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Abstract: Fabrication of tailor-made materials requires meticulous planning, use of technical equip-
ments, major components and suitable additives that influence the end application. Most of the
processes of separation/transport/adsorption have environmental applications that demands a
material to be with measurable porous nature, stability (mechanical, thermal) and morphology.
Researchers say that a vital role is played by porogens in this regard. Porogens (i.e., synthetic, natural,
mixed) and their qualitative and quantitative influence on the substrate material (polymers (bio,
synthetic), ceramic, metals, etc.) and their fabrication processes are summarized. In most cases,
porogens critically influence the morphology, performance, surface and cross-section, which are
directly linked to material efficiency, stability, reusability potential and its applications. However,
currently there are no review articles exclusively focused on the porogen pores’ role in material
fabrication in general. Accordingly, this article comprises a review of the literature on various types
of porogens, their efficiency in different host materials (organic, inorganic, etc.), pore size distribution
(macro, micro and nano), their advantages and limitations, to a certain extent, and their critical
applications. These include separation, transport of pollutants, stability improvement and much
more. The progress made and the remaining challenges in porogens’ role in the material fabrication
process need to be summarized for researcher’s attention.

Keywords: porous material; porogens; polymers; ceramic; biopolymers

1. Introduction

Nowadays, porous materials are gaining significant interest in various fields due to
their wide range of applications in all fields such as filtration membranes, catalyst supports,
adsorbents, thermal energy, insulation systems, evaporation systems, biomaterials scaffolds
for bone ingrowth and drug delivery. In general, whatever the application, there is always
a compromise between porosity and mechanical strength of the final material. Hence,
the range of porosity, pore morphology and pore size distribution are to be optimized for
specific applications. This is controlled and determined based on the fabrication method
selected. In material designing, the fabrication process requires stringent regulations and a
meticulous planning process, so that the end product can fulfil a wide range of applications,
i.e., stability, tailor-made structure, reusability, cost-effectiveness, etc. For the past few
decades, there has been enormous interest in the application of porous materials ranging
from separation science to medicine, and its synthesis has roots in interesting theory and
experimental facts. The morphology of a material and the topology of pores are entire
research areas. Porous materials created by nature or by synthetic design have found great
utility in all aspects of human activity [1].
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The history and importance of porous materials are long and varied, hailing from
ancient times, and one such material is porous charcoal, which has applications in the
medicinal field. An ever-increasing awareness in civil society and environmental regula-
tions of global bodies have revived the topic of porous materials, which have a versatile
range of applications, as mentioned earlier.

Classification of pores is one of the basic requisites of comprehensive characteriza-
tion of porous materials such as catalysts, adsorbents, oxides, carbons, zeolites, organic
polymers, soils, etc., based on their structure, size, accessibility and shape parameters.
Pores are classified as per IUPAC regulations: micropore (<2 nm), mesopore (2–50 nm)
and macropore (>50 nm) [2]. Material pore size and its distribution are crucial parameters
for the selection of application domains, such as separation, water purification, catalytic
support, energy storage and capacitors. A specific application requires material with an
appropriate pore type. They are highly dependent on the external/internal pore structure,
so it is wise to decode the morphology and structural arrangement of porous materials
to understand the physical processes involved; these can be evaluated through internal
geometry, size, connectivity, etc.

The design and synthesis of organic, inorganic and polymeric materials with controlled
pore structures are important in both academic and industrial sectors due to the ever-
increasing demand in potential industrial applications. Therefore, it is the purpose of this
review to provide an introductory description of pores, porous material types and the
role of pore forming agents (porogens) in various industrial and academic applications.
In connection with this, different materials (with different physical and chemical natures)
which can act as a porogen on various host surfaces, i.e., polymer, ceramic, glass, metals,
etc., are summarized, especially with respect to the enhancement of pores and pore size
and their direct impact on applications. However, currently there are no review articles
specifically focused on porous media fabrication based on various porogens. The objective
of this work is also to review the types and actions of porogens in developing porous
materials, and the application of porogens. In this review, we summarize recent reports
on the types of porogens (organic, inorganic, ceramic, etc.), nature of porogens (synthetic,
bio/natural) and the type of host (polymers (synthetic, bio), glass, ceramic, metal, etc.)
substrate material which requires porogens.

2. All about Pores

Porous materials contain pores, also called voids, either in isolation or interconnected,
that may have similar or different shapes and sizes to form complex networks of channels,
which are usually filled with fluid under normal atmospheric conditions, such as air, liquid
water or water vapor. The pore structure is developed during the crystallization stage
of the solid, or by subsequent treatment. According to Kaneko classification, pores are
classified based on the following geometrical shapes (Figure 1): cylindrical, slit-shaped,
cone-shaped and ink bottle-shaped pores. Rhomboid, elliptical and square are the other
pore shapes reported in the literature. Pore shapes fall under different geometric bodies
such as cylinders (for activated oxides such as alumina or magnesia), prisms (fibrous
zeolites), cavities and windows (other zeolites), slits (clays and activated carbons), or
spheres (silica gel, zirconia gel, etc.) [1–3].
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Pore size is defined as the pore diameter or width (distance between the two walls)
which has an accurate meaning only with a defined geometrical shape and analyzed
through gas sorption isotherms. According to the IUPAC definition, porous materials are
classified into three major categories depending on their pore size, as follows:

• Microporous materials (diameters up to 2.0 nm);
• Mesoporous materials (diameters between 2.0 and 50.0 nm);
• Macro porous materials (sizes exceeding 50.0 nm) [1].

