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Abstract: Diabetes is the most common chronic disease in the world, and it brings a heavy burden
to people’s health. Against this background, diabetic research, including islet functionalization has
become a hot topic in medical institutions all over the world. Especially with the rapid development
of microencapsulation and three-dimensional (3D) bioprinting technologies, organ engineering and
manufacturing have become the main trends for disease modeling and drug screening. Especially
the advanced 3D models of pancreatic islets have shown better physiological functions than mono-
layer cultures, suggesting their potential in elucidating the behaviors of cells under different growth
environments. This review mainly summarizes the latest progress of islet capsules and 3D printed
pancreatic organs and introduces the activities of islet cells in the constructs with different encapsula-
tion technologies and polymeric materials, as well as the vascularization and blood glucose control
capabilities of these constructs after implantation. The challenges and perspectives of the pancreatic
organ engineering/manufacturing technologies have also been demonstrated.

Keywords: 3D bioprinting; organ engineering/manufacturing; vascularization; bioartificial pancreas;
stem cells

1. Introduction

Diabetes is caused by a fault in the insulin production of the body and has different
types. Type 1 diabetes mellitus is a common chronic disease in which the human immune
system constantly attacks and destroys β cells, leading to insufficient insulin supply or
insulin resistance, further causing the rise of blood glucose levels [1]. The main feature of
type 2 diabetes is insulin resistance. The pancreas can produce insulin, but human organs
no longer fully respond to insulin. As a result, with the continuous increase in insulin
production, the overall β cell function and quality decline distinctively [2]. Currently,
patients with type 1 diabetes can be controlled by injecting insulin and taking drugs to
alleviate the disease (Figure 1). Type 2 diabetes is mainly controlled by diet and movement.
However, diabetes can lead to irreversible tissue and organ damage with a variety of
life-threatening secondary metabolic syndromes (MS), including neuropathy, retinopathy,
nephropathy, stroke, and heart failure [3].

Clinical trials over the past few decades have demonstrated that pancreatic islet
transplantation is an effective treatment [4,5]. Nevertheless, this therapeutic approach
has been greatly limited by the shortage of islet donors and the low survival rate of the
transplanted islets. Meanwhile, the allogeneic immune response of the transplanted islets
can cause tissue rejection and further death of the transplanted cells. The need for lifelong
immunosuppressants has also significantly restricted the widespread of this therapeutic
approach [6,7].

It is recognized that the use of immunosuppressive drugs can cause a variety of serious
adverse effects, such as nephrotoxicity, liver toxicity, and other abnormalities [8]. Over
the last two decades, many researchers turned to wrapping the islets with biocompatible
polymers as an immunoprotective barrier [9]. However, the traditional encapsulation

Polymers 2022, 14, 5143. https://doi.org/10.3390/polym14235143 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14235143
https://doi.org/10.3390/polym14235143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://doi.org/10.3390/polym14235143
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14235143?type=check_update&version=2


Polymers 2022, 14, 5143 2 of 19

methods have numerous shortcomings, such as hypoxia, lack of blood supply networks,
and difficulty in the degradation of the polymers [10]. Without proper vascular networks,
most of the transplanted cells disappear in the body or die quickly inside the capsules [11].
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Figure 1. Diabetes treatment strategies. The traditional treatment for Type 1 diabetes is to inject insulin
or take islet capsules. With the development of science and technologies, 3D printing implantable
pancreatic organs is becoming more and more popular.

Parallelly, the traditional tissue engineering approaches for bioartificial tissue and
organ engineering/manufacturing have been totally substituted by three-dimensional (3D)
bioprinting technologies. Typical 3D bioprinting technology is characterized by printing
cells, growth factors, hydrogels, and other biomaterials as ‘bioinks’ to produce bioartificial
tissues and organs through automatic layer-by-layer deposition processes under the guid-
ance of computer-aided design (CAD) models. Different types of cells can be encapsulated
in different polymeric ‘bioinks’ and deposited simultaneously through multi-nozzle 3D
printers. The hydrogels can absorb and retain large amounts of water, which is beneficial for
cell growth, proliferation, differentiation, and tissue/organ formation [12]. The advanced
3D bioprinting technologies represent a high potential for pancreas constructions and type
1 diabetes therapies.

2. Pancreatic Islets and β-Cells

In the human body, the adult pancreas is a heterogeneous gland consisting of an
exocrine chamber and an endocrine chamber. The exocrine part of the pancreas consists of
secretory cells that produce digestive enzymes and release them into pancreatic ducts. The
endocrine part consists of islets, which produce hormones and regulate glucose homeostasis
(Figure 2). There are about 1.5 million islets in the pancreas. In each islet, 50–60% of the
cells are β-cells, which secrete insulin, 30–45% are α-cells secreting glucagon, less than
10% are δ-cells secreting somatostatin, about 1% are pancreatic polypeptide cells (PP-cells)
secreting pancreatic polypeptide, and less than 1% are ε-cells secreting ghrelin [13,14].

