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Abstract: Water is an indispensable strategic resource for biological and social development. The
problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil
pollution has become an extremely serious international challenge. At present, numerous superwetting
materials have been applied to effectively separate oil and water. However, most of these materials
are difficult to scale and their large–scale application is limited by cost and environmental protection.
Herein, a simple, environmentally friendly strategy including sol–gel, freeze–drying and surface
hydrophobic modification is presented to fabricate a bamboo cellulose foam with special wetting
characteristics. The bamboo cellulose foam is superhydrophobic, with a water contact angle of 160◦,
and it has the superoleophilic property of instantaneous oil absorption. Owing to the synergistic
effect of the three–dimensional network structure of the superhydrophobic bamboo cellulose foam
and its hydrophobic composition, it has an excellent oil–absorption performance of 11.5 g/g~37.5 g/g
for various types of oil, as well as good recyclability, with an oil (1,2–dichloroethane) absorption
capacity of up to 31.5 g/g after 10 cycles. In addition, the prepared cellulose–based foam exhibits
an outstanding performance in terms of acid and alkali corrosion resistance. Importantly, owing to
bamboo cellulose being a biodegradable, low–cost, natural polymer material that can be easily modified,
superhydrophobic/superoleophilic bamboo cellulose foam has great application potential in the field
of oily wastewater treatment.

Keywords: wetting; bamboo cellulose; cellulose foam; superhydrophobic/superoleophilic;
oil/water separation

1. Introduction

The ecological environment on which mankind and all living beings on Earth depend
for survival has been seriously damaged due to oily wastewater pollution resulting from
the discharge of oil spill accidents, and industrial and domestic oily wastewater. Ref. [1]
Thus, the effective separation of an oil–water mixture is now regarded as a major challenge
by researchers. Refs. [2,3] A comparison of traditional methods, including incineration and
biodegradation, Ref. [4] filtration and adsorption are considered as effective technologies
to solve the problem of oil–water separation. Refs. [5–9] The filtration method refers to oil
or water selectively passing through a filter material, while the other phase is retained, to
achieve oil–water separation, Refs. [10,11] such as via the use of a superhydrophobic metal
mesh, Refs. [12–15] superwetting organic polymer, Refs. [16–19] hierarchical inorganic
materials [20–22] and more. The adsorption technique is used to selectively adsorb oil or
water to the surface and internal voids of the adsorptive material and prevent the infiltration
of another phase, Ref. [23] for instance, via the use of superhydrophobic melamine foam,
Refs. [24–26] superhydrophobic hybrid sponge [27–29] and cellulose sponge [30–32]. For
the filtration method, membrane plugging caused by high–viscosity oil hinders its practical
application. Refs. [33–35] In contrast, adsorptive material can realize the separation of
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oily wastewater with a high viscosity. Therefore, the design and fabrication of adsorption
materials with a hierarchical structure and superwetting abilities that are environmentally
friendly will provide new ideas for solving the problem of oily wastewater pollution.

Cellulose is an abundant natural resource with many characteristics that are different
from petroleum–based polymers, such as biocompatibility, biodegradability and a low
cost. Refs. [36,37] With the deepening research on the physical and chemical properties
of cellulose, numerous cellulose–based materials such as nanocrystals, Ref. [38] films,
Ref. [39] gels [40] and sponges have become available and are widely used in the textile
industry [41,42] in energy catalysis, Refs. [43–46] biomedicine, Refs. [47–49] food chemicals,
Refs. [50–52] wastewater treatment [53–56] and other fields. Refs. [57–61] At present, a
series of special wetting cellulose–based materials have been prepared by various simple
methods [62,63] and applied in the field of oil and water separation. Refs. [64,65] Bamboo
cellulose is extracted from natural bamboo, which is biodegradable, has good air perme-
ability, is strong and wear–resistant, etc. Refs. [66,67] Therefore, it is imperative to develop
bamboo cellulose degradable adsorptive materials to solve the problem of oil–bearing
wastewater pollution.