It may be desirable to subdivide micropores into those smaller than about 0.7 nm, as
narrow micropores or ultra-micropores, and those in the range from 0.7 to 2.0 nm, termed
as supermicropores. Material porosity is a measure of the void spaces in a material, and
is a fraction of the volume of voids over the total volume, with a value between 0 and 1.
In the case of biomaterials loaded with drugs, controlled porosity allows their liberation
in a targeted site by a slow, continuous and controlled flux over a certain period. Such a
controlled drug delivery is linked to microporosity, which are materials consisting of pores
with a size less than 10 mm in diameter. The field of bioceramics demands materials with
an additional larger porosity (macroporosity) for promoting integration with biological
tissues [4]. Carbon-based materials, used as adsorbents, may reveal uniform or non-
uniform pore size distribution, with pore diameters ranging from micro- to macro-pores.
Commercial zeolites, used as molecular sieves, are in the category of ultra-micro pore size,
which is 0.3–0.5.nm. In contrast, silica gels having larger pores or macropores up to 300 nm
are also known.

2.1. Porous Materials

Porous materials, either natural or artificial, have attracted the attention of many
researchers owing to their potential applications based on their unique properties such
as high surface area, relatively low stiffness, shape selectivity, permeability, etc. Based on
their composition, these porous materials can be classified into two types: inorganic and
carbon-based materials. In the past two decades, molecular design has been increasingly
prevalent in porous materials such as zeolites, metal–organic frameworks (MOFs), covalent
organic frameworks (COFs) and porous polymers (membranes) which have widespread
applications (Figure 2) in adsorption, catalysis, separation, purification and energy storage
and production [5].
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Porous materials have created a significant contribution to society and they are still
developing rapidly. They must be scalable and should satisfy the multiple functional criteria
such as stability, selectivity, adsorption kinetics, reusability and processability, mechanical
properties and thermal properties, while keeping costs low. Hence, there is a great challenge
in the process of designing; to have control over pore structure and also to understand the
structure–property relationship in a detailed manner. Design concepts in porous materials
have advanced rapidly in recent years as a result of the latest developments in materials
characterization, modular synthesis and computational structure–property predictions. As
we are all aware, there is no one-size-fits-all solution; the real challenge exists in choosing
the right type of porous material for a given application. In addition, porous materials are
not only used, but also have potential, in electronics, light harvesting and energy, proton
conduction, molecular sensing applications, etc. Hence, there is a lot of scope to explore
new porous materials.

2.2. Action of Porogens

The primary task in the fabrication of porous materials is to achieve a controllable
or tailored pore size and porosity using different methodologies, i.e., physical techniques,
chemical agents/modifications, etc. [6]. The addition of chemical compounds as additives
during material fabrication is a viable option in the development of porous materials, which
is crucial for a plethora of applications. The terminology “porogens” and “pore formers”
refers to a material additive that has the ability to disperse in the feed composition and
may leach out after the fabrication stage. In some cases, pore formers develop pores during
fabrication, but the concurrent leaching may alter the stability and efficiency of the materials.
Thus, by controlling the properties of the porogens, the microstructures of the host materials
can also be tailored, which is critical for the fabrication of porous materials. Therefore, a
systematic study was needed to understand the relations between the properties of the
porogens, the resultant pore structures and the dimensional changes upon their removal. It
was also demonstrated that the thermal and morphological properties of the porogens have
a vital effect on the features of the resultant microstructures [7]. In the field of membrane
technology, porogens play a very vital role as a hydrophilic additive, which increases the
separation performance of the membrane which in turn may be useful for controlling
fouling properties.

The bar diagram (Figure 3) shows the significant research articles published on pore-
forming materials and porogens in recent years.
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Types of Porogens

Porogens are generally used to prepare the porous support, verified by theory and
practice, and the major division is organic and inorganic. Examples of inorganic porogens
are ammonium carbonate, calcium carbonate, ammonium bicarbonate and ammonium
chloride, etc. (Table 1), while examples of organic porogens are sawdust, shell powder,
starch, polystyrene, water-soluble polymers such as Poly ethylene glycol (PEG), Polyvinyl
pyrrolidone (PVP), Polyvinylalcohol (PVA), Polymethaacrylate (PMA), Polyacrylicacid
(PAA), etc. Nowadays, bio/green porogens are attracting the attention of researchers.
Activated carbon from various sources, moringa seed powder and marine-derived poly-
mers such as chitosan, κ- carrageenan, alginate and ulvan have been employed as poro-
gens in recent studies. In addition, green seaweed-derived sulphated polysaccharides
have proven to be superior porogens compared to the others, especially when used in
minimum quantities.

Table 1. Various types of porogens with their functions and applications.

S. No. Porogens Used Functions Applications

1.

Water-soluble polymers such as
Polyethylene glycol (PEG),

poly(vinylpyrrolidone) (PVP),
Polyvinyl alcohol (PVA), etc.

Increases mean pore size
distribution, membrane porosity

and hydrophilicity.

Water filtration. Pharmaceutical
and biomedical applications,

fuel cell applications, etc.

2.

Low molecular weight inorganic
salts: Lithium chloride, Zinc

chloride, SiO2,
etc.

Good adsorption
capabilities, high

transparency, easy regeneration

Enhanced heterogeneous
photocatalysts and their

application to various reactions
for organic pollutant removal

from air and water

3. Calcium Carbonate
Improved the apparent porosity
and enlarged the pore size with

good mechanical strength

High apparent
porosity ceramics

4. Ammonium bicarbonate

Enhanced porosity and show
more uniform pore distribution

Well interconnected macroporous
scaffolds were produced having
mean pore diameters of around

300–400 µm

Shape memory alloys
Highly open porous

biodegradable scaffolds for
tissue regeneration [8]

5.

Waste biological resource such as
saw dust, potato, wheat, corn, rice

starch, etc.

Corncob bio char from K2FeO4
and KOH

Reduction composition of pore
former results in reduction in

membrane pore size and porosity.

Porosity also depends on
thermal conductivity

Good capacitance equivalent to
graphene materials

Microfiltration and microbial
filtration applications.

Burners, anodes, thermal barrier
coatings and insulating layers.