β cells are so special that half of the protein they create can be converted into insulin.
The newly translated insulins can package into small particles. The insulin particle is
an organelle in which many regulatory pathways intersect, which acts as the origin of
several signals to regulate the activities of β cells. The changes of β cell activities in the
plasma membrane directly result in the changes of glucose concentrations in blood with
the stimulation or inhibition of secretions of insulins [15,16].
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Figure 2. Islet cell composition and secretions. Islet cells are generally divided into β cells (50–60%),
which secrete insulin, α cells (30–45%), which secrete glucagon, δ (less than 10%) cells, which secrete
somatostatin, PP cells (about 1%), which secrete pancreatic polypeptide, and ε cells (less than 1%),
which secrete growth hormone.

3. Islet Encapsulation

For nearly 20 years, cell encapsulation techniques have been explored to protect the
transplanted heterospecific cells from the host immune system. The principle of islet en-
capsulation is to engraft cells into compartments separated by a semipermeable polymer
membrane of capsules. The capsules can protect the islets from damage caused by the
immune response. In addition to the protective mechanism provided by the capsules,
the islets in the capsules can regulate blood sugar levels by releasing insulin, while small
molecules (e.g., glucose and nutrients) and metabolic wastes can pass through the semiper-
meable polymeric membrane. Therefore, the encapsulation system can be considered as a
‘mini-bioartificial pancreas’, ‘micro-organ’, or ‘organoid’ [17,18].

However, the progress of cell encapsulation is very slow. At present, only a few
cell encapsulation techniques have been applied in clinical trials with little therapeutic
effects. Due to the complexity of cell encapsulation techniques, the immune response
generated by the components (e.g., polymer materials, embedded cells, foreign genes, and
genetically engineered DNA vectors) has not been effectively exempted. Although the use
of high-purity polymers can reduce the immune response to some extent, more and more
researchers believe that reducing the immunogenicity of the cells inside the microcapsules
is the key to preventing the immune rejection of the transplants.

It is generally believed that the ideal polymers for islet cell encapsulation should be
completely inert (no immune rejection), non-degradable (exist in the body for a long time),
highly compatible with the encapsulated cells (maintaining cell survival and function),
and have a smooth surface and strong hydrophilicity (reduce protein and cell attach-
ment) [19]. To improve the properties of the encapsulation polymers, many methods, such
as changing the chemical composition of the encapsulating materials, and co-encapsulating
immunomodulators, have been exploited [20]. It is expected that after the microcapsules
are transplanted into the recipients, new blood vessels should be established immediately
to maintain the survival of the islets [21]. In past studies, nearly all the islet encapsulation
techniques employ natural polymer, such as alginate, to encapsulate islets, since alginate
has a certain degree of biocompatibility and can be cross-linked by divalent cations [22,23].
Nowadays, some synthetic hydrogels and their derivatives have been employed in islet
encapsulation, since these synthetic hydrogels outperform natural hydrogels with respect
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to tunable properties, such as porosity, stability, mechanical strength, and biocompatibil-
ity [24].

As the goal of islet xenotransplantation is to restore insulin secretion in the recipients, a
large number of islets is a prerequisite to ensure that the transplantation has enough living
cells. When sufficient insulin is secreted by the transplanted islets, the sugar level of the
blood can be controlled efficaciously. At the same time, oxygen and nutrient supplies for
the grafts should be kept up with [25,26]. In order to ensure the stability of the transplants,
rapid vascularization is desired, to maintain the insulin secretion function under the
stimulation of glucose.

A typical islet encapsulation technique was described in 2009 by Zhang et al. [27]. In
this study, a non-adhesive islet encapsulation layer based on synthetic polyethylene glycol
diacrylate (PEGDA) was used as the first layer. To increase the vascularization effects,
thiogelatin, thioheparin, and thiohyaluronic acid were used as the second layer to provide
endothelial cell adhesion points and act as a growth factor release matrix [28]. The PEGDA
coatings can be covalently applied on the surface of islets, and the islets can be subsequently
embedded in hydrogels containing thioglycosaminoglycans. Experiments have shown that
this method can effectively control the release of growth factors, promote the growth of
blood vessels to the embedded islets, and maintain the shape and function of the islets after
implantation [29].

Another typical example of islet encapsulation was described in 2015 by Wertz and
colleagues [30]. In this study, the ubiquitin-editing protein A20, encoded by TNFAIP3, is
a negative regulator of immunostimulatory factors. Polyethylene glycol (PEG) hydrogel
capsules loaded with A20-expressing islets are used as a drug release system to release
immunosuppressants and growth factors to improve the state of transplanted islets. Once
injected, the hydrogel can gel and provide support for the A20-expressing islets. The
hydrogel shell of the capsules can promote the vascularization processes and prevents
the immune system from attacking the pancreatic islets [31]. In order to protect the cells
encapsulated in the hydrogel from being damaged by cytokines diffused into the capsules
and to accelerate the vascularization processes, the researchers further added IL-1β, TNF-
α, INF-γ, and other cytokines to modify the hydrogel. As a result, the cytokines can
effectively protect the encapsulated cells against β cell-specific T lymphocytes and maintain
glucose-stimulated insulin release from the islet cells [32].