Herein, a facile and green technique was proposed to construct superhydropho-
bic/superoleophilic bamboo cellulose foam via low–temperature dissolution in an al-
kali/urea system, a freeze–drying process and hydrophobic–modification with hexade-
cyltrimethoxysilane (HDTMS). The obtained bamboo cellulose foam possessed excellent
properties such as being lightweight (0.053 g/cm3) and having superhydrophobic proper-
ties (static water contact angle of up to ~160◦, oil contact angle is approximately 0◦ and acid
and alkali resistance). Moreover, we systematically studied the oil absorption performance
of the superhydrophobic bamboo cellulose foam via a series of oil absorption experiments.
In addition, the high recyclability of bamboo cellulose foam was proven by an oil adsorp-
tion experiment of 10 cycles. Furthermore, it was revealed that the essence of the adsorbing
oil is derived from the capillary force of cellulose fibers with a three–dimensional network
structure and special wettability. This superhydrophobic bamboo cellulose foam that is
sustainable, low–cost and environmentally friendly is presented as a potential candidate in
the field of oily wastewater adsorption treatment.

2. Materials and Methods
2.1. Materials

Bamboo bleached pulp (molecular weight (Mη), 1.9 × 105–2.2 × 105, alpha–fiber con-
tent: 86–88%) was supplied by Ganzhou Hwagain Co., Ltd. (Ganzhou, China)
(Table S1). Sodium hydroxide (96%, AR), urea (99%, AR) and hexadecyltrimethoxysilane
(HDTMS, 99%, AR) were obtained from Shanghai Aladdin Bio–Chem Technology Corpo-
ration (Shanghai, China). The 1,2–dichloroethane (99%, AR), t–butanol (TBA, 99%, AR),
para–xylene (99%, AR), toluene (99.5%, AR), benzene (99.5%, AR), cyclohexane (99.5%, AR),
petroleum ether (AR) and hexane (97%, AR) were purchased from Xilong Chemical Co.,
Ltd. (Beijing, China). Vacuum pump oil was purchased from the Beijing Sifang Special Oil
Factory (API: CS 100, Beijing, China). Peanut oil was obtained from the local supermarket
(Unsaturated fatty acid content 80%, Yimengshan Peanut Oil Co., Ltd. Linyi, China). Oil
Red O was purchased from Bio–lab Technology Co., Ltd. (Dye content ≥ 75%, Beijing,
China). Deionized water was made in the laboratory and used for all experiments and tests.
All reagents were used as–received without further purification.

2.2. Fabrication of the Superhydrophobic/Superoleophilic Bamboo Cellulose Foam

First, the bleached bamboo pulp was broken using a grinder and dried at 105 ◦C for
4 h. A 100 mL low–temperature alkaline mixed solution was produced, which consisted
of 1.8 g sodium hydroxide, 10 g urea and 88.2 g water, and it was pre–cooled at −35 ◦C
for 30 min in the cold trap. Then, 3 g of broken bamboo pulp was added to the pre–
cooling alkaline mixture and stirred for 10 min at high speed, and a 3 wt% homogeneous
solution of bamboo cellulose was obtained. Subsequently, the slurry was poured into a
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beaker and frozen at −20 ◦C for 2 h in a refrigerator, and a cylindrical bamboo cellulose
containing the solvent was constructed. The bamboo cellulose foam was prepared after a
series of operations, including a large amount of washing with deionized water (pH = 7),
TBA gradient replacement (H2O: TBA, 1:1, v:v, 1 h; 100% TBA, 1 h) and freeze–drying
(−40 ◦C, 48 h). The bamboo cellulose foam was dipped into the ethanol solution consisting
of 7 mmol/L HDTMS, and stirred at 100 rpm/min for 8 h at room temperature. Finally, the
superhydrophobic/superoleophilic bamboo cellulose foam was successfully prepared and
dried at 70 ◦C for 12 h. The preparation process for the superhydrophobic/superoleophilic
bamboo cellulose foam is presented in Figure 1.
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Figure 1. Schematic illustration for the superhydrophobic/superoleophilic bamboo cellulose foam.