Capacitive deionization
plate materials or electrodes

6. Fire clay bricks—wastes from
renewable or mineral resources

Porosity, water absorption,
density, mechanical resistance and

even thermal
insulation is enhanced

and modified.

Innovative building materials
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Table 1. Cont.

S. No. Porogens Used Functions Applications

7.

Carbon black

Activated carbon from the
palm oil shell

Pores were helpful for enhancing
the strength and decreasing the

thermal conductivity

Pore formers increase the porosity
and pore volume

Shown best
membrane permeability

Alumina porous ceramics

Proton exchange membrane
fuel cells

Peat water microfiltration

8.

Naphthalene, carbon beads or fibers
polymers such as PMMA

(polymethylmethaacrylate),
polyurethane, cellulose and

paraffin oil

Porosities up to 90% with pores
ranging from 1 to 2000 mm in size

are reported

Drug delivery and
manufacturing of 3D scaffolds

with desired porosity

9. Biodegradable polymer: Chitosan
Produced anodes with lower
fracture strength and modest

electrical conductivity
Solid oxide fuel cells

10. Marine source seaweed
polysaccharides: κ- Carrageenan

Continuous porous structure with
uniformly distributed pores was

obtained. It also increased the
membrane porosity and mean

pore diameter increased

Membranes for
various applications

11. Marine source seaweed
polysaccharides: Alginate

Showed a high porosity and an
open porous structure

3D Porous hydrogel as
meniscus substitute

12. Marine source seaweed
polysaccharides: Ulvan

Very high influence on the
efficiency and

morphological properties
Ultrafiltration membranes

3. Inorganic Porogens

Polymeric membranes suffer from a relationship trade-off between selectivity and
permeability. In order to overcome this trade-off, different approaches have been applied
by changing the membrane properties such as pore size, porosity, hydrophilicity, surface
properties and polymer morphology. Inorganic fillers and additives have been extensively
used for tuning the membrane properties by incorporating them into polymer doped
solutions. Several inorganic nanomaterials such as SiO2, TiO2, Al2O3, Fe3O4, CaCO3,
graphene oxide, carbon nanotubes, zeolites and CeO2 have been utilized to tune the
membrane properties (Table 2).

Table 2. Different inorganic nanoparticles used in thin film nanocomposite membranes.

S. No. Nature of the Membranes Inorganic Porogens Used Properties Tuned Applications

1.

Thin-film nanocomposite
(TFN) membranes

SiO2 nanoparticles Higher water
permeability, high

water flux and better
salt rejection

Forward osmosis [9]

2.
Amine functionalized
multi-walled carbon

nanotubes (F-MWCNTs)
Forward osmosis [10]

3. TiO2 nanoparticles
Higher water

permeability and low
reverse solute flux

Forward osmosis [11]



Polymers 2022, 14, 5209 7 of 27

Table 2. Cont.

S. No. Nature of the Membranes Inorganic Porogens Used Properties Tuned Applications

4. Porous zeolite
nanoparticles

Higher water
permeability and high

water flux

Forward osmosis [12]

5. NaY zeolite nanoparticles Forward osmosis [13]

6. Metal matrix membranes Silica gel

Higher water
permeability, high

water flux and better
salt rejection

Forward osmosis [14]

Similar observations were noticed in almost all the research investigations when
incorporating inorganic nanoparticles into thin film composite membranes with respect to
water flux and solute flux. In almost all thin film nano composite membranes investigated so
far, regardless of the fabrication method, the incorporation of inorganic nanoparticles (SiO2,
functionalized MWCNTs and TiO2) resulted in very high forward osmosis performance,
leading to an increase in the roughness and hydrophilicity of the TFN membranes along
with the best salt rejection and a high water flux [9,11,12]. One such measurement and
observation is shown in Figure 4. A concentrative internal concentration polarization
(ICP) occurred when the active rejection layer faced the draw solution (AL-DS orientation),
resulting in the rejected feed solute accumulating in the support layer. Similarly, a dilutive
ICP occurred due to dilution of the draw solution inside the support layer when the
active layer is placed against the feed solution (AL-FS orientation). This phenomenon
reduced the effective driving force. Since it occurs inside the support layer, it could not be
eliminated by increasing the flow rate turbulence. Therefore, in order to minimize ICP, a
small structure parameter is preferred for the support layer to fabricate an appropriate FO
membrane [9]. Similarly, in the study for the potential use of mixed matrix membranes
(MMMs), a substantially improved substrate porosity, mass transfer coefficient, as well as
rejection layer properties, were observed. This gave a new and additional dimension for
ICP control in osmotically driven membrane processes [10].
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Furthermore, to add more support to this finding, a zeolite loaded TFN membrane
demonstrated significantly enhanced FO water flux due to their improved water perme-
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ability, and it was proved that this is potentially more favorable during the application of
treating feed solutions with water with relatively high salinity under AL-FS orientation [14].

However, the inorganic nanoparticles are liable to aggregate in the membranes at
higher loadings/concentration due to the difference in material compatibility with poly-
meric chains [15]. Agglomeration of the nanofillers could develop defects and voids,
which leads to the free passage of penetrants with the reduced separation efficiency of the
membrane. The addition of a two-dimensional smectite-type clay and one-dimensional
nanowires was also used to avoid the agglomeration and leakage of nanoparticles [16].
The addition of nanowires instead of nanoparticles in the casting solutions revealed many
varied results in the UF membrane performance, as highlighted below in Figure 5.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 4. FO water flux (a) and solute flux (b) in synthesized FO membranes.[9]. 

Furthermore, to add more support to this finding, a zeolite loaded TFN membrane 
demonstrated significantly enhanced FO water flux due to their improved water perme-
ability, and it was proved that this is potentially more favorable during the application of 
treating feed solutions with water with relatively high salinity under AL-FS orientation 
[14]. 

