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Abstract: Bio-based biodegradable foams were formulated from a crosslinkable network structure
combining starch, furfuryl alcohol, glyoxal, and condensed tannin in the presence of p-toluenesulfonic
acid (pTSA) and azodicarbonamide (AC) as a foaming agent. More importantly, the reinforcement
of gelatinized starch–furanic foam using tannin, originating from forestry, resulted in an excellent
compressive strength and lower pulverization ratio. Moreover, the addition of tannin guaranteed a
low thermal conductivity and moderate flame retardancy. Fourier transform infrared (FTIR) spec-
troscopy approved the successful polycondensation of these condensing agents under the employed
acidic conditions. Moreover, the catalytic effect of pTSA on the foaming agent induced liberation of
gases, which are necessary for foam formation during crosslinking. Scanning electron microscopy
(SEM) showed foam formation comprising closed cells with uniform cell distribution and appropriate
apparent density. Meanwhile, the novel foam exhibited biodegradation under the action of Penicillium
sp., as identified by the damage of cell walls of this foam over a period of 30 days.

Keywords: starch; tannin; glyoxal; furfuryl alcohol; foam

1. Introduction

Foam materials can be used as building and packaging materials because of their ad-
vantages such as lightweight, heat insulation, flame retardancy, sound insulation, and shock
absorption [1–4]. However, the oil-derived foams on the market, such as polyurethane
(PU) [5,6] and polystyrene (PS) [7,8], are nonrenewable materials that exhibit high carbon
emission mode dominated by fossil energy. Although PU foams have good thermal insula-
tion, they burn easily to release the highly toxic hydrogen cyanide, which causes great harm
to human health and the environment. The mainstream energy of industrial development
in most countries is still biased towards fossil energy. This results in a high level of carbon
emission, which seriously affects the development of low-carbon environment and energy
conservation [9].

Biomass energy is clean, nontoxic, widely sourced, and renewable. It has become
the fourth largest source of energy after coal, oil, and natural gas [10,11]. Improving the
utilization rate of biomass energy is an effective way to achieve a low-carbon environment.

Biomass materials originating from agriculture and forestry are important components
of biomass energy. Among them, the planting area and total output of corn are second
only to rice and wheat, thus they are regarded as an important renewable biomass resource
from crops [12]. However, corn grains are mainly used as food, while corncobs are usually
removed via burning in open air without efficient utilization. A large amount of residues,
resulting from complete combustion, cause the release of numerous quantity of SO2 and
CO2 into the atmosphere, which is further polluting the environment [13,14].
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Therefore, the use of corn as a raw material for foam production can not only reduce
the dependence of the foam industry on petroleum/petrochemical resources but also make
full use of corncob and reduce the release of harmful gases during combustion.

Starch, which exists widely in corn grain as a low-cost biodegradable polymer, has
been applied in the fields of wood adhesives [15–17], thermoplastic foam [18–20], and
thermoplastics [21,22]. As a thermoplastic foam material, starch has poor heat resistance.
Meanwhile, its high viscosity and poor fluidity, which are required for facile processing,
result in poor mechanical properties of the derived foam [18,19]. In order to improve the
mechanical properties and thermal stability of starch-based foams, some studies have been
carried out that involve the use of hemp fiber or nano cellulose to strengthen the resulting
foam [23,24], using a blend of beeswax and starch [25], or using a crosslinked structure
of chitosan and starch [26]. Although the mechanical properties and thermal stability of
thermoplastic foam were improved by modification, the process of modification is complex
and tedious. Meanwhile, compared with some thermosetting foams, such as those derived
from phenol formaldehyde (PF) resin [27,28], the modified thermoplastic starch foams were
lacking good hardness and reasonable thermal stability.