2.3. Characterization

The hierarchical structures and surface elements of the bamboo cellulose foam were
characterized by using a Quanta−450 scanning electron microscopy (SEM, FEI, Gravenhage,
Netherlands) configured with energy dispersive X–ray spectroscopy (EDS) operated at
5.0 kV with sputtered Au. The surface chemical composition was performed by an Avatar
Fourier Transform Infrared Spectrometer (FT–IR, Nicolet Company, Washington, DC, USA).
Thermal gravimetric analyses (TGA) and derivative thermogravimetry (DTG) were carried
out on a Q50 thermal analyzer (NETZSCH Corp, Selb, Germany) with heating in air from
25 to 600 ◦C at 10 ◦C/min. The X–ray diffraction patterns were recorded using a D8
ADVANCE diffractometer (Bruker, Karlsruhe, Germany) operated at 40 kV and 40 mA with
a scanning speed of 5◦ min−1 in the 2θ range of 5–40◦. The high temperature resistance
tests of prepared materials were realized through a CT–946 temperature control heating
plate. Contact angles of the resultant samples were measured via a contact angle analyzer
(DSA100, KRÜSS, Hamburg, Germany) at ambient temperature using 2 µL of water, and
the obtained contact angle was an average value of the five random positions of the tested
specimen surface. The optical images and the detailed process of oil adsorption were
recorded using a digital camera (D7100, Nikon, Tokyo, Japan).

2.4. Setup of Oil Adsorption

The oil adsorption performance of superhydrophobic bamboo cellulose foam was
established. Superhydrophobic/superoleophilic bamboo cellulose foam was dipped into a
100 mL mixture solution composed of oil and water with a ratio of 1:1 (v:v). The weight of
the bamboo cellulose foam was recorded before being immersed in oil; then, after complete
immersion, the foam was removed and allowed to drain for a few minutes. The saturated
bamboo cellulose foam was then transferred to a pre–weighed container and weighed
immediately. Then, the above steps were repeated 10 times for the same sponge. The
adsorption capacity (Q) was calculated using the weight (g/g) of bamboo cellulose foam
before and after adsorption as follows:

Q = (WAfter − WBefore)/WBefore
(1)
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where Q (g/g) is the adsorption capacity, WAfter (g) is the weight after adsorption, and
WBefore (g) is the weight before adsorption.

