
with C-A-S-H gels when 0 < Ca/Si < 0.6, which is consistent with the data for the M5S5
group, M7S3-8 group, and M7S3-12 group; these data indicated that N-A-S-H and C-A-S-H
gels were generated in the system after slag incorporation. However, when Ca/Si ≥ 0.6,
the calcium ions did not react completely, which is consistent with the data for point 2 in
M5S5(b). The increase in slag content increased the amount of C-A-S-H gels generated,
enhanced the influence of calcium ions on the microstructures and chemical compositions
of N-A-S-H gels, increased Ca/Si, provided a denser structure of the system, and increased
the compressive strength of the system (see Section 3.2). With increasing alkali content,
Ca/Si and Al/Si in the system decreased, and Na/Si increased. This is because the Na2O
content increased and introduced more Na ions, so the Na/Si in the system increased, and,
at the same time, more Ca, Si, Al, and Na reacted to form N-A-S-H and C-A-S-H gels in the
highly alkaline environment, so Ca/Si and Al/Si decreased.

3.7. MIP
3.7.1. Comparison of Pore Size Distribution of the AAMS Composite
Cementitious Materials

The effects of different slag contents and Na2O contents on the pore size distribution of
the AAMS composite cementitious material is shown in Figure 10, and the pore structural
parameters are listed in Table 10. In Figure 10, the pore size distribution curves of the
cementitious materials with 0, 10%, and 30% slag contents were roughly similar in shape,
and the slag content did not lead to formation of too many capillary pores and too few gel
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pores in the cementitious materials. The pore volume of the AAMS composite cementitious
material decreased when the slag content was increased to 50%, and the most likely pore
diameter was in the range 1–10 nm. When the slag content was 50%, the curve shape for the
range of pore sizes in the AAMS composite cementitious material differed from the pore
size distribution curve when the slag contents were 0, 10%, and 30%. The peak value of
the AAMS material at approximately 10 nm decreased with increasing slag content, which
meant that the increase in slag content made the AAMS composite cementitious material
less likely to exhibit the maximum pore size and a more uniform pore structure distribution.
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Table 4. Pore structure parameters for AAMS composite cementitious materials.

Number Total Porosity
(mL·g−1)

Total Pore
Area/m2·g−1

Medium Pore
Diameter (V) (nm)

Medium Pore
Diameter (A) (nm)

Average Pore
Size (nm) Porosity (%)

M1S0 0.2053 69.202 11.95 11.27 11.87 31.3592
M9S1 0.1945 74.168 10.33 9.63 10.49 30.2487
M7S3 0.1680 64.465 10.54 9.26 10.43 25.9911
M5S5 0.0860 37.872 8.37 7.08 9.08 14.1593

M7S3-8 0.1715 64.127 10.95 9.56 10.70 26.2337
M7S3-12 0.1256 50.205 9.63 7.79 10.01 19.9471

Based on previous studies [55], the different pores were classified into the following
categories: gel pores (<10 nm), transition pores (10–100 nm), capillary pores (100–1000 nm),
and macropores (>1000 nm). The distribution of pore volume showed that the pores
of the AAMS composite cementitious materials were mainly distributed in the range of
10 nm–100 nm. With an increase in slag content, the number of transition pores of the
AAMS material decreased, and the number of gel pores increased. When the slag content
was 50%, the proportion of transition pores in the AAMS material decreased by 57.28%
compared with a slag content of 0, while the gel pores increased by 446.85%. As seen from
Table 10, the total pore volume and porosity of the AAMS material showed decreases with
increasing slag content, and this was consistent with the study of Yang et al. [26]. It was
further suggested that incorporation of slag generated more C-A-S-H gels, which refined
the pore structure of the cementitious material, made the pore distribution more uniform,
and increased the compressive strength of the cementitious material. However, the drying
shrinkage of the AAMS composite cementitious materials increased due to the substantial
shrinkage of the C-A-S-H gels themselves [56].