However, the inorganic nanoparticles are liable to aggregate in the membranes at 
higher loadings/concentration due to the difference in material compatibility with poly-
meric chains [15]. Agglomeration of the nanofillers could develop defects and voids, 
which leads to the free passage of penetrants with the reduced separation efficiency of the 
membrane. The addition of a two-dimensional smectite-type clay and one-dimensional 
nanowires was also used to avoid the agglomeration and leakage of nanoparticles [16]. 
The addition of nanowires instead of nanoparticles in the casting solutions revealed many 
varied results in the UF membrane performance, as highlighted below in Figure 5. 

 
Figure 5. Effect of nanowire incorporation on membrane properties. 

►Elongation 
rate improved

► Aggregation 
and leak out of 

TiO2 nanoparticle
s avoided

► Mechanical 
and thermal 
properties 
improved

► Permeability 
and antifouling 
performance 

enhanced.
►Membrane 

exhibited denser 
skin with 

smoother surface.

Figure 5. Effect of nanowire incorporation on membrane properties.

Monticelli et al. introduced different types of clay in polysulfone (PSf) membranes
and observed that Cloisite Na and Cloisite 93A formed microaggregates which affected
the phase inversion process in the coagulation bath. They also found that it enhanced the
wettability and mechanical properties of dense films [17].

Inorganic salts, especially lyotropic salts of lithium, zinc, calcium and magnesium with
bromide, iodide, nitrate, thiocyanate and perchlorate—such as lithium chloride (LiCl) and
lithium perchlorate (LiClO4)—are known for generating porosity, good interconnectivity
and increasing the coagulation rate of polymer-doped solution [18–20]. Among different
types of lithium halides, lithium bromide (LiBr, LiCl) and lithium fluoride (LiF) are used
as additives. The addition of LiCl and LiF tends to enhance the viscosity of the casting
solution, which suppresses the macro-void formation with excellent interconnectivity and
porosity along with high fluxes and higher rejection rates. However, the addition of LiBr
in polyethersulfone (PES) polymer-doped solution resulted in moderate diffusion of the
solvent during the coagulation process and delayed the solvent–nonsolvent demixing
phenomena. It mainly affected the membrane surface layer rather than the microstructure
of the membrane; LiBr acted as a pore inhibitor rather than a pore former [21].

In general, the concentration of salt additives cannot exceed a certain limit due to
solubility limitations. However, the concentration of salts can be increased by the addi-
tion of different salts, preferably one that has no common ion with the first salt. Such a
combination of two salts, such as ZnCl2/Pyridine Hydrochloride and Mg(ClO4)2/Pyridine
Hydrochloride, significantly improves the flux of the membrane (Table 3). In addition,
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higher additive concentrations resulted in a more open structure, with the asymmetric
arrangement clearly established from the investigations [22].

Table 3. Different inorganic and mixed inorganic/organic materials incorporated as porogens.

Inorganic Materials Membrane
Type Polymer PWF

(L/m2 h bar) Refs.

Iron–Nickel oxide NF PES 2.20 [23]
Metformin/GO/Fe3O4 NF PES 9.02 [24]

Chitosan–Montmorillonate Loose NF PES 15.60 [25]
CNT NF PES 10.66 [26]

Sulfonated halloysite nanotube Loose NF PES 17.00 [27]
SiO2/LiCl UF CA 18.06 [28]

SiO2/PEG600
(inorganic/organic) UF CA 23.48 [28]

LiF UF PES 100.00 [21]
LiCl UF PES 82.00 [21]
LiBr UF PES 43.00 [21]

Clay/LiCl UF PSf 263.00 [29]
LiCl RO Aromatic Polyamide Membranes 34.00 [22]

LiClO4 RO Aromatic Polyamide Membranes 42.00 [22]
ZnCl2 RO Aromatic Polyamide Membranes 19.00 [22]

Mg(ClO4)2 RO Aromatic Polyamide Membranes 38.00 [22]
ZnCl2+ Pyridine Hydrochloride

(inorganic/organic salt) RO Aromatic Polyamide Membranes 46.20 [22]

Mg(ClO4)2 + Pyridine Hydrochloride
(inorganic/organic salt) RO Aromatic Polyamide Membranes 189.00 [22]

(NF—Nanofiltration; UF—Ultrafiltration; RO—Reverse Osmosis; PES—Polyethersulfone; CA—Cellulose acetate;
Psf—Polysulfone).

In further investigations with a wider range of inorganic materials incorporated in
nanofiltration or loose nanofiltration membranes, a significant increase in the pure water
flux and hydrophilicity of the membranes was observed. Membranes embedded with
a 0.5 wt.% novel metformin/GO/Fe3O4 hybrid (MMGO) acted as the best membrane
compared to bare PES membrane for water permeability enhancement and removal of
copper ions and dye [24]. In another study, Chitosan–Montmorillonite nanosheets blended
with NF membranes exhibited remarkable antifouling properties, demonstrating CS–MMT
nanosheets as an excellent antifouling material as well as having very good mechanical
stability. This demonstrates that CS–MMT loose NF membranes are an ideal choice for dye
purification under low pressure and with high efficiency [25]. Similar observations were
obtained with very small percentage addition of inorganic porogens such as sulfonated
halloysite nanotubes, CNTs, etc., which showed enhanced hydrophilicity and charge
density. They exhibited the highest flux coupled with high rejection of salts and reactive
dyes and low retention of the saline solution [26,27].