3. Results and Discussion
3.1. Surface Micromorphologies and Chemical Compositions

The density of the prepared bamboo cellulose foam was approximately 0.053 g/cm3,
allowing for it to stand on micro–cilia array structures of the plant (Figure 2a). The obtained
cellulose foam had as lightweight character, resulting from the large amount of air trapped
in the three–dimensional network structure of the superhydrophobic bamboo foam. The
surface morphology of the superhydrophobic bamboo cellulose foam before and after
modification was compared by SEM images, as shown in Figure 2b,c. The fiber surface
of the bamboo cellulose foam was smooth and irregularly arranged (Figure 2b) without
modified HDTMS. In contrast, after hydrophobic modification, a large number of small
spherical particles composed of a siloxane reagent were distributed on the fiber surface
of the superhydrophobic bamboo cellulose foam (Figures 2c and S1). The experimental
results showed that a chemical reaction occurred between the siloxane reagent (HDTMS)
and cellulose. Moreover, the FTIR data of the superhydrophobic bamboo cellulose foam
further confirmed that the surface composition had changed, as shown in Figures 2d and S1.
The characteristic peaks in bamboo cellulose foam O–H stretching vibration occurred at
approximately 3340 cm−1; the peak at 2900 cm−1 corresponded to C–H stretching, the
peak at 1610 cm−1 was attributed to C=O vibrations and the peak at 103 cm−1 denoted
C–O telescopic vibrations, appearing in the aerogel before and after HDTMS modification.
Furthermore, a new peak at 800 cm−1 evidently represented the bamboo cellulose foam
modified with HDTMS, and represented the characteristic absorption peak in Si–O–Si
(Figure S2). In addition, the EDS result revealed an obvious characteristic peak in a
silicon element, further proving that the HDTMS had successfully reacted on the cellulose
surface seeing in Figure 2e, and the quality of HDTMS under load also increased with
the increase in HDTMS concentration (Figure S3 and Table S2). The thermal behavior
and thermal degradation of superhydrophobic bamboo cellulose foam was studied by
means of thermogravimetry analyses (TGA) and derivative thermogravimetry (DTG). This
clearly showed that the residual amount of after modification slightly increased, as in
Figure S4, and the decomposition temperature was also increased compared to before
modification. As shown in Figure 2f, the decomposition temperature was improved from
324 ◦C to 331 ◦C, as the thermal stability of the Si–O bond formed after modification is
higher than that of the C–O bond before modification. For the XRD spectrum data, as
shown in Figure 2g, there are similar characteristic peaks before and after modification and
without new crystal planes. The result demonstrated that the hydrophobic modification
reacting on the cellulose surface, and cellulose kept its original crystalline form. Moreover,
the XRD spectrum exhibited the coexistence of cellulose I and II, mainly because of the
bamboo cellulose foam infiltrated in alkaline conditions for a long time.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. (a) Optical image of the superhydrophobic bamboo cellulose foam. SEM images of bam-
boo cellulose foams before (b) and after (c) modification. (d) FTIR spectra of original foam and 
superhydrophobic bamboo cellulose foam. (e) EDS data of original foam and hydrophobic–
modified foam. (f) DTG of bamboo cellulose foams before (black line) and after (red line) modifi-
cation. (g) XRD spectrum of bamboo cellulose foams before (black line) and after (red line) modi-
fication. 

3.2. Wettability and Corrosion Resistance 
As shown in Figure 3a, a 10 μL water droplet remained spherical on the super hy-

drophobic bamboo cellulose foam, while a small oil droplet infiltrated into the porous 
structure of the foam. This occurred due to the three–dimensional network structure of 
bamboo cellulose foam, and the hydrophobic chemical composition was determined by 
the surface wettability. This conforms to the bionic micro–nano binary cooperation 
strategy. Moreover, the contact angle of oil in air is approximately 0° (Figure 2b) and the 
contact angle of water is 160° (Figure 2c), and the resultant foam possessed the special 
wetting properties of superhydrophobicity and superoleophilicity. Significantly, as 
shown in Figure 3d, three small 10 μL water droplets with different pH values, includ-
ing pH = 1, (HCl), pH = 7 (H2O) and pH = 13 (NaOH), remained spherical on the surface 
of the superhydrophobic bamboo cellulose foam and did not penetrate it. This result 
confirmed that bamboo cellulose foam with superwettability has excellent acid and alka-
li resistance, which is conducive to its application under extreme environmental condi-

Figure 2. Cont.



Polymers 2022, 14, 5162 5 of 11

Polymers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. (a) Optical image of the superhydrophobic bamboo cellulose foam. SEM images of bam-
boo cellulose foams before (b) and after (c) modification. (d) FTIR spectra of original foam and 
superhydrophobic bamboo cellulose foam. (e) EDS data of original foam and hydrophobic–
modified foam. (f) DTG of bamboo cellulose foams before (black line) and after (red line) modifi-
cation. (g) XRD spectrum of bamboo cellulose foams before (black line) and after (red line) modi-
fication. 