With increases in the Na2O content, the pore size distribution curve for the AAMS
composite cementitious material retained similar shapes, and the most likely pore diameter
for the AAMS material was approximately 11 nm for Na2O contents of 8% and 10%, and
the most likely pore diameter was in the range of 1–10 nm for a Na2O content of 12%.
The peak value of the pore size distribution curve at approximately 10 nm decreased with
increasing Na2O content, which indicated that the highly alkaline environment favored
a more complete reaction of the AAMS composite cementitious material, resulting in a
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denser internal structure and a more uniform pore structure distribution. As shown in
Figure 10 and Table 10, the number of transition pores in the AAMS material decreased,
and the number of gel pores increased with increasing Na2O content, and the transition
pores of the AAMS material decreased by 4.41% and 31.40% and the gel pores were larger
by 13.09% and 53.59% when the Na2O content was 8% relative to when the Na2O contents
were 10% and 12%, respectively. Similarly, the higher Na2O content decreased the total
pore volume and porosity of the AAMS material, and these results are consistent with
those of Zhan et al. [22]. This is because the highly alkaline environment promoted the
dissolution and decomposition of metakaolin and slag particles, which led to refinement
of the synthetic gel pores, an increase in the proportion of gel pores, and an increase in
capillary tension; this generated an increase in the drying shrinkage of the AAMS materials.

3.7.2. Comparative Analysis of the Fractal Dimension of AAMS Composite
Cementitious Materials

At present, there are multiple models based on MIP testing to study the fractal dimen-
sion of the pore structures of cement-based cementitious materials. The Menger sponge
model, space-filling model, pore axis fractal model, and fractal model based on thermo-
dynamic relationships are relatively mature. Among these models, the Menger sponge
model is the most widely used. The Menger sponge model, space-filling model, and pore
axis fractal model all weaken the pore structure into an ideal mathematical geometry when
modeling and then obtain a solution for the fractal dimension. These assumptions may
cause differences between the model and the actual pore structure, resulting in calcula-
tion deviations. However, the fractal model related to the thermodynamic relationship is
based on the principle that an increase in the surface energy of the mercury liquid surface
generated by mercury pressure is equal to the work done by the external force on the
mercury, and the assumption reached for the pore structure while solving for the fractal
dimension is closer to the actual situation, so it may be more suitable than other models for
calculating the fractal dimension of the concrete pore fractal dimension of the structure.
However, most of the current models for fractal dimensions were developed for studying
cement-based materials, and few of them were generated for studying alkali-activated
cementitious materials [26,57–59]. Therefore, in this study, the Menger sponge model and
fractal model based on thermodynamic relationships were used to compare and analyze
the fractal dimension of AAMS composite cementitious materials, and the relationships
between fractal dimension and porosity, total pore area, average pore size, median pore size,
compressive strength, and drying shrinkage for AAMS composite cementitious materials
were considered.

The principle of the Menger sponge model is as follows [60]: a cube m with the
original side length of R is divided equally, and a small cube with the side length of R/m
is newly generated. After removing n of them according to a certain rule, the number
of remaining cubes is m3 – n. The pore fractal dimension Df after k iterations of this rule
satisfies Equation (2):

lg(− dV
dD

) ∝ (2 − D f )lgD (2)

where V is the amount of mercury in the pore, in mL·g−1, and D is the pore diameter,
in nm.

The principle of the fractal model based on the thermodynamic relationship is as
follows [59]: when measuring the relationship between pore volume and pore diameter for
a porous substance by using the mercury pressure method, the work done on the mercury
by the external environment is equal to the increase in surface energy of the mercury liquid
entering the pore, so the pressure p applied to the mercury and the amount of incoming
mercury V satisfy Equation (3). ∫ r

0
pdV = −

∫ s

0
σ cos θdS (3)
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where σ is the surface tension of the mercury, in N·m−1; θ is the contact angle between the
mercury and the sample, in degrees; S is the surface area of the substance to be measured,
in m2; and V is the hole volume of the object to be measured, in m3.