Interestingly, furfuryl alcohol, which is mainly extracted from corncob, has a stable
furan ring and reactive hydroxymethyl group. It is often used to prepare bio-based ma-
terials with high hardness and good thermal performance, such as thermosetting rigid
plastic [29], foams [30–33], wood adhesives [34–36], and grinding wheels [37–39]. Although
the polycondensation of starch and furfuryl alcohol is considered to yield foams with
good thermal stability and hardness, the hydroxymethyl group in furfuryl alcohol can
react with the adjacent furfuryl alcohol under acidic conditions [29], so it is easy for it to
undergo self-polycondensation under acidic conditions, while it is difficult for it to undergo
further crosslinking with starch. It has been reported that pretreatment of furfuryl alcohol
with formaldehyde can reduce the self-condensation of furfuryl alcohol [40], even though
formaldehyde is volatile and harmful to human health. In our previous study [35], the
use of a lower-toxic, nonvolatile glyoxal, instead of formaldehyde, to react with furfuryl
alcohol could also reduce the self-condensation of furfuryl alcohol. At the same time, it was
found that during the mixing process of starch and furfuryl alcohol, the gelatinized starch
could cause high viscosity, which resulted in poor fluidity and difficulty of processing [35],
so it was difficult to produce uniformly distributed bubbles. In addition, the prepared
foams using condensed tannin and furfuryl alcohol have been carefully studied [33] due to
their low viscosity and ease of foaming. Therefore, it is interesting to employ condensed
tannins to reduce the viscosity of the starch and furfuryl alcohol resin system. Moreover,
diethyl ether is the main foaming agent for preparation of tannin–furanic foams [41,42];
however, its high volatility and rapid foaming make the process difficult to control, espe-
cially when its high toxicity is considered. On the other hand, azodicarbonamide (AC) is
also a known foaming agent [43,44], and its decomposition products are nontoxic, odorless,
and nonpolluting.

Keeping the above arguments in mind, this study will focus on the use of gelatinized
starch and furfuryl alcohol from corn as the main raw materials, glyoxal as a crosslinking
agent, partially condensed tannin as a reactive co-condensing agent for viscosity control of
the system, and AC as a foaming agent for preparation of a formaldehyde-free biomass-
based thermosetting foam.

2. Materials and Methods
2.1. Materials

Mimosa (Acacia mearnsii De Willd) tannin extract powder (T) was purchased from
the Wuming Grilled Rubber Factory (Guangxi, China). Corn (Zea mays L.) starch (S) was
provided by Jilin COFCO Biochemical Energy Sales Co., Ltd (Changchun, China). Furfuryl
alcohol (FA, with a purity of 98%), formaldehyde (F, with a purity of 37%), glyoxal (G, with a
purity of 40%), p-toluenesulfonic acid (pTSA, with a purity of 97.5%), and silicone oil (with a
viscosity of 100 mm2/s) were obtained from Sinopharm, Beijing, China. Azodicarbonamide
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(with a purity of 98%) was obtained from Macklin’s Reagent Co., Ltd. (Shanghai, China),
Penicillium sp. colonies were prepared as follows: Wild Armillaria mellea was collected in
Daguan, Zhaotong, China. The bacteria was placed in a sealed bag, then wetted at room
temperature and cultured for 1–3 days. After the mycelium growth on the bacterial surface,
it was inoculated into a sterile medium and cultured for 1–2 days at a temperature of 28 ◦C
and relative humidity of 75% to obtain the Penicillium sp. colonies.

2.2. Preparation of Tannin–Starch–Glyoxal–Furfuryl Alcohol (TSGFA) Resin-Based Foam

Table 1 gives the detailed formulation for preparation of TSGFA resin-based foam.
First, starch, tannin, and furfuryl alcohol were mixed in a beaker using a stirrer (JJ-200
Chengdu Test Instrument Co., Ltd., Chengdu, China) for 4 min, then glyoxal was added and
the stirring was continued for 4 min before pTSA (65% aqueous solution) was added slowly
to obtain TSGFA resin within few minutes. The other resins, tannin–starch–formaldehyde–
furfuryl alcohol (TSFFA), prepared by replacing glyoxal with formaldehyde, starch–glyoxal–
furfural alcohol (SGFA), and tannin–starch–furfural alcohol (TSFA), were also prepared for
comparison with TSGFA resin.

Table 1. Relevant formulations employed for preparation of various foam samples.