Likewise, mesenchymal stem cells (MSCs) can release soluble cytokines and growth
factors to neighboring cells to suppress the immune response, resulting in no local im-
munosuppression for MS [33]. In this context, MSCs and islet cells were simultaneously
encapsulated into alginate hydrogel to improve the survival rate of the transplanted islet
cells, promoting insulin secretion and new blood vessel formation [34,35].

Besides the pancreatic cells, the changes in the components of the encapsulation hydro-
gels can also change the destiny of the capsules. Studies have shown that the incorporation
of tripeptide sequence Arg-Gly-Asp (RGD) in the islet-encapsulated PEG hydrogels could
improve insulin response to glucose stimulation. Furthermore, the degradable hydrogel
layer could enhance the vascular density at the graft site of the greater omentum, thereby
improving the viability of encapsulated islets in a syngeneic diabetic rat model [36].

To facilitate nutrient diffusion, researchers employed a microfluidic encapsulation
system to enhance the insulin responsiveness of the encapsulated islets and allow the islets
to engraft within the vascularized tissue space [37] (Figure 3). Pham et al. used surface
modification technology, 3,4-dihydroxyphenethylamine (DOPA)-conjugated polylactide–
polyethylene glycol nanoparticles carrying immune-suppressant FK506 (FK506/DOPA-
NPs) (DOPA-NPs), and functionalized DOPA-NPs to form a multifunctional coating for
antigen camouflage without interfering with islet viability and function. The coating
effectively preserved the morphology and viability of the islets when co-cultured with
xenogeneic lymphocytes for 7 days. The mean survival time of the islets coated with
FK506/DOPA-NP was higher. This study suggests that the combination of surface camou-
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flages and local low-dose immunosuppressive agents may prolong the survival time of the
transplanted islets [38].
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Figure 3. Histological evaluation of EFP-transplanted unencapsulated and encapsulated islets.
(A) Lectin staining shows the vascular system of the graft; (B) IHC staining of the samples; (C) H
& E staining of the samples; (D) Imaging of the PEG-RGD-encapsulated islets shows dense blood
vessel formation on the surface of the microgels and living islets within the microgels. Reprinted
with permission from Ref. [37] Copyright 2019, John Wiley and Sons.

During the past few years, decellularized extracellular matrix (dECM), as a kind of nat-
ural polymer, contains various proteins, as well as growth factors, required for cell growth
and differentiation, regulating biological balance with low toxicity and immunogenicity,
has attracted much attention in biomedical fields [39,40]. Compared with polysaccharide-
or protein/peptide-based materials, dECM-based materials can better mimic the ecological
niche of natural tissues or organs [41]. In some cases, dECM plays a crucial role in particular
tissue homeostasis, growth, and maturation, which makes it a special candidate for islet
encapsulation with improved microenvironments [42].

Analogously, composite polymers for the formation of an interpenetrating network by
complexing extracellular matrix (ECM) components of human-derived liposuction fluid
with ionized gels of alginate matrices and heat-induced gels of pepsin-solubilized ECM
pregels can achieve the in situ encapsulation of pancreatic islet cells (MIN6 β cells) [43,44].
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Islets encapsulated in the microcapsules (≈640 µm), proliferated rapidly in vitro and
displayed glucose-stimulated insulin responses due to the enhanced cell-matrix interac-
tions [45]. When alginate was combined with the ECM-derived peptides, such as RGD, LRE,
YIGSR, PDGEA, and PDSGR, islet dysfunctions due to the disruption of ECM interactions
during the earlier islet isolation and side effects associated with immunosuppression can be
overcome [46]. Porcine islets encapsulated in peptide-functionalized alginate microcapsules
exhibit enhanced viability and glucose-stimulated insulin release. This study suggests that
the ECM-derived peptides help to maintain the health of the encapsulated islets and may
contribute to prolonging the lifespan of the encapsulated islet grafts [47].

In general, islet cell transplantation is one of the most promising treatments for type
1 diabetes, but the recipient’s immune response to the encapsulation polymers and cells is
a major obstacle to the clinical application of islet cell transplantation. The control of the
polymer component, thickness, and pore size around the islets is related to the level of mass
exchange between the islets and the external small molecules and immunosuppression.
Until the present, the traditional cell encapsulation techniques still have many limitations
in clinical trials, with regard to islet cell protection effects, transplantation sites, and graft
stabilities. The in-depth study of islet cell encapsulation materials, encapsulation strategies,
and stem cell technologies is expected to improve the success rate of cell-based remedies.