Through dimensional analysis, the fractal scale of the pore surface area S of a porous
material can be correlated with the pore diameter D and pore volume V to obtain an
expression for the fractal model. For the mercury injection stage, Equation (3) can be
approximated as a discrete form, as shown in Equation (4):

n

∑
i=1

pi∆Vi = Cr2−DS
n VDS/3

n (4)

where pi is the average pressure of the i-th mercury injection, in Pa; ∆Vi is the volume of
the i-th mercury injection, in m3; n is the number of times the pressurized mercury was
injected; Dn is the diameter of the pore corresponding to the n-th mercury injection, in
m; V is the cumulative volume of the n-th pressurized mercury injection, in m3; and C
is a constant.

In this study, let

Wn =
n

∑
i=1

pi∆Vi, Qn = V1/3
n /Dn

Then,

lg(
Wn

Dn2 ) = DSlgQn + lgC (5)

Equations (2) and (5) indicate that calculation of the fractal dimension for the pore
structure based on the MIP test can be transformed into the problem of studying the slope
of a logarithmic function with respect to the pore volume, pore diameter, and incoming
mercury pressure.

The pore structure scatter data obtained by the two mathematical models used in
calculating the fractal dimension are shown in Figures 11 and 12. Figures 11 and 12 show
that when calculated based on the sponge model, the M1S0, M9S1, and M1S1 groups
showed close linear relationships (the square of the correlation coefficient R2 > 0.9), and
the correlation coefficients of M7S3, M7S3-8, and M7S3-12 were all less than 0.9, which
showed that the result of the sponge model was relatively discrete. The significance of
the correlation coefficient value as used in this paper is referred to in “MedCalc statistical
analysis method and application” [61], as shown in Table 5. The correlation coefficient R2

of the pore structure calculated by the thermodynamic model was above 0.99, which meant
that the fractal model based on the thermodynamic relationship reflected the pore size
distribution over the whole pore size measurement range.
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Table 5. Significance of the correlation coefficients.

Absolute Value of the Correlation Coefficient Correlation Strength Correlation

0.9–1.0 Highly correlated
Correlated0.7–0.9 Strongly correlated

0.5–0.7 Weakly correlated

<0.5 Very weakly correlated Uncorrelated

Table 6 shows that the conclusions reached with the two models were basically the
same; that is, with increasing slag content and Na2O content, the fractal dimension of the
AAMS composite cementitious material increased. However, the fractal dimension of the
pore structure of the AAMS material in the fractal model based on the thermodynamic
relationship was between 2.83 and 2.85, while the values calculated with the Menger
sponge model were between 3.2 and 3.4. From the basic concepts of topology and fractal
theory [62], the fractal dimension of the specimen was greater than 2.0, which indicated
that the pore distribution pattern of the specimen was irregular and complex and could not
be described by Euclidean geometry. The larger the fractal dimension, the more complex
the pores, which was indicated by the high percentage of gel pores (<10 nm) and transition
pores (10–100 nm) in the pore size distribution (see Figure 10). Considering that the fractal
dimensions of the pore structures of cementitious materials in general are between 2.0 and
3.0, it can be concluded that the fractal model based on the thermodynamic relationship is
better; therefore, in the subsequent study, the fractal model based on the thermodynamic
relationship was chosen for further discussion.

Table 6. Fractal dimension of AAMS composite cementitious materials.

Number
Menger Sponge Model Thermodynamic Model

R2 Fractal Dimension Df R2 Fractal Dimension Ds

M1S0 0.90229 3.28525 0.9991 2.83512
M9S1 0.89895 3.32061 0.99839 2.83782
M7S3 0.86898 3.33329 0.99838 2.84721
M5S5 0.94111 3.34219 0.9987 2.84904

M7S3-8 0.89115 3.28011 0.99834 2.84354
M7S3-12 0.8811 3.34225 0.99831 2.84981
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In summary, incorporation of the slag powder and the increase in Na2O content
improved the pore structures of the AAMS composite cementitious materials but also made
the pore structure complex, so the fractal dimension increased.