TSGFA TSFFA SGFA TSFA

Starch/g 31 31 44 31
Tannin/g 13 13 – 13
Furfuryl

alcohol/mL 35 35 35 35

Glyoxal/mL 20 – 20 –
Formaldehyde/mL – 20 – –

AC/g 16 16 16 16
pTSA/mL 20 20 20 20

Silicone oil/mL 10 10 10 0

Subsequently, silicone oil as a release agent and AC as a foaming agent were added
into the TSGFA, TSFFA, SGFA, and TSFA resins, respectively, and the corresponding
mixtures were homogenized using a simple agitator (HM-955, Dong Ling Electric Co., Ltd.,
Guangzhou, China) at a speed of 1500 r/min for 10 min. Then, each mixture was poured
into a mold with a size of 90 mm × 90 mm × 90 mm. Afterwards, the mold was transferred
to an oven (101, Rongshida Electronic Equipment Co., Ltd., Kunshan, China), where curing
was achieved at 80 ◦C for 24 h to obtain TSGFA-, TSFFA-, SGFA-, and TSFA-derived foam
samples, respectively. The preparation process of TSGFA-based foam is shown in Scheme 1.
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2.3. Characterizations

The prepared foam samples were placed in a room at 20 ◦C and 50% relative humidity
for 1 day. Subsequently, the performance was evaluated by conducting some tests, in which
every test was repeated five times, and the average value was considered.

The structure of foam samples was elucidated using a Varian-1000 infrared spectrom-
eter (Varian, Palo Alto, CA, USA). The foam samples were ground into powder (particle
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size around 35–38 µm) with a grinder (jms-130a, Jingfu, Guangzhou, China). One g of
KBr was mixed with 0.01 g of each foam powder, and the runs were conducted over the
wavenumber range of 400–4000 cm−1.

The measurements of apparent density were accomplished according to the Chinese
national standard GB/T 6343–2009. The apparent density was calculated using Equation (1).

ρ =
m
v
× 106 (1)

where m is the mass of the foam sample in g, v is the volume of the foam sample in mm3,
and ρ is the apparent density in kg/m3.

A scanning electron microscope (s-4160 Fe, Hitachi, Tokyo, Japan) was used for observation
of the microstructural details of foam samples with a size of 10 mm × 10 mm × 10 mm.

The cell size and cell wall thickness of the various samples were calculated from the
obtained SEM images with the help of Nano Measurer 1.2 software (Microsoft, Redmond,
WA, USA).

A universal testing machine (AG-50KN, SHIMADZU, Berlin, Germany) was used to
evaluate the compressive strength of foam samples, cut to a size of 30 × 30 × 30 mm3, at
25 ◦C and relative humidity of 45–65% by employing a compression rate of 2 mm/min.

The pulverization of the foam samples was evaluated according to the Chinese national
standard GB/T 12812-2006 on samples with a size of 5 cm× 5 cm× 5 cm. The foam samples
were placed horizontally on sandpaper (400 mesh) with a length of 250 mm, while 200 g
iron prop was placed on the foam. The foam sample was pulled from one section of the
sandpaper to the other end, and the pulling speed was ensured to be the same every time.
When a repetition of 30 times was completed, the remaining quantity of each foam sample
was recorded by employing Equation (2).

M =
m0 −m1

m0
× 100% (2)

where M is the pulverization rate, %; m0 is the initial weight of the foam, g; m1 is the weight
of the foam after being pulverized by the sandpaper, g.

The tensile parameters of the foam were examined according to the Chinese national
standard GB/T528-2009, on samples with a size of 30 × 30 × 15 mm3, while the load rate
was set at 1 mm/min.

A thermal conductivity meter (Ybf-2, Dahua Technology Co., Ltd., Hangzhou, China)
was used to measure the thermal conductivity on foam samples, customized into a cylinder
shape with a radius (R) of 50 mm and 10 mm height (h), according to Equation (3):

λ = −mc
2hp + Rp

2hp + 2Rp
× 1

πR2 ×
h

T1 − T2
× dT

dt
|T = T2 (3)

where λ is the thermal conductivity, W·m−1·K−1; m is the mass of the lower copper plate, g;
c is the specific heat capacity of the bottom copper plate of the instrument, Rp and hp are
the radius and thickness of the lower copper plate, mm; R is the radius of the foam sample,
mm; h is the height of the foam sample, mm; T1 − T2 is the temperature difference between
the upper and lower copper plates; dT

dt |T = T2 is the cooling rate of copper plate exposed
to air.

Thermogravimetric analyzer (TG 209 F3, Netzsch, Selb, Germany) was used to investigate
the thermal degradation behavior of the foam samples, where a heating rate of 20 ◦C/min
was employed under nitrogen atmosphere over the temperature range 30 to 800 ◦C.