4. Pancreas 3D Printing

3D bioprinting is a fully automatic layer-by-layer additive manufacturing process,
which can deposit cells, growth factors, and other biomaterials through rapid prototyping
(RP) technologies to fabricate bioartificial tissues and organs with multicellular compo-
nents, hierarchical structures (especially branching vascular networks), and complex func-
tions [48,49]. Currently, 3D bioprinting technologies have been successfully used to print
many living tissues and organs [12], including blood vessels [50], skins [51], bones [52],
cartilages [53], hearts [54], and livers [55]. Most of the 3D bioprinting technologies used for
producing bioartificial pancreases belong to inkjet 3D printing, fused deposition model-
ing (FDM), extrusion-based 3D printing, and UV curing-based 3D printing [56–61]. The
raw biomaterials for cell/growth factor-loading include natural polymeric solutions or
hydrogels, synthetic polymeric solutions, and ECMs [62–64]. With these 3D bioprinting
technologies and ‘bioinks’, all of the bottleneck problems which have perplexed tissue
engineers, biomaterial researchers, pharmaceutists, and other scientists for several decades
have been overcome sensibly [65]. These can be reflected in the following sections.

4.1. Natural Polymers for Pancreas 3D Printing

Natural polymers are macromolecular compounds that exist in nature, including
proteins, polysaccharides, and their combinations, such as glycoproteins and proteogly-
cans [66,67]. Most of the natural polymers, such as gelatin, alginate, fibrinogen, and
hyaluronic acid, are water-soluble, dissolving in inorganic solvents such as cell culture
medium. The polymer solutions usually have good fluidities, excellent cytocompatibility,
and can form water-rich hydrogels through the physical, chemical, and enzymatic cross-
linking of the polymer molecules [68–70]. The water-rich hydrogels can not only embed
living cells, growth factors, and other bioactive agents, transporting nutrients/oxygen to
cells, but also discharge metabolic wastes produced by cells through the interpenetrating
networks [71,72].

As the main component of 3D printable ‘bioinks’, natural polymers have been widely
used in pancreas 3D printing. The 3D printed islets embedded in natural hydrogels
can maintain excellent biological activities with glucose regulation functions [73]. The
first pancreas 3D printing technology was reported by Prof. Wang early in 2009 using
gelatin/alginate/fibrin hydrogels [74] in which, adipose stem cells (ASCs), embedded
in gelatin/alginate/fibrinogen solutions, and islets were printed into large-scale living
organs with similar biological and physiological functions of their natural counterparts.
When the pancreatic islets were deposited at designated locations with the ASC-laden
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gelatin/alginate/fibrin hydrogel, the ASCs can be induced to differentiate into vascular en-
dothelial cells (ECs) and adipocytes dividually (or separately). The differentiation and self-
organization of ASCs can be totally controlled by the growth factor combinations and the
incorporated islets. This is a huge milestone in complex organ engineering/manufacturing
areas, which has shown great potential in the establishment of physiological models of MS.
When different drugs are applied to this model, the physiological responses are consistent
with the in vivo experiments, suggesting that this model has strong advantages in high-
throughput drug screening, pathological model establishment, as well as contributing to a
better understanding of the multiple sclerosis pathogenesis of cells and drug development
strategies [75] (Figure 4).
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gel and constructed macroporous hydrogel structures via a simple 3D bioprinting tech-
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Figure 4. Cell-laden hydrogel constructs printed by Professor Wang: (a–d) grid gelatin/alginate/fibrin
constructs containing ASCs and islets; (e,f) immunofluorescence staining of islet cells in the constructs;
(g,h) immunofluorescence staining of ASCs differentiated into endothelial cells with EGF; (i–l) en-
dothelial cell (green) immunostaining, nuclear (red) propidium iodide (PI) staining; (m,n) immunos-
tained endothelial cells (green), and adipocytes (red) stained with oil red O; (o,p) immunostaining
of two-dimensional (2D) cultured endothelial cells (green), differentiated from ASCs with pyridine
iodide staining nucleus (red). Reprinted from Ref. [75].

Later, in 2019, Duin et al. encapsulated islets into an alginate/methylcellulose hydrogel
and constructed macroporous hydrogel structures via a simple 3D bioprinting technique.
It was shown that the islets within the hydrogel had good viability and morphology and
could continuously produce insulin and glucagon throughout the observation stage in
responding to glucose stimulation [76] (Figure 5).

In 2021, Hu et al. developed a new ‘bioink’ based on natural alginate molecules.
They added polymer Pluronic F127 to the alginate solution, which greatly improved the
printability of the alginate-based hydrogel and the flexibility of the cross-linked structure.
Meanwhile, hypomethylated pectin was added to reduce inflammation. The experimental
results showed that the cellular constructs printed with pectin-alginate-pluronic ‘bioink’
could reduce tissue rejections by inhibiting TLR2/1 and ensure the survival of the insulin-
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producing β cells under inflammatory stress. It provides an improved strategy for the
long-term survival of the transplanted islets in the treatment of type 1 diabetes [77].

Polymers 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Islet viability assay and staining. (A) Live/dead staining of islets in Alg/MC gel (right) and 
free control islets (left). Live and dead cells are shown in green and red, respectively. (B) Semi-
quantitative assessment of islet viability based on live/dead staining as shown in (A), n > 60 islets. 
(C) Islet-containing scaffolds were stained with thiazolyl blue tetrazolium bromide (MTT). (D) Islet-
containing scaffolds were stained with dithizone (DTZ). Reprinted with permission from Ref. [76], 
Copyright 2019, John Wiley and Sons. 