In a study related to UF membranes, the combination of organic–inorganic porogen
PEG 600/LiCl caused the resultant membranes to exhibit an increased average pore radius
and surface porosity compared to the CA/SiO2 membrane without additives. The presence
of PEG 600 and LiCl in the doped solution improved the permeate flux of proteins. With
PEG 600 as the porogen, the reversible fouling resistance ratio decreased to a greater extent.
In addition, PEG 600 proved to be the better porogen in comparison to LiCl, by offering
more resistance to total fouling thereby increasing the flux recovery ratio and recycling
potential of the CA/SiO2 blended membranes [28]. In one more investigation of flat sheet
PSf/clay nanocomposite membranes using clay as a porogen, better mechanical properties,
high stability, improved hydrophilicity of membranes and an increased ratio of large pore
in the skin layer was demonstrated [29].
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4. Organic/Polymeric Porogens

There are a wide variety of organic porogens used in various fields of research. First,
let us discuss the synthetic organic polymers such as Poly ethylene glycol (PEG), Polyvinyl
pyrrolidone (PVP), Polyvinylalcohol (PVA), Polyacrylamide (PAM), Polyacrylic acid (PAA)
and N-(2-Hydroxypropyl) meth acrylamide (HPMA), which play a vital role in pore for-
mation, distribution of pores and size of the porous materials and more specifically in the
fabrication of membrane materials (Table 4). The type and amount of porogen added have
a critical impact on the porosity of polymeric membranes, offering wide applications.

Table 4. Different water-soluble porogens used in ultrafiltration (UF) membranes.

S. No. Water Soluble
Porogens Structure Polymers and Membranes Properties Enhanced

1 PEG
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Table 4. Cont.

S. No. Water Soluble
Porogens Structure Polymers and Membranes Properties Enhanced
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4.1. Organic Water Soluble Porogens
Water-Soluble Porogens in Polymeric Microspheres (MCs)

Polymeric microspheres are small spherical micro particles, with a wide variety of
properties such as bulk total interfacial area, large inner volume, spherical shape and better
stability suitable for chemical loading [54]. They are used in significant applications such
as controlled release of encapsulated drugs, masking of odor and/or taste of encapsulating
materials and isolation of encapsulating materials. The porous surface of the polymeric MCs
depends on the nature of the solvent and the effect of the pore former and its concentration.

Two different synthetic polymers, polyether sulfone and polyetheretherketone with
card (PEEKWC) MCs were fabricated with and without pore formers using four differ-
ent solvents: N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), N-Methyl-
2-pyrrolidone (NMP) and γ-Butyrolactone (GBL). The asymmetric, symmetric, porous,
spongy and finger-like structure of the MCs varied based on several physical and chem-
ical properties. It was possible to design and synthesize a polymer with controlled size,
smoothness, etc., with structural guarantee [55]. The optical image is MCs formed is shown
in Figure 6.
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The porous structure of the MC increased with an increase in PVP concentration. The
polymeric microspheres exhibited a central cavity and an asymmetric (finger type) structure
having both a porous as well as a dense skin layer at the shell side (Figure 7).
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4.2. Ionic Liquids as Porogens

In a similar investigation, ionic liquids (IL) were explored for the pore formation
process in polymer membranes and microspheres using the phase inversion technique.
Any tailor-made material fabrication process requires meticulous planning where each
component fulfils an active role in determining the size, morphology, stability and appli-
cation. A membrane or microsphere (MC) that is composed of ILs and polymers as core
components without physical/chemical interaction generates the final products. In the case
of ionic liquids, physico-chemical properties (viscosity, density, etc.), nature (carbon chain
length, cations and anions), toxicity, cost and availability are considered as crucial factors.
The choice of the materials (membrane, microsphere) was based on destined applications,
such as separation, adsorption (organic, inorganic compounds), target delivery, loading of
different chemicals, etc.

However, the novel composite materials using IL incorporated MCs as porogens
showed a higher uniformity compared to that of microspheres without IL. These may
create varied opportunities for the preparation of extraction capsules and microreactors
with a smaller size and with a mean diameter value of 1.1 mm (Figure 8) [55].
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branes and microcapsules using hydrophilic porous polyethersulfone (PES) with 1-butyl-
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3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) as the structure control agent
(porogen), instead of the conventional PVPK17. The addition of 2 wt.% PVPK17 increased
the pore size, more specifically, the hydrophilicity and porosity. In the case of ionic liquid
membranes (ILMs), 5–25 wt.% [BMIM][PF6] was incorporated in the PES-doped solution,
whereas for ionic liquid microcapsules (ILMC), the concentration of [BMIM][PF6] was
restricted to 5–15 wt.% due to the IL viscosity range. [BMIM][PF6] concentration was a
crucial parameter in deciding the porosity and morphology; moreover, a higher concen-
tration of [BMIM][PF6] enhanced the viscosity thereby reducing solvent exchange speed
and channeled structures (finger-like) to a spongy morphology (Figure 9). Hence, these
novel composite materials with ILs displayed excellent solubility for a broad range of
organic molecules and they were used in the immobilization of suitable extractants into
microcapsules and membranes [56].
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Figure 9. SEM microimages of PES microcapsules prepared by the phase inversion technique with
different concentrations of [BMIM][PF6]: (1a) External, (1b, 2b and 3b) Cross-section, (2c and 3c)
Magnified cross-section (1-PES Blank, 2-PES/5 wt.% [BMIM][PF6], 3-PES/20 wt.% [BMIM][PF6]) [55].