Penicillium sp. was used to check the biodegradability of the TSGFA-based foam
sample according to other reported studies [45,46]. The TSGFA-based foam sample was
placed in a Petri dish, inoculated with Penicillium sp., then the Petri dish was covered with
a parafilm (pm996, Bemis, Neenah, WI, USA). Then, it was kept at 28 ◦C and 75% relative
humidity for 30 days. Eventually, the weight change of the TSGFA foam sample after the
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action of Penicillium sp. was recorded and compared to the initial weight. After that, the
TSGFA foam treated by Penicillium sp. until the 30th day (a size of 3 mm × 3 mm × 3 mm)
was fixed using 2.5% glutaraldehyde at 4 ◦C for 12 h. The growth and action of Penicillium
sp. colonies on the TSGFA foam sample were additionally studied using a field emission
scanning electron microscope (FESEM), Hitachi su8010 (Hitachi, Ltd., Tokyo, Japan).

3. Results and Discussion

Figure 1 shows the FTIR spectra of S, T, SGFA, and TSGFA foams. The stretching
vibration of -OH appeared at 3379–3449 cm−1. However, due to the induction effect of
different side groups, the characteristic absorption peaks of -OH in SGFA and TSGFA foams
seemed different from those of S and T; the peak at 1720 cm−1 represents the skeleton
vibration of aromatic hydrocarbons. The hydroxymethyl of furfuryl alcohol reacts with C6
or C8 in the A-ring of tannin, the P-Π conjugation effect makes the skeleton vibration of
aromatic hydrocarbons more intense, so that the peak at 1720 cm−1 became more obvious
in the case of TSGFA. The peaks in the range 1652–1613 cm−1 are attributed to the C–H
stretching vibration of all polymeric and small structural units. Due to the influence of the
side groups connected to the aromatic rings, the C–H absorption peak of TSGFA foam was
different from that of S in terms of intensity and position because the conjugation effect of
the aromatic rings caused the C–H absorption peak of TSGFA foam to undergo a shift. The
absorption peak at 1567 cm−1 in the case of TSGFA foam, which is due to the etherification
of the tertiary carbon atom of the side group of furfuryl alcohol, looks dissimilar in the case
of SGFA, T, and S, indicating formation of condensation products from reaction of tannin
with furfuryl alcohol. The peaks at 1518–1455 cm−1, representing the aromatic skeleton,
are absent in the relevant spectrum of S, while the peaks at 1283–1125 cm−1 are due to
C–O absorption of all polymeric, oligomeric, and basic structural units. Furthermore, the
peak at 1006 cm−1 refers to the C–OH of the furfuryl alcohol high oligomers. The peak at
747 cm−1 is indicative of the C–C stretching vibration. Due to the induction effect of differ-
ent structural units connected by covalent bonds in the case of TSGFA, the characteristic
absorption peak of C–C, appearing originally at 747 cm−1, shifted to 795 cm−1. It can be
now recognized that the condensation reactions between starch, tannin, furfuryl alcohol,
and glyoxal occurred successfully. The main reactions of the TSGFA foam system are shown
in Scheme 2a,b.
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Scheme 2. Main proceeding reactions in the case of tannin–starch–glyoxal–furfuryl alcohol (TSGFA)
foam system; (a) reaction of starch, glyoxal, and furfuryl alcohol; (b) reaction of tannin, starch, glyoxal,
and furfuryl alcohol.

SEM images, apparent density, and cell size distribution of the different prepared
foams are shown in Figure 2. All foams have closed cell structure, and the cells are either
round or oval-shaped. This indicates that the AC foaming agent decomposes by the action
of pTSA to produce carbon dioxide, nitrogen, and other gases that diffuse evenly during
the resin solidification to generate homogeneous foams. However, the average cell size
and cell wall thickness of the different foam samples are varied. The average cell wall
thickness and apparent density of the TSGFA-based foam sample are greater than those
of SGFA and TSFA foams, indicating that the addition of tannin and glyoxal underwent
polycondensation reactions with starch and furfuryl alcohol, which increased the integrity
of the resin and further upgraded the network structure of the foam system. At the same
time, TSGFA- and TSFFA-based foam samples acquired similar average cell size, but the
TSFFA-based foam showed smaller apparent density with respect to that of TSGFA-based
foam, indicating that as a crosslinking agent, the activity of formaldehyde is higher than
that of glyoxal [35], which makes the reaction of tannin, starch, and furfural more efficient,
the number of oligomers in the case of TSFFA resin system less, the compatibility of the
foaming agent and TSFFA resin better with respect to TSGFA, and the foaming process
more uniform, while more bubbles are generated. According to SEM images, the cell shape
of TSFFA foam is uniform compared with TSGFA, almost circular. Therefore, the apparent
density of TSFFA-based foam is lower with respect to TSGFA.