In 2021, Hu et al. developed a new ‘bioink’ based on natural alginate molecules. They 
added polymer Pluronic F127 to the alginate solution, which greatly improved the print-
ability of the alginate-based hydrogel and the flexibility of the cross-linked structure. 
Meanwhile, hypomethylated pectin was added to reduce inflammation. The experimental 
results showed that the cellular constructs printed with pectin-alginate-pluronic ‘bioink’ 
could reduce tissue rejections by inhibiting TLR2/1 and ensure the survival of the insulin-
producing β cells under inflammatory stress. It provides an improved strategy for the 
long-term survival of the transplanted islets in the treatment of type 1 diabetes [77]. 

To overcome the fundamental problems for islet or pancreatic cell transplantation, 
such as lacking adequate blood vessels in the constructs and allogeneic immune attack 
after implantation, the development of custom-designed bioartificial pancreases is ur-
gently needed. This problem is expected to be solved using multi-nozzle 3D bioprinting 
technologies [78]. With the multiple nozzles, the distribution of many different cell types, 
including multicellular islets, can be controlled simultaneously to mimic the natural pan-
creas with the desired physiological functions. 

4.2. Synthetic Polymers for Pancreas 3D Printing 
Synthetic polymers are artificially manufactured macromolecular compounds that 

cannot be obtained from nature. They are often obtained through a certain polymerization 
reaction, using small molecules called monomers, with known structures and relatively 
low molecular weights as raw materials [78]. Synthetic polymers are widely used in vari-
ous fields such as electronics, automobiles, and transportation due to their excellent chem-
ical and physical properties. Synthetic polymers, such as polylactic acid (PLA), polylactic-

Figure 5. Islet viability assay and staining. (A) Live/dead staining of islets in Alg/MC gel (right)
and free control islets (left). Live and dead cells are shown in green and red, respectively. (B) Semi-
quantitative assessment of islet viability based on live/dead staining as shown in (A), n > 60 islets.
(C) Islet-containing scaffolds were stained with thiazolyl blue tetrazolium bromide (MTT). (D) Islet-
containing scaffolds were stained with dithizone (DTZ). Reprinted with permission from Ref. [76],
Copyright 2019, John Wiley and Sons.

To overcome the fundamental problems for islet or pancreatic cell transplantation,
such as lacking adequate blood vessels in the constructs and allogeneic immune attack
after implantation, the development of custom-designed bioartificial pancreases is urgently
needed. This problem is expected to be solved using multi-nozzle 3D bioprinting technolo-
gies [78]. With the multiple nozzles, the distribution of many different cell types, including
multicellular islets, can be controlled simultaneously to mimic the natural pancreas with
the desired physiological functions.

4.2. Synthetic Polymers for Pancreas 3D Printing

Synthetic polymers are artificially manufactured macromolecular compounds that
cannot be obtained from nature. They are often obtained through a certain polymerization
reaction, using small molecules called monomers, with known structures and relatively
low molecular weights as raw materials [78]. Synthetic polymers are widely used in
various fields such as electronics, automobiles, and transportation due to their excellent
chemical and physical properties. Synthetic polymers, such as polylactic acid (PLA),
polylactic-co-glycolic acid (PLGA), polyurethane (PU), and polycaprolactone (PCL) with
good mechanical properties, in vivo histocompatibility, and structural stability, have been
3D printed widely as tissue engineering scaffolds for cell attachment and vascular/neural
network building templates for organ implantation [75,79–82] (Figure 6).
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Figure 6. Vascularized and neuralized liver tissue models constructed by Professor Wang: (a,b) com-
bined four nozzle printer; (c) a CAD model of the vascularized and neuralized liver tissue; (d) the
3D printed constructs containing vascularized and neuralized liver tissues; (e) immunofluorescence
staining of endothelial cells and Schwann cells around the branching channels of the constructs;
(f) nerve fibers formed in the 3D constructs; (g) hepatocytes in the 3D constructs, some of the cells in
proliferation stage with two nucleus; (h) the interface between the endothelial cells and Schwann
cells; (i) nerve fibers formed in the constructs. Reprinted from Ref. [75].

Compared with natural polymers, most synthetic polymers have super mechanical
properties, and 3D printed structures can be maintained in vivo for a long time [83]. For
example, Song et al. printed a PLA structure by tuning the parameters of a low-cost 3D
printer that could be accommodated by clusters of SC-β cells in a degradable fibrin gel. A
finite element model of cellular oxygen diffusion consumption was used to determine the
diameter of cell clusters to avoid severe hypoxia before vascularization. After the constructs
were transplanted into mice, insulin was secreted in response to glucose injection, and
the transplanted constructs maintained their structural integrity for 12 weeks. Unlike the
pure cell encapsulation techniques, this approach could serve as a platform for advanced
diabetes therapies using 3D printed cell replacements [84].