3.8. Relationship between the Fractal Dimension and Pore Structure Parameters Based on the
Thermodynamic Relational Model
3.8.1. Relationship between Fractal Dimension and Porosity

The relationship between the fractal dimension and porosity of AAMS composite
cementitious materials is shown in Figure 13. As shown in Figure 13, the linear regression
R2 for the fractal dimension and porosity was 0.73537, which showed that the correlation
between them was good, and they were negatively correlated; therefore, the denser the
internal structure of the AAMS material, the larger the fractal dimension, and the more
complex the system structure. The fractal dimension characterized the compactness of
the cementitious material and the variations in pore sizes well. Therefore, under certain
conditions, the relative porosities of different materials can be inferred by comparing their
fractal dimension of the pore volume.
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3.8.2. Relationship between Fractal Dimension and Total Pore Area

The relationship between the fractal dimension and total pore area of the AAMS
composite cementitious material is shown in Figure 14. The larger the total pore area of
the AAMS material, the greater the number of pores with small pore sizes or the greater
the roughness of the pore surfaces; that is, the pore area reflects the amounts of pore
sizes to a certain extent. As seen from Figure 14, the R2 value of the linear regression of
the fractal dimension and total pore area was 0.62522, which showed that the correlation
between fractal dimension and total pore area was weak, and the fractal dimension of the
cementitious material decreased with increasing total pore area. This result is contrary to
the results of a study on the pore structure of cement mortar reported by Jin et al. [57]. The
reason may be that the AAMS composite cementitious material had to be activated with
alkali, which led to a pore structure more complex than that of cement mortar, thus leading
to a decrease in the total pore area of the AAMS material with increasing fractal dimension.
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3.8.3. Relationship between Fractal Dimension and Average and Median Pore Sizes

The average pore size and median pore size (by volume) are parameters used to
characterize the average pore size and reflect the distribution of pore sizes when the
porosity is held constant. When the porosity is constant, the larger the average pore size
and median pore size are, the larger the number of large pores in the pore structure, and
vice versa. The relationships between the fractal dimension and the average pore diameter
and median pore diameter of the AAMS composite cementitious materials are shown in
Figure 15. As shown in Figure 15, the R2 value of the plots of fractal dimension versus
average pore diameter and the median pore diameter of AAMS composite cementitious
materials were 0.65626 and 0.56997, respectively, which indicated that the correlations
between fractal dimension and average pore diameter and median pore diameter were
weak; with increasing fractal dimension, the average pore diameter and median pore
diameter of the cementitious materials were reduced.Has been checked.
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3.9. Relationship between Fractal Dimension and Compressive Strength and Drying Shrinkage
3.9.1. Relationship between the Fractal Dimension and Compressive Strength

Compressive strength is an important index with which to characterize the mechanical
properties of cementitious materials. Figure 16 shows that there was a good positive
correlation between the AAMS composite cementitious materials and the fractal dimension.
With increases in the slag content and Na2O content, the fractal dimension and compressive
strengths of the AAMS composite cementitious materials increased, and the correlation
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coefficients R2 were 0.75323 and 0.95572, respectively. The correlation coefficients show that
when the Na2O content was varied, the correlation between compressive strength and the
fractal dimension of the AAMS composite cementitious material was higher, indicating that
the pore structure of the cementitious material was more complex when Na2O was varied.
The complexity of the pore structure was the main factor affecting the compressive strength
of the AAMS composite cementitious material. Figure 16 shows that the compressive
strength of the AAMS composite cementitious material increased with increases in the
fractal dimension, and this result is consistent with the results of a study on the compressive
strengths of cement mortars reported by Li et al. [63] This shows that the fractal dimension
can characterize the changes in compressive strengths of cementitious materials effectively.
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3.9.2. Relationship between the Fractal Dimension and Drying Shrinkage