Yet another study was carried out by the same authors using ionic liquids in polymer
inclusion membranes (PIMs) based on polyether sulfone (PES)/1-butyl-3-methylimidazolium
hexafluorophosphate ([BMIM][PF6]) using non-solvent induced phase separation (NIPS),
tested for the removal of reactive blue 19 (RB19) as a model anionic dye. Dye adsorption
efficiency was simulated by statistical analysis, which depended on pH, contact time, initial
dye concentration and the amount and weight of adsorbent (PIMs). As in the previous
investigation by the authors, the addition of 2 wt.% of PVPK17 increased the pore size
to a greater extent, but the addition of [BMIM][PF6] (less than 15 wt.%) did not influence
membrane properties (Figures 10 and 11). On the contrary, when the concertation of IL
(25 wt.%) increased, the morphology of the PES membrane drastically changed from fin-
ger to spongy type. Thus, the PIMs made of PES/2 wt.% PVPK17/[BMIM][PF6] were
effectively applied for RB19 dye adsorption.
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Based on the above investigation, 1-butyl-3-methylimidazolium hexafluorophosphate
[BMIM][PF6] was loaded into a polyethersulfone matrix and tested for the persistent and
expensive problem of “scaling” in the oil and gas industry. The threshold scale inhibitor
was investigated with PES/IL microspheres, where direct interaction with oilfield brine
solution occurred without loss of the active ingredient (IL). Performance was assessed
in a high-temperature brine solution using chemical screening tests, the dynamic tube
block method and electrochemical techniques. The scale inhibition efficiency (82%) was
achieved using 25 wt.% of [BMIM][PF6] microsphere on the lab scale. IL solubility in
water and morphology altered by the IL brings the required novelty. This novel approach
led to the prevention of ionic liquid loss during experimentation, thereby improving the
deposition of calcium crystals on the solid surface which facilitates their easy removal
from the microsphere surface. These fabricated microspheres had longer residual effects of
chemical treatment (Figure 12) and were utilized at a cheaper rate due to more effective
control and less chemical consumption [57].
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Polyethersulfone (PES) microspheres loaded with amine-functionalized imidazolium
cation ILs with a common anion bistrifluoromethylsulfonylamide ([TF2N]−) were evalu-
ated for adsorption of CO2 and CH4. Amine-based ILs loaded in the PES matrix exhibited
a very limited adsorption capacity of these gas molecules indicating structural defects. A
major analysis and interpretation of the defects shows that they may be due to the loss
of porosity or unsuitable pore size due to the immobilization of ILs which have large
molecular volumes. Hence, it was concluded that an alternative low molecular volume and
high-performing IL, as well as different IL loading methods, need to be adapted to improve
the performance of IL-PES microspheres [58].

5. Bio/Green Pore Formers
5.1. Deep Eutectic Solvents (DESs) as Porogens in Asymmetric Polymer Membranes

Today, deep eutectic solvents (DESs) are recognized as the new generation of solvents
to be tested in different applications and approaches [59–62]. DESs fall into the guidelines
of the “Twelve Principles of Green Chemistry” which led to an exponential increase in
their usage. They also offset some of the primary drawbacks of typical solvents and ionic
liquids (ILs). In the framework of membrane engineering, DESs have been potentially
considered for tailoring membrane structures while aiding in diverse membrane fabrication
protocols. Promisingly, in a polymeric membrane containing DESs, both the components
(i.e., the polymer and DES) may either interact or not, while still playing an important
role in the membrane formation. For instance, DESs could work exclusively as a typical
solvent by dissolving the polymer phase [63], or more interestingly, the DES compounds’
hydrogen bond acceptors (HBA) or hydrogen bond donors (HBD) could be involved within
the polymerization process [64].

The incorporation of DESs could also result in important changes in polymer proper-
ties [65], including surface modifications, as well as morphological and structural changes [66].
There is an increasing demand for highly selective membrane technologies (e.g., pervapo-
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ration, gas separation) that have membrane surfaces with a hydrophilic or hydrophobic
nature to split polar and non-polar molecules [67,68]. Thus, alteration of the physico-
chemical properties and the nature of DESs (i.e., hydrophilicity or hydrophobicity) becomes
significant when combined in polymeric membranes. Very recently, DES application in
polymer materials has also included the synthesis and different mechanisms for polymer
formation, hydrogel design, molecularly imprinted polymers and porous-structured mono-
liths and membranes [63]. The applications of DESs in various processes in membrane
technology is shown in Figure 13.
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Towards the preparation of a polymer membrane, the solvent is considered the crucial
element for dispersing the polymer network, and is required to create the doped solution
and subsequently result in a membrane [70]. In the case of porous polymer membranes,
phase inversion is likely to be the most applicable technique, presenting multiple modifica-
tions and strategies according to need, such as solvent-induced, temperature-induced or
vapor-induced phase separation [71,72]. Typically, when a casting solution is immersed
into a non-solvent coagulation bath (generally water), the interchange of solvent and non-
solvent takes place due to diffusion, resulting in a phase transition and thus the formation
of a membrane [73]. Thanks to these water-soluble properties, some DESs have been
proposed as pore-forming candidates.

In recent investigations, Jiang et al. [74] reported the fabrication of polyether sulfone
(PES) UF membranes by introducing various imidazole-based DESs, based on organic Cl
and Br salts and organic imidazole molecules (IM). Experimentally, the porogen fostered
the porosity and enhanced the membrane pore size, which allowed the creation of more
permeable membranes. The DESs tend to possess polar or hydrophilic groups [75]. Based
on the affinity of the selected DES to water, the exchange rate between the conventional
solvent (e.g., NMP) and non-solvent (water) in a coagulation bath could relatively speed
up to promote the fabrication of membranes with enhanced porous structures [74,76]. As
can be seen in Figure 14, Jiang et al. [75] evidenced the merging of DESs, particularly
tetrabutylphosphonium bromide- imidazole (P4444Br/IM), into the PES matrix, which
could turn the pores into macro-voids in the resulting structure.
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tives [75].