In another study, Farina presented a novel 3D printing and functionalized encapsu-
lation system for the subcutaneous transplantation of pancreatic islets or islet-like cells.
When the surface of the 3D printed PLA structure underwent some treatments, the hy-
drophilicity of the synthetic polymers was increased, which could facilitate cell attachment
and proliferation. The implantation of a growth factor-rich platelet gel in a surface-treated
encapsulation system could help to create a vascularized environment prior to loading
human islets. Islets encased in this device could be protected from acute hypoxia and retain
their function [85].

Similarly, Marchioli developed a PCL scaffold that could actively promote vascular-
ization in extrahepatic islet transplantation. The PCL scaffold with a heparinized surface
could electrostatically bind vascular endothelial growth factor (VEGF) to the alginate-
encapsulated islets. Compared with the untreated PCL scaffold, heparin immobilization
could increase the retention of the VEGF in the scaffold up to 3.6-fold. In a chicken chorioal-
lantoic membrane model, the VEGF immobilized on the surface of the PCL scaffold could
promote angiogenesis. After 7 days of implantation, the alginate-encapsulated islets exhib-
ited functional responses to the glucose stimulation similar to the free-floating islets. The
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model has the potential to support rapid vascularization and islet endocrine function [86]
(Figure 7).
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4.3. ECM and dECM for Pancreas 3D Printing

As stated above, ECM is a macromolecular substance secreted by cells with a complex
network, supporting, connecting, and regulating cell behaviors with the occurrence of
tissue and organ formation [87,88]. An acellular matrix is a process of the decellularization
of allogeneic tissue to remove antigenic components that can cause immune rejection, while
completely retaining the 3D structure of the ECM with some growth factors, such as the
fibroblast growth factor, VEGF, that play a significant role in stem cell differentiation [89,90].
Some of the ECMs have relatively good mechanical properties compared with the single
natural polymeric hydrogels. Some of the ECMs demonstrate good histocompatibility and
low immune rejection when they are implanted in the body [91,92].

Similarly, an acellular extracellular matrix or dECM is a biological material derived
from living organisms, and its 3D printed pancreas model is closer to the living environment
of real islets, which is more conducive to the maintenance of islet function and the release
of insulin [93]. In 2019, Kim et al. printed pancreatic-derived ECM (pdECM) for the
creation of a native microenvironment for transplantable 3D pancreatic tissues. The results
showed that the insulin secretion of human pluripotent stem cells and the maturity of
insulin-producing cells were highly enhanced when they were cultured in the pdECM
‘bioinks’ and that the co-culture with human umbilical vein-derived endothelial cells could
reduce the central islet necrosis under 3D culture conditions. The possibility of fabricating
3D islet structures with therapeutic graft dimensions was validated by the fusion with 3D
bioprinting technology [93]. Hwang et al. developed a hybrid packaging system using 3D
bioprinting technology, which consists of macroporous polymer capsules and nanoporous
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dECM hydrogels with islet-like aggregates. The exterior of the construct is designed as a
go-through porous structure, β-cells can be encapsulated inside, and can maintain their
activities with insulin secretion functions. The islet-like aggregates are formed through 3D
bioprinting technology to improve cell vitalities and functions. The experimental results
show that the hybrid packaging system has good biocompatibility, and the cells in the
construct can connect through the go-through pores. These approaches are expected to
solve the donor shortage problems to some degree and realize the clinical application of
3D printed pancreatic organs [94]. Wang et al. fabricated a novel ’bioink’ by combining
pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) and
used 3D printing technology to construct islet organoids. The islet cells maintained the
biological functions in the structure through the Rac1/ROCK/MLCK signal pathway with
improved bioactivities. When the pancreas structure was implanted into the diabetic model
mice, the insulin level in the mice was significantly increased, and the blood glucose level
in the mice remained at the normal level for 90 days. Compared with HAMA hydrogel,
the HAMA/pECM hydrogel is more conducive to angiogenesis, and the blood vessel
density is significantly increased, which brings hope for the construction of vascularized
3D pancreatic organs [95] (Figure 8).
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Concisely, the most outstanding 3D bioprinting technologies and ‘bioinks’ for bioar-
tificial ogan engineering/manufacturing are summarized in Table 1 

Figure 8. In vivo transplantation of the 3D printed pancreas-like organ. (A) Blood glucose level in
the diabetic mice. (B) Intraperitoneal glucose tolerance test (IPGTT). (C) Weight changes of mice
after the 3D printed pancreas-like organ transplantation. (D) Living and dead cell staining. (E) In-
sulin/glucagon/DAPI immunofluorescence images. (F) Comparison of serum insulin levels in dif-
ferent groups of mice. (G,H) CD31 immunostaining image and intensity comparison. (I) Masson
trichrome staining images of the 3D printed pancreas-like organ. (J) Typical CD31 and layer adhe-
sion immunostaining images of the 3D printed pancreas-like organ. (K) Percentage of angiogenesis.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Reprinted with permission from Ref. [95], Copyright 2022, Elsevier.