3.2. Wettability and Corrosion Resistance 
As shown in Figure 3a, a 10 μL water droplet remained spherical on the super hy-

drophobic bamboo cellulose foam, while a small oil droplet infiltrated into the porous 
structure of the foam. This occurred due to the three–dimensional network structure of 
bamboo cellulose foam, and the hydrophobic chemical composition was determined by 
the surface wettability. This conforms to the bionic micro–nano binary cooperation 
strategy. Moreover, the contact angle of oil in air is approximately 0° (Figure 2b) and the 
contact angle of water is 160° (Figure 2c), and the resultant foam possessed the special 
wetting properties of superhydrophobicity and superoleophilicity. Significantly, as 
shown in Figure 3d, three small 10 μL water droplets with different pH values, includ-
ing pH = 1, (HCl), pH = 7 (H2O) and pH = 13 (NaOH), remained spherical on the surface 
of the superhydrophobic bamboo cellulose foam and did not penetrate it. This result 
confirmed that bamboo cellulose foam with superwettability has excellent acid and alka-
li resistance, which is conducive to its application under extreme environmental condi-
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3.2. Wettability and Corrosion Resistance

As shown in Figure 3a, a 10 µL water droplet remained spherical on the super hy-
drophobic bamboo cellulose foam, while a small oil droplet infiltrated into the porous
structure of the foam. This occurred due to the three–dimensional network structure of
bamboo cellulose foam, and the hydrophobic chemical composition was determined by the
surface wettability. This conforms to the bionic micro–nano binary cooperation strategy.
Moreover, the contact angle of oil in air is approximately 0◦ (Figure 2b) and the contact angle
of water is 160◦ (Figure 2c), and the resultant foam possessed the special wetting properties
of superhydrophobicity and superoleophilicity. Significantly, as shown in Figure 3d, three
small 10 µL water droplets with different pH values, including pH = 1, (HCl), pH = 7 (H2O)
and pH = 13 (NaOH), remained spherical on the surface of the superhydrophobic bamboo
cellulose foam and did not penetrate it. This result confirmed that bamboo cellulose foam
with superwettability has excellent acid and alkali resistance, which is conducive to its
application under extreme environmental conditions. Stable superhydrophobic properties
are the precondition of cellulose–based material application. As shown in Figure 3e, the
prepared superhydrophobic bamboo cellulose foam maintained a contact angle of 158◦ after
180 days in air, showing long–term hydrophobic stability. Moreover, the high–temperature
resistance of superhydrophobic foam is shown in Figure 3f. The contact angle slightly
decreased with the increase in temperature, but remained superhydrophobic, with a con-
tact angle of 150◦, after heating at 280 ◦C for 30 min. However, most of the fibers on the
superhydrophobic surface were carbonized, and the mechanical strength decreased.
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foam in air. (f) High–temperature resistance of superhydrophobic cellulose foam.