Such a phenomenon was more convincing at the highest DES concentration of ca.
2 wt.%. Regarding the filtration performance, the membranes showed a water permeability
as high as 781 L m−2 h−1, which was approximately six times higher than the pristine
PES membrane. Additionally, it was observed that the rejection towards bovine serum
albumin (BSA) (Figure 15). remained unchanged by DES usage since it was seen that all
the membranes displayed a rejection of over 97%. The authors stated that the high BSA
rejection was a result of the narrowly distributed pore diameters as well as the reduction in
the effective pore size. During the filtration of humic acid solutions, the water flux decline
was less pronounced, with values remaining stable. This shows that DES-based polymer
membranes can benefit from the DES enhanced antifouling properties of lower surface
roughness. These outcomes agreed with the studies documenting composite polyamide
membranes treated with various DESs using choline chloride (as HBA) and ethylene glycol,
urea and glycerol (as HBD) [77]. This study declared that the chemical surface modification
substantially improved the permeation by 2–5-fold in comparison with the non-treated
membrane with unchanged rejection. Such a flux enhancement was associated with the
enhanced surface wettability acquired thanks to the DES application, as documented by
Jiang and co-workers [75], who found an enhanced surface smoothness for the membranes
treated with DESs. Here, the phenomenon was ascribed to the presence of hydrogen
bonding between the DES and the polyamide moiety, later verified by zeta-potential
analysis [78].

In a more recent work, Vatanpour et al. [79] documented a similar development
by preparing DESs using choline chloride and ethylene glycol, forming the well-known
ethaline. The resulting hydrophilic DES was subsequently applied as a porogen during the
fabrication of PES/polyvinyl pyrrolidone nanofiltration (NF) membranes. The authors gave
a concluding remark saying that the application of ethaline contributed to better membranes
in terms of (i) uniform pores on the membrane surface, (ii) presence of large macro-voids
in the finger-like layer, (iii) an improved surface smoothness, (iv) better hydrophilicity
and (v) improved separation performance in both protein rejection and dye removal
and permeability.
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5.2. DESs in the Fabrication of Porous Composite Membranes

Kuttiani Ali [80] synthetized choline chloride:ethylene glycol (ChCl-EG) to prepare
composite membranes, where the DES was employed for the post-impregnation of silica
nanoparticles followed by their embedding into polyimide UF membranes, as can be seen
in Figure 16a,b. In general, the DES impregnation onto the nanoparticles did not affect their
morphology, but it resulted in a change of inter-spacing of 3.3 nm in the DES-modified silica,
while TEM analysis demonstrated the presence of a porous shell based on nanoclusters
over the nanoparticles’ surface. It was speculated that these nanoclusters were associated
to the DES in the solid state. After optimization, 2 wt.% of DES-tuned nanoparticles was
found to be the optimal loading into the polymer membrane, giving the best mechanical
properties. When determining with the membranes’ performance in aqueous phenol solu-
tion (containing 30 mg L−1), the composite UF membranes showed a water permeability of
approximately 300 L m−2 h−1 and a rejection efficiency of 96%. Figure 16c. illustrates the
effect of the tuned silica on the performance of the membranes in comparison to the case
without particles. Notably, the DES-doped nanoparticles contributed to an excellent phenol
uptake on the hydrated surface of the final silica–polyimide membranes; such adsorption
was ascribed to the hydrogen bonding and carboxylic moieties of polyimide. Interestingly,
hydrogen bonding in silica (thanks to silanol and siloxane groups) and phenol may also
play a role in the efficient phenol removal.
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In another work, urea and guanidine hydrochloride (at molar ratio 2:1) were used dur-
ing the exfoliation protocol of silk fibers (diameter: 20–100 nm and length: 0.3–10 µm) [81].
In this research, Tan and co-workers found that the DES satisfactorily performed the exfoli-
ation treatment of the fibers by permeating into the silk fibers, loosening their structure and
breaking the hydrogen bonds. The latter finding decreased the strength of the hydrophobic
interactions in the silk. The obtained fibers exhibited optimal mechanical properties with
the possibility to test them in vacuum filtration. Researchers discovered their ability to
eliminate ions, dyes and protein based on the amphiphilic properties of the silk fibers. For
example, membranes (of thickness ca. 18µm) exhibited 97% rejection for dyes, such as Rho-
damine B, congo red and methylene blue, and acceptable protein adsorption (>96%). On
the other hand, the membranes did not perform satisfactorily in the retention of Cu2+ions.
Afterwards, Tan et al. [82] further confirmed that silk protein nanofibers produced via a
DES-aided extraction procedure would be an alternative for new materials with potential
application in tissue engineering according to the great cyto-compatibility, flexibility and
mechanical stability of the fibers.

One more interesting finding of DESs in membranes regards the potential facilitated
water transport when they are embedded in membranes. Seyyed Shahabi et al. [83], for
instance, prepared composite thin-film polyamide reverse osmosis membranes modified
with 1 wt.% choline chloride–urea, which resulted in a water permeation increase of up to
56 L m−2 h−1 and a salt rejection of ca. 96.4%. The result was credited to the ability
of the DES to tune the membrane’s surface to enhance its surface hydrophilicity and
smoothness, which was associated with the presence of hydroxyl (-OH) functional groups.
A different research group also analyzed the application of ChCl-EG DES during the
chemical functionalization of graphene oxide (GO) NF membranes [84]. These membranes
reported water permeability of 124 L m−2 h−1, represents a 5–7 times increased permeability
than the non-treated GO membrane (with 22 L m−2 h−1), along with a high rejection
towards salt and dyes (ca. 99%). To some extent, the DES significantly influenced the
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structural properties of GO since (i) it modified the d-spacing of GO, (ii) it decreased the
lateral size and (iii) it decreased the wettability properties of the final membrane.

6. Marine Derived Polymers as Porogens

Ulvan, a green seaweed-derived sulfated polysaccharide was utilized as a morphology-
controlled porogen in polysulfone (PS) membrane fabrication. Competitive results were
observed using minimal ulvan concentrations in PS membranes with DMF as a solvent.
Conventional analytical tools, porosimetry and SEM, confirmed the morphological changes
and pore size increase in the PS matrix. Encouraging results showed that the polysaccha-
ride ulvan, extracted from marine resources, may be an alternative to existing synthetic
counterparts [85].