Figure 3 shows the pulverization ratio and tensile strength of the different starch-based
foams, which reveals the extent of damage on the foam when it is cut [41]. The lower the
pulverization ratio, the less likely it is to undergo damage. The pulverization ratio of the
SGFA foam sample (1.6%) is lower than that of TSGFA (2.1%) and TSFFA (1.7%), which
indicates that the addition of tannin can easily improve the pulverization resistance of the
foam. This depends on the high hardness acquired by the tannin resin after curing [29].

Meanwhile, according to the tensile strength data of the different foams, the tensile
strength of the SGFA-based foam is higher than that of the TSGFA foam sample. Therefore,
the addition of tannin improves the foam hardness; however, the toughness of the foam
is reduced. At the same time, the pulverization ratio of the TSFFA foam is lower than
that of the TSGFA foam. On the contrary, the tensile strength of the TSFFA foam is higher
than that of the TSGFA foam, which is accounted for by the higher reactivity of formalde-
hyde with respect to glyoxal to build up a stronger network structure. However, glyoxal,
as a crosslinking agent, improved the crosslinking between tannin, starch, and furfuryl
alcohol system, and further reduced the pulverization ratio of the foam, which reached
4.3% in the case of TSFA-based foam. More importantly, compared with some biomass
foams, such as tannin–furanic–soybean protein isolate (SPI)-based foam (3.68%) [47] and
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tannin–formaldehyde–furanic foam (16.49%) [48], the TSGFA-based foam exhibited a lower
pulverization ratio.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

circular. Therefore, the apparent density of TSFFA-based foam is lower with respect to 
TSGFA. 

 
Figure 2. SEM micrographs, apparent density, and cell size distribution of the different 
starch-based foams. 

Figure 3 shows the pulverization ratio and tensile strength of the different 
starch-based foams, which reveals the extent of damage on the foam when it is cut [41]. 
The lower the pulverization ratio, the less likely it is to undergo damage. The 
pulverization ratio of the SGFA foam sample (1.6%) is lower than that of TSGFA (2.1%) 
and TSFFA (1.7%), which indicates that the addition of tannin can easily improve the 
pulverization resistance of the foam. This depends on the high hardness acquired by the 
tannin resin after curing [29]. 

Meanwhile, according to the tensile strength data of the different foams, the tensile 
strength of the SGFA-based foam is higher than that of the TSGFA foam sample. 
Therefore, the addition of tannin improves the foam hardness; however, the toughness of 
the foam is reduced. At the same time, the pulverization ratio of the TSFFA foam is lower 
than that of the TSGFA foam. On the contrary, the tensile strength of the TSFFA foam is 
higher than that of the TSGFA foam, which is accounted for by the higher reactivity of 
formaldehyde with respect to glyoxal to build up a stronger network structure. However, 
glyoxal, as a crosslinking agent, improved the crosslinking between tannin, starch, and 
furfuryl alcohol system, and further reduced the pulverization ratio of the foam, which 
reached 4.3% in the case of TSFA-based foam. More importantly, compared with some 
biomass foams, such as tannin–furanic–soybean protein isolate (SPI)-based foam (3.68%) 

Figure 2. SEM micrographs, apparent density, and cell size distribution of the different starch-based foams.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

[47] and tannin–formaldehyde–furanic foam (16.49%) [48], the TSGFA-based foam 
exhibited a lower pulverization ratio. 

 
Figure 3. Pulverization ratio and tensile strength data of the various foams. 