Concisely, the most outstanding 3D bioprinting technologies and ‘bioinks’ for bioarti-
ficial ogan engineering/manufacturing are summarized in Table 1
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Table 1. Outstanding 3D bioprinting technologies and polymers for bioartificial organ engineer-
ing/manufacturing.

Author (Year) 3D Bioprinting
Technique Polymer

Polymer
Crosslinking

Method
Result Ref.

Yan et al.
(2005, 2006)

Extrusion-based 3D
bioprinting system
with a single nozzle
(Tsinghua University,

China)

Gelatin,
gelatin/alginate,

or gelatin/chitosan

2.5% glutaraldehyde
solution for gelatin,

10% calcium chloride
(CaCl2) solution for

alginate, 3%
Na5P3O10 for

chitosan

Living cells loaded in
gelatin and/or

gelatin/alginate hydrogels
are first printed into large
scale-up grid tissues with

very high cell
survivabilities (≥ 98%)

[55,96,97]

Xu et al. (2007)

Extrusion-based 3D
bioprinting system
with a single nozzle
(Tsinghua University,

China)

Gelatin/hyaluronate
or

gelatin/fibrinogen

Glutaraldehyde
solution for gelatin,
3% Na5P3O10 for

chitosan

Large scale-up grid tissues
are with very high cell
survivabilities (100%)

[98,99]

Xu et al.
(2007, 2008)

Low-temperature
extrusion-based 3D

bioprinting with one
or two nozzles

(Tsinghua
University)

Gelatin,
gelatin/alginate,

gelatin/fibrinogen,
PLA, PLGA, or PU

Glutaraldehyde
solution for gelatin,
CaCl2 solution for
alginate, Na5P3O10

for chitosan

Anti-sutural vascular
network is formed using

synthetic PU, cell
cryopreservation agents
are used for cell-laden
hydrogel 3D printing

[79,100]

Li et al. (2009)

Extrusion-based 3D
bioprinting system
with two nozzles

(Tsinghua University,
China)

20% gelatin, 30%
gelatin/5%

alginate/10%
fibrinogen (2:1:1),

and/or
gelatin/alginate/

chitosan

Double crosslinking
alginate/fibrinogen

with CaCl2 and
thrombin solutions;
triple crosslinking

alginate/fibrinogen/
chitosan with

CaCl2/thrombin/
Na5P3O10 solutions

Two types of living cells
loaded in gelatin/alginate
and/or gelatin/alginate/
fibrinogen hydrogels are

first printed into large
scale-up organs with a

predesigned hierarchical
vascular network

[66,74,101,
102]

Sui et al. (2009,
2010)

Extrusion-based 3D
bioprinting and cell

cryopreservation
techniques are

combined
comprehensively

(Tsinghua University,
China)

Gelatin/alginate
hydrogels with 5%

dextrain-40

CaCl2 solution for
alginate

The physical and chemical
properties of the

hydrogels are totally
changed which is

beneficial for long-stem
storage of the bioartificial

tissues/organs

[103,104]

Cui et al.
(2009–2013)

Low-temperature
extrusion-based 3D

bioprinting with one
or two nozzles

(Tsinghua
University)

PU, PLGA,
gelatin/alginate/

fibrinogen, and/or
gelatin/alginate/

chitosan

CaCl2 solution for
alginate, thrombin

solution for
fibrinogen,

Na5P3O10 for
chitosan

Natural and synthetic
polymer systems are
printed together with

anti-sutural PU (or PLGA)
and long-term storable

cell/hydrogels

[105–107]

Zhao et al.
(2015–2016)

3D bioprinting with
multiple nozzles

(Tsinghua
University)

PU, PLGA,
gelatin/alginate/

fibrinogen, and/or
gelatin/alginate/

chitosan

CaCl2 solution for
alginate, thrombin

solution for
fibrinogen,

Na5P3O10 for
chitosan

Natural and synthetic
polymer systems are
printed together with

anti-sutural PU (or PLGA)
and long-term storable

cell/hydrogels

[108,109]

Duin et al.
(2019)

GeSiM mbH
(Radeberg,
Germany)

Alginate and
methylcellulose

CaCl2 solution for
alginate

The islets can
continuously produce

insulin and glucagon in
the structure

[76]
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Table 1. Cont.

Author (Year) 3D Bioprinting
Technique Polymer

Polymer
Crosslinking

Method
Result Ref.

Hu et al. (2021)

Biobots 1 desktop 3D
bioprinter

(Philadelphia,
PA, USA)

Pectin, alginate,
and Pluronic

CaCl2 solution
for alginate

The structure supports the
survival and function of
islet β cells and has the

capability of
immune regulation

[77]

Song et al.
(2016)

The single-extruder
3D printer

Makergear M2
(Makergear; M2 3D

Printer—
Assembled)

PLA and
fibrinogen

Thrombin solution
for fibrinogen

Cells grow well in the 3D
printed constructs [84]

Farina et al.
(2017)

A fused deposition
method (FDM)

based 3D printer
Replicator™ 2×

(MakerBot
Industries, Houston,

TX, USA.)