An extension of the above study reported the effect of ulvan as an additive (poro-
gen) in the PSf membrane, where it showed a significant influence on the efficiency and
morphological properties. Ulvan (0.5–2.0 wt.%) was explored as a morphology-controlled
porogen in polysulfone (PS)/Dimethyl formamide (DMF) membrane fabrication. Favorable
porosity enhancement was observed in addition to better flux values with (1 wt.%) ulvan
concentration. With the increase in ulvan concentration from 0 to 2.5 wt.% and with DMAc
as a solvent, the flux increased from 581.8 to 991.3 LMH. Similarly, with the same increase
in ulvan concentration and NMP as a solvent, the flux increased from 571.8 to 974.8 LMH.
In addition, promising results were obtained with BSA rejection ranging from 78.53% to
72.36% with DMAc solvent and from 81.19% to 75.49% with NMP as solvent, for a period of
12 h. Such encouraging data on morphology and porosity promotes the use of an alternate
resource from marine environments in membrane technology (Figures 17 and 18) [86].
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Another sulfated seaweed polysaccharide, κ-carrageenan (KCA), was tested as a
pore former to develop highly porous polyphenylsulfone (PPSU) membranes. Mor-
phology reveals that the finger-like structure changed to a porous (porosity 48 ± 3% to
78 ± 2%) structure with uniform pores (~2 nm to 1.1 µm) [87]. Similarly, KCA (0.5, 1.0,
2.0 wt.%) was used as a hydrophilic additive to fabricate polyvinylidene fluoride (PVDF)
composite membranes. The addition of KCA induced demixing speed and enhanced
the hydrophilic nature (Figure 19), which prevented the dye adhesion on the composite
membrane PVDF/KCA surface.
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Y.X. Foong et al. [88] applied eco-friendly natural gum Arabic (GA) as a porogen in
polysulfone (PSf) membrane fabrication using green solvents. The presence of GA helped
to enhance the hydrophilicity and porosity of the membranes. Subsequently, membrane
performance was measured through pure water flux and Congo red (CR) rejection capability.
In the presence of DMSO as a green solvent, the membrane displayed a comparable
membrane performance (Figure 20) to the membrane prepared by using conventional
N-methyl-2-pyrrolidone (NMP) as a solvent. GA’s impact was thus confirmed through
porosity, pore size and Congo red (CR) rejection capability. Apart from excellent dye
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rejection, these membranes also exhibit a flux recovery ratio (FRR) of 93.29% with DMSO
as a solvent and additive GA.
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7. Conclusions

This review summarizes the types of pore-forming materials used to develop pores in
various substrates and discusses them in the context of their practical applications based
on their porous morphology. The role of these porogens, especially their compatibility
with the host structure, is important for the wide scope and performance of various mem-
brane technologies. This study investigates the feasibility and compatibility of fabricating
membrane materials with inorganic, organic and green pore forming agents with conven-



Polymers 2022, 14, 5209 23 of 27

tional and green solvents. The overall performance of the membranes with an increase
in the concentration of porogens was presented in detail. It was clearly revealed, that in
each attempt to fabricate with different porogens, highly reproducible membranes were
produced with comparable or better characteristics in terms of pore size, porosity, surface
wettability, pure water permeability, flux and rejection parameters. Generally, in all modi-
fied membranes, the role of porogens is to increase the formation of pores. Therefore, the
increase in the hydrophilicity of the membrane was also thoroughly demonstrated. More
particularly, the bio/green porogens exhibited a wonderful performance with very little
concentration (0–2 wt.%), with an increase in hydrophilicity in addition to enhanced per-
formance of water flux, rejection and flux recovery without compromising the original
membrane performance.

The current challenge is in porogen selection, which is determined on the basis of
previous experience, published works or latest investigations. The preliminary experiments
were based upon known physico-chemical properties such as physical state, solubility
and miscibility and chemical constituents. The next important influential factor is the
porogen: co-porogen and/or porogen ratio; the monomer–solvent ratio has to be typically
optimized to meet the intended application, which may require specific membrane stability,
permeability and/or efficiency. The number of different porogens in membrane fabrication
can be one, two, three, or more. The most important property is the nature of the porogens;
a greater trend in the shift from toxic and expensive chemicals to low cost, natural, greener
chemicals is needed. Hence, it can be assumed that the proper selection of porogens
plays an extremely important role in the fabrication of membranes and the improvement in
performance. With this observation, we could say that, to date, only relatively few porogens
have been used. However, several attempts have been made to develop a standard protocol
for porogen selection and application. Currently, extensive research to identify the wide
range of available porogens is required, and much more effort is needed to be exerted
to make the optimization procedures easier and faster. This novel methodology in this
research area will certainly lead to an effective membrane system to expand in the future
with a low cost, high safety, ease of removal and possibility to control the porosity and
surface area for an innumerable number of applications.

8. Outlook

Tailoring the structural and chemical properties of porous materials such as mem-
branes, including pore size, shape, surface roughness, hydrophilicity and connectivity, is a
key step in furthering their application within separation technology. The selection of an
appropriate porogen is considered an essential criterion in the preparation of membranes.
Porogens, at the same time as other factors such as polymerization temperature, time, type
and crosslinking ratio, also affect the resultant membrane morphology, surface area, pore
volume, permeability and mechanical stability. The field of separation science is at an
exciting stage in its evolution. Compared to 20 years ago, there are many more types of
membranes which are commercially established and are still developing rapidly. In the
recent past, Metal–Organic Frameworks (MOF) membranes and Covalent Organic Frame-
works (COF) are gaining attraction and have been widely used in gas separation and liquid
separation. They are novel materials with rigid, highly ordered and tunable structures
and can actively manipulate the selectivity, holding great potential as next-generation
membrane materials for ion separations. However, the application and development of
MOF membranes in other fields still has limitations. Even though we have presented many
porogen-incorporated membranes and their performances in this review, we suggest that
the long-term solution is to develop computational structure/property prediction tools to
augment sustainable approaches to apply the novel bio-green porogens to a larger extent.
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