3.3. Performance of Oil Adsorption

The hydrophobic–modified bamboo cellulose foam achieved special wettability, which
was used to selectively remove oil (heavy oil and light oil) from water. Thus, the mixture
separation of oil on water and underwater oil were easily achieved. The resultant bamboo
cellulose foam demonstrated a good absorption capacity, as shown in Figure 4a,b. In order
to further investigate the absorption performance of the prepared bamboo cellulose foam,
various types of oil (e.g., toluene, benzene, paraxylene, hexane, cyclohexane, petroleum
ether, pump oil, peanut oil and 1,2–dichloroethane) were used as adsorbates, as they are
known freshwater pollutants. The absorption ratio (g/g) is defined as the weight ratio of
the adsorbate to the dried bamboo cellulose foam. The bamboo cellulose foam showed
good absorption capacity for all tested oils. The absorption ratios were 24 g/g, 17 g/g,
28 g/g, 18 g/g, 25.5 g/g,19.4 g/g,11.5 g/g and 14.8 g/g for toluene, benzene, paraxy-
lene, n–hexane, cyclohexane, petroleum ether, pump oil and peanut oil, respectively, as
shown in Figure 4c. Significantly, the adsorption rate for 1,2–dichloroethane was up to
37.5 g/g and was slightly higher than that previously reported for similar cellulose–based
foams. Refs. [68,69] The adsorption capacities of the different oily substances were dis-
crepant, resulting from the different density and viscosity of the oily substances. Cellulose–
based superhydrophobic/superoleophobic materials with excellent selective adsorption
demonstrate good reusability. The oil absorption capacity of bamboo cellulose foam after
10 cycles was tested using 1,2–dichloroethane as an example. As shown in Figure 4d,
the superhydrophobic bamboo foam retained a high oil absorption capacity (31.5 g/g)
after 10 cycles. Therefore, the results showed that the bamboo cellulose foam with su-
perhydrophobic/superoleophilic characteristics retained a high adsorption efficiency and
demonstrated an excellent recycling performance.
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Figure 4. Oil absorption performances. (a) Heavy oil (1,2–dichloroethane) adsorption test. (b) Light
oil (Hexane) adsorption test. (c) Diagram of adsorption rate of different oils. (d) Number of cycles
demonstrating oil (1,2–dichloroethane) absorption performances.

3.4. Mechanism of Oil Adsorption

As shown in Figure 5, taking toluene, with a lower density than water, as the oil phase,
the mechanism of oil–water separation using superhydrophobic bamboo cellulose foam is
revealed. During the experiment, the toluene solution constituted the upper layer of the
aqueous solution as the density of toluene is lower than water, preventing it from diffusing
with water (Figure 5a). As the superhydrophobic/superoleophilic cellulose foam was
immersed in the mixed solution, the foam first contacted the oil phase and adsorbed the oil
(Figure 5b). The driving force for the adsorption of oil originated from the capillary force
of the cellulose fibers with hierarchical structures of superhydrophobic/superoleophilic
bamboo cellulose foam. Particles consisting of a siloxane reagent on the surface of bamboo
cellulose fibers particualrly increased the surface roughness, magnifying the capillarity and
improving the oil–absorption performance.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Schematic diagram of oil adsorption of the superhydrophobic/superoleophilic bamboo 
cellulose foam. (a) Absorption process of prepared cellulose foam for light oil. Light oil transport 
along cellulose fibers under capillary force (b) and partial enlarged cartoon (c). 

4. Conclusions 
In conclusion, based on natural biodegradable bamboo cellulose, a cellulose foam 

possessing superhydrophobicity and superoleophilicity was proposed for oil–water 
separation through a versatile method of surface hydrophobic modification. The surface 
of the prepared cellulose foam was instantaneously penetrated by the oil, while the wa-
ter was blocked, thereby realizing oil absorption, including underwater and overwater 
oil. The driving force of the superhydrophobic/superoleophilic cellulose foam in ab-
sorbing oil is derived from the capillary force of the superhydrophobic hierarchical 
structures. Moreover, the results indicate that the resultant bamboo cellulose foam has 
an excellent oil absorption performance and recyclability. In addition, the superhydro-
phobic cellulose foam exhibited good acid–alkali resistance, and a high–temperature 
(280 °C) resistance and stability. This work expands upon the avenues in which the su-
perwetting interface material separates oily wastewater, stimulates new thinking in 
terms of oil–water separation in harsh conditions, and promotes the development and 
application of natural bamboo cellulose. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: Bleached bamboo pulp ingredients; Figure S1: SEM images of 
original foam (a) and modified foams with various concentration of CHDTMS including 1 mmol/L (b), 
4 mmol/L (c), 7 mmol/L (d), 10 mmol/L (e), and 13 mmol/L (f). Figure S2: FTIR spectra of original 
foam and modified foams with various concentration of CHDTMS. Figure S3: EDS data of original 
foam (a) and modified foams with various concentration of CHDTMS including (b) 1 mmol/L, (c) 4 
mmol/L, (d) 7 mmol/L, (e) 10 mmol/L, and (f) 13 mmol/L. Table S2: EDS data of the Si content in of 
raw foam and modified foams with various concentration of CHDTMS. Figure S4: TG of bamboo cel-
lulose foams before (black line) and after (red line) modification. Table S3: The changes of after 
modification foams with different CHDTMS in weight, contact angle and oil absorption. Video S1: 
The observation of heavy oil adsorption of the super–wetting bamboo cellulose foam through a 
camera; Video S2: The observation of light oil adsorption of the super–wetting bamboo cellulose 
foam through a camera. 