Figure 4 shows the stress–strain curves of the different prepared foams. It can be 
seen that the compressive strength at yield of TSGFA-based foam (1.751 MPa) is higher 
than that of SGFA-based foam (1.486 MPa), which corroborates that addition of tannin 
improves the compressive strength of the foam, and this depends on the phenolic ring 
structure of tannin which provides higher hardness [29]. At the same time, the strength at 
yield of TSFFA-based foam (2.311 MPa) is higher with respect to that of TSGFA-based 
foam, which is attributed to the higher reactivity of formaldehyde in comparison of 
glyoxal. It can be also seen from Figure 2 that the cell wall of TSFFA-based foam is thicker 
than that of TSGFA-based foam, which is consistent with the results of pulverization 
ratio. At the same time, the compressive strength at yield of TSFA-based foam (1.183 
MPa) is lower with respect to that of TSGFA-based foam, indicating the role of glyoxal to 
promote the condensation reaction of tannin, starch, and furfuryl alcohol. In addition, the 
compressive strength at yield of TSGFA-based foam is much higher than that of the 
tannin–formaldehyde–furanic foam (0.18 MPa) and tannin–furanic–soybean protein 
isolate (SPI)-based foam (0.5 MPa) [47,48]. Thus, bio-based foam structures prepared by 
combining tannin and starch as condensing agents in the presence of glyoxal as 
crosslinking agent and AC as foaming agent present potential for more applications 
compared with foams based exclusively on tannin. It is worthy to note that the strain at 
break of the TSFFA-based foam is not affected even with the elevation of maximum 
strength. 

 
Figure 4. Stress–strain curves of the various foams. 

Figure 3. Pulverization ratio and tensile strength data of the various foams.

Figure 4 shows the stress–strain curves of the different prepared foams. It can be seen
that the compressive strength at yield of TSGFA-based foam (1.751 MPa) is higher than that
of SGFA-based foam (1.486 MPa), which corroborates that addition of tannin improves the
compressive strength of the foam, and this depends on the phenolic ring structure of tannin
which provides higher hardness [29]. At the same time, the strength at yield of TSFFA-based
foam (2.311 MPa) is higher with respect to that of TSGFA-based foam, which is attributed
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to the higher reactivity of formaldehyde in comparison of glyoxal. It can be also seen
from Figure 2 that the cell wall of TSFFA-based foam is thicker than that of TSGFA-based
foam, which is consistent with the results of pulverization ratio. At the same time, the
compressive strength at yield of TSFA-based foam (1.183 MPa) is lower with respect to that
of TSGFA-based foam, indicating the role of glyoxal to promote the condensation reaction
of tannin, starch, and furfuryl alcohol. In addition, the compressive strength at yield of
TSGFA-based foam is much higher than that of the tannin–formaldehyde–furanic foam
(0.18 MPa) and tannin–furanic–soybean protein isolate (SPI)-based foam (0.5 MPa) [47,48].
Thus, bio-based foam structures prepared by combining tannin and starch as condensing
agents in the presence of glyoxal as crosslinking agent and AC as foaming agent present
potential for more applications compared with foams based exclusively on tannin. It is
worthy to note that the strain at break of the TSFFA-based foam is not affected even with
the elevation of maximum strength.
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Thermal conductivity is an important index to check the efficiency of thermal insula-
tion for a foam material. Figure 5 shows the thermal conductivity of the different prepared
foams, which are all characterized by closed cell structure. Therefore, compared with some
commercial foams, such as polyethylene foam (0.047 W·m−1·K−1) [9], the starch-based
foam acquired lower thermal conductivity. More importantly, although the average cell
size of TSGFA-based foam (210 µm) is higher than that of SGFA foam (200 µm) (Figure 2),
the addition of glyoxal improves the crosslinking of the foam system and produces a more
uniform closed cell distribution, which leads to lower thermal conductivity of TSGFA-based
foam (0.030 W·m−1·K−1) compared with that of TSFA (0.035 W·m−1·K−1). Meanwhile, the
thermal conductivity of TSGFA-based foam, prepared using glyoxal instead of formalde-
hyde, is similar to that of TSFFA, which is prepared using formaldehyde. These results show
that the TSGFA-based foam has considerable mechanical strength and thermal insulation,
which expands its application prospects.