PLA No applied

The encapsulation system
can produce sufficient and
rapid graft vascularization

and can increase the
vitality and function of the

pancreatic islets

[85]

Marchioli et al.
(2016)

An extrusion-based
additive

manufacturing
machine (sysENG,

Salzgitter
Flachstöckheim,

Germany)

PCL and alginate CaCl2 solution for
alginate

The developed platform
has the potential to

support rapid
vascularization and islet

endocrine function

[86]

Wang et al.
(2022)

UV curable printing
(Affiliated Hospital

of Nantong
University, Nantong,

China)

Hyaluronic acid
methacrylate and

pancreatic
extracellular

matrix

UV for hyaluronic
acid methacrylate

The 3D structure can
promote the generation of
the vascular network, and

the islet cells in the
construct can maintain the

blood glucose level in
mice at a normal level

[95]

5. Discussion

At present, great progress has been achieved in the field of cell encapsulation and
3D bioprinting. It has been proven that islet cells can maintain high activity and se-
crete insulin in most of the constructed models. Like other bioartificial organ engineer-
ing/manufacturing, there are still some unsolved issues to be explored in order to obtain
an implantable bioartificial pancreatic organ [110,111].

Firstly, the bioartificial pancreases constructed from pure natural polymers and ECMs
can hardly maintain their original shapes before the cells grow into mature pancreatic
tissues [112], while the bioartificial pancreases constructed from pure synthetic polymers
are difficult to load cells and bioactive agents. Therefore, material scientists need to develop
new biomaterials or use a variety of composite materials to build a functional bioartificial
pancreas with proper mechanical strengths and biological activities [113,114].

Secondly, it is better to use the patients’ own pancreatic cells or stem cell-derived
pancreatic cells to build the implantable bioartificial pancreases for custom or personalized
pancreas engineering/manufacturing and restoration. With the patients’ own pancreatic
cells, most of the immunological rejection of the implantable bioartificial pancreases can be
surmounted. A large amount of living cells with no immunogenicity is the guarantee for
the organ-level replacement and respondence.
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Thirdly, it is hard to construct precise structures that fully conform to the distribution
of different cells in a natural pancreas. The pancreas contains a variety of adult cells,
so mechanical engineers are required to design new 3D printers with multiple nozzles
and high precision to deposit different cells in a predefined construct, mimicking their
respective locations in natural pancreatic organs [115–117].

Fourthly, there is no such powerful equipment at present that can build a complex
hierarchical vascular network, containing large arteries, branched arterioles, elaborate capil-
laries, and venous vessels (veins) integrally in a construct to maintain the nutrient transport
and waste metabolism required inside the bioartificial pancreas [104,105]. Consequently,
scientists need to design an induction strategy that can generate complex vascular networks
in bioartificial pancreatic organs [118,119].

It is expected the 3D bioprinting pancreas will become the mainstream for future dia-
betes treatment. Problems such as the transportation of nutrients in the complex bioartificial
organs, the formation of the branched hierarchical vascular networks, the biocompatibility
of the 3D printed ‘bioinks’ in hosts, and the anti-suture/stress capabilities of the im-
planted bioartificial organs can be solved by more powerful updated 3D printers [120–124].
3D bioprinting, as the most effective technology in the field of complex organ engineer-
ing/manufacturing, can fundamentally solve all of the problems faced by donor organ
shortage and various MSs.

6. Conclusions

The construction of a clinically implantable bioartificial pancreatic organ requires the
joint efforts of researchers in different fields, such as medicine, biology, materials, comput-
ers, engineering, chemistry, etc. Currently, 3D bioprinting, along with cell encapsulation
technologies, has solved nearly all the bottleneck problems for bioartificial pancreas engi-
neering/manufacturing. There are still some particular features, including an anti-sutural
hierarchical vascular network with a full spectrum of blood vessels, that should be in-
corporated. With the rapid development of stem cells, biomaterials, and 3D printers, we
can foresee that the 3D printing of bioartificial pancreases will save numerous patients in
the future.
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Abbreviations

3D three-dimensional
CAD computer-aided design
PEGDA PEG-diacrylate
PEG polyethylene glycol
MSCs mesenchymal stem cells
PLGA polylactic-co-glycolic acid
dECM decellularized extracellular matrix
ASCs adipose stem cells
MS metabolic syndrome
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ALG alginate
Gel gelatin
PLA polylactic acid
PU polyurethane
ECs endothelial cells
EGF epidermal growth factor
PI propidium iodide
IBMX isobutylmethylxanthine
2D two-dimensional
DTZ DTZ
PCL polycaprolactone
VEGF vascular endothelial growth factor
ECM extracellular matrix
HAMA hyaluronic acid methacrylate
pECM pancreatic extracellular matrix
IPGTT intraperitoneal glucose tolerance test
GelMA gelatin-methacryloyl
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