Drying shrinkage is an important index affecting the volumetric stabilities of AAMS
composite cementitious materials. Figure 17 indicates that there was a strong positive
correlation between the AAMS composite cementitious material and the fractal dimension.
With increasing slag content and Na2O content, the fractal dimension and drying shrinkage
of the AAMS composite cementitious material increased, and the correlation coefficients
R2 were 0.93855 and 0.99869, respectively. The correlation coefficient indicated that the
fractal dimension had a strong correlation with drying shrinkage, and because the fractal
dimension was closely related to the porosity, pore sizes, and pore distribution of the AAMS
composite cementitious materials, it also showed that the fractal dimension can quantita-
tively characterize the complexity of the pore structure. The larger the fractal dimension is,
the wider the pore size distribution and the more complex the pore structure. The fractal
dimension can make pore structure measurement results more intuitive and comparable,
and quantification of pore structures is convenient for further in-depth analyses of the
relationship between pore structure and macroscopic performance. Therefore, in seeking
to improve the mechanical properties of the AAMS composite cementitious material, the
drying shrinkage of the AAMS material can be improved by adjusting the pore structure,
which is conducive to further in-depth analyses of the relationships between pore structure
and compressive strength and drying shrinkage and provides a theoretical basis for the
promotion and application of alkali-activated cementitious materials.
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4. Conclusions

In this study, macroscopic properties, microscopic analyses, and studies of the
fractal dimension for AAMS composite cementitious materials were used to reach the
following conclusions:

(1) Increasing the contents of slag and Na2O improved the workability and mechan-
ical properties of AAMS composite cementitious materials. With increasing slag
content, the flow time and setting time of the AAMS composite cementitious mate-
rial decreased, and the compressive strength and drying shrinkage increased; with
increasing Na2O content, the flow time of the AAMS composite cementitious mate-
rial decreased, the setting time increased, and the compressive strength and drying
shrinkage increased.

(2) When the slag content was 0, the hydration product of the AAMS composite ce-
mentitious material was N-A-S-H. With increasing slag content, the proportion of
C-A-S-H gel in the composite system increased; at this time, the hydration prod-
ucts in the composite system were mainly N-A-S-H and C-A-S-H. The microscopic
morphology showed that C-A-S-H and N-A-S-H filled each other, which made the
structure denser and improved the compressive strength of the AAMS composite
cementitious material. With increasing Na2O content, the degrees of hydration of the
solid precursors of the AAMS composite cementitious material were increased, more
hydrated substances were generated, the system underwent pore refinement, and the
porosity decreased, which led to increased drying shrinkage of the AAMS composite
cementitious material.

(3) By comparing and analyzing the Menger sponge model with the fractal model based
on the thermodynamic relationship, it was found that the fractal model based on the
thermodynamic relationship better reflected the pore size distribution over the entire
pore size determination range, and the correlation coefficients R2 were above 0.99,
while dispersion with the Menger sponge model was relatively large. The fractal
dimension based on the thermodynamic relationship ranged from 2.83 to 2.85, and
the fractal dimension of the Menger sponge model ranged from 3.2 to 3.4. The fractal
dimension of both models was greater than 2.0, which indicated that increasing slag
and Na2O contents made the pore distribution morphologies of AAMS composite
cementitious materials irregular and complex.

(4) Use of the fractal dimension based on the thermodynamic relationship as a quanti-
tative parameter indicating the pore structure complexity effectively characterized
the relative relationships between parameters such as total pore area, average pore
size, and median pore size among different pore structures. Therefore, the fractal
dimension is a comprehensive parameter with which to evaluate the pore size distri-
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bution, which describes the pore size distributions of AAMS composite cementitious
materials more accurately than other parameters.

(5) The compressive strength, drying shrinkage, and fractal dimension of the AAMS com-
posite cementitious material were strongly correlated, indicating that the complexity of
the pore structure is an important factor affecting the macroscopic properties of AAMS
composite cementitious materials. The pore structure can be adjusted by changing the
contents of slag and Na2O to improve the compressive strength of the AAMS material
and reduce drying shrinkage. It is helpful to further analyze the relationships between
pore structure and the macroscopic properties of the AAMS materials to provide a
theoretical basis for application of the AAMS composite cementitious materials.
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