Figure 6 displays the TG–DTG curves of the different foam structures prepared in this
study. The mass of the foam decreases slightly between 100 and 280 ◦C, which reveals
humidity and the gas generated by residual blowing agent (AC) when it interacts with
pTSA at higher temperature. Figure 6b indicates that with the increase of temperature, the
highest degradation rates were accomplished at 200–280 and 420–470 ◦C, respectively. At
the temperature range of 200–280 ◦C, the starch in the foam starts to degrade, whereas
the blowing agent decomposes into carbon dioxide and nitrogen. Moreover, at the range
of 420–470 ◦C, the starch oligomers begin to degrade further. It is obvious that the mass
loss in the case of SGFA-based foam is higher with respect to TSGFA-based foam, which
indicates that the tannin addition improves the heat resistance of the foam. In addition, the
mass loss in the case of TSFA-based foam is larger because no glyoxal or formaldehyde
is added, considering that the reactivity of tannin or starch is poor with furfuryl alcohol
in the absence of any of these aldehydes. It can be also seen from the curves that TSGFA-
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and TSFFA-based foams behaved almost the same over the range of 300–800 ◦C, which
illustrates their similar heat resistance.
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A butane spray gun was used for characterization of the combustion performance of
TSGFA-, TSFFA-, SGFA-, and TSFA-based foams, and the results are presented in Figure 7.
At the beginning of the test, the four foam samples were all located at the same position at
the nozzle of the spray gun to reach the same combustion temperature. After 65 s, TSGFA-
and TSFFA-based foams were partially burned to red (Figure 7c,g). After cooling for a
certain time, a small part in both cases was broken with the flame-contacted part, while
the untouched part remained intact (Figure 7d,h). However, after 65 s, the SGFA and TSFA
foam samples could be observed to be ignited (Figure 7k,o). After cooling for a certain
time, both samples were completely broken and carbonized. It can be explained that the
addition of tannin and glyoxal to the starch–furfuryl alcohol resin system could make the
resin build a dense network structure, which enhanced the flame retardancy of the material
by delaying the flame diffusion.
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Figure 8 shows the effect of Penicillium sp. on the TSGFA-based foam. Penicillium sp.
has a marked degradative effect on polysaccharides [49]. It can be seen from Figure 8a
that at the beginning, Penicillium sp. (marked by a rectangle) did not contact the foam
sample. On the tenth day, Penicillium sp. (marked by an arrow) had surrounded the TSGFA
foam. After 20 days, Penicillium sp. (marked by an arrow) had run into the TSGFA foam.
By completion of 30 days, the foam was covered by Penicillium sp. (marked by arrow).
The mass loss of materials is the most commonly used method to follow the degradation
induced on materials by fungi [50]. Figure 8b shows the mass loss of TSGFA-based foam
induced by Penicillium sp. The mass loss of the foam was only 0.24% on the 10th day. With
the elapse of the time, the mass loss reached 0.68% by the 30th day. In order to further
confirm the biodegradation of TSGFA-based foam by Penicillium sp., the treated foam with
Penicillium sp. for 30 days was examined using FESEM. The results are shown in Figure 9a–
c, which reveal a large number of Penicillium sp. colonies (marked by arrow) diffusing
into the TSGFA sample. More importantly, some cell walls of TSGFA-based foam were
damaged (marked by the square). Further, it is clear from Figure 9d that the cell wall of
TSGFA-based foam was perforated by some Penicillium sp. colonies (marked by the arrow).
These results present strong proof that TSGFA foam is liable to undergo biodegradation.
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4. Conclusions

1. Different bio-based foam structures in crosslinked form can be prepared from a poly-
condensation reaction incorporating starch, furfuryl alcohol, glyoxal, and condensed
tannin under mild acidic conditions and an appropriate foaming agent. The selection
of catalytic system and foaming agent determines, to a large extent, the cell formation
characteristics of the foam structure, while the mechanical strength is a parameter
that is dependent on the condensing agents’ formulation.

2. It can be concluded that the addition of tannin into the formulation contributed
significantly to the high compressive strength and low pulverization ratio.

3. The crosslinking between tannin, starch, glyoxal, and furfuryl alcohol under the
employed reaction conditions provoked formation of closed cells with uniform cell
distribution and appropriate apparent density, which contributed to the good thermal
insulation and flame retardancy of the foam.

4. The induced biodegradability of the prepared foams using Penicillium sp. is ascribed
to the bio-based nature of the structural units involved in building the chemical
skeleton of the foam.
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