Author Contributions: Conceptualization, investigation, supervision, Y.P. and Y.-B.L.; funding 
acquisition, writing—review and editing, C.-H.L. and Y.P.; methodology, data curation, writ-
ing—original draft preparation, S.Z. and X.S.; investigation, project administration, formal analysis, 
J.-P.S. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (Grant 
No. 21902033), the Natural Science Foundation of Jiangxi Province (Grant No. 20192BAB216013 
and 20202BABL214057), the Postgraduate Innovation Special Fund Project of Gannan Normal 
University (Grant No. YCX22A012), 2021 National Innovation and Entrepreneurship Training 
Program for College Students (Grant No. S202110418010). 

Institutional Review Board Statement: Not applicable. 

Figure 5. Schematic diagram of oil adsorption of the superhydrophobic/superoleophilic bamboo
cellulose foam. (a) Absorption process of prepared cellulose foam for light oil. Light oil transport
along cellulose fibers under capillary force (b) and partial enlarged cartoon (c).



Polymers 2022, 14, 5162 8 of 11

4. Conclusions

In conclusion, based on natural biodegradable bamboo cellulose, a cellulose foam
possessing superhydrophobicity and superoleophilicity was proposed for oil–water separa-
tion through a versatile method of surface hydrophobic modification. The surface of the
prepared cellulose foam was instantaneously penetrated by the oil, while the water was
blocked, thereby realizing oil absorption, including underwater and overwater oil. The
driving force of the superhydrophobic/superoleophilic cellulose foam in absorbing oil is
derived from the capillary force of the superhydrophobic hierarchical structures. Moreover,
the results indicate that the resultant bamboo cellulose foam has an excellent oil absorption
performance and recyclability. In addition, the superhydrophobic cellulose foam exhibited
good acid–alkali resistance, and a high–temperature (280 ◦C) resistance and stability. This
work expands upon the avenues in which the superwetting interface material separates oily
wastewater, stimulates new thinking in terms of oil–water separation in harsh conditions,
and promotes the development and application of natural bamboo cellulose.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14235162/s1, Table S1: Bleached bamboo pulp ingredients;
Figure S1: SEM images of original foam (a) and modified foams with various concentration of CHDTMS
including 1 mmol/L (b), 4 mmol/L (c), 7 mmol/L (d), 10 mmol/L (e), and 13 mmol/L (f). Figure S2:
FTIR spectra of original foam and modified foams with various concentration of CHDTMS. Figure S3:
EDS data of original foam (a) and modified foams with various concentration of CHDTMS including
(b) 1 mmol/L, (c) 4 mmol/L, (d) 7 mmol/L, (e) 10 mmol/L, and (f) 13 mmol/L. Table S2: EDS
data of the Si content in of raw foam and modified foams with various concentration of CHDTMS.
Figure S4: TG of bamboo cellulose foams before (black line) and after (red line) modification. Table S3:
The changes of after modification foams with different CHDTMS in weight, contact angle and oil
absorption. Video S1: The observation of heavy oil adsorption of the super–wetting bamboo cellulose
foam through a camera; Video S2: The observation of light oil adsorption of the super–wetting
bamboo cellulose foam through a camera.

Author Contributions: Conceptualization, investigation, supervision, Y.P. and Y.-B.L.; funding acqui-
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