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Abstract: In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of
its many specific properties, which have obvious advantages over bulk-structured PPy. This review
outlines the main structures, preparation methods, physicochemical properties, potential applications,
and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar
template method, hard physical template method and templateless method. Due to their excellent
electrical conductivity, biocompatibility, environmental stability and reversible redox properties,
PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors,
adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the
current difficulties and future opportunities in this research area are discussed.
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1. Introduction

Traditional polymer materials have good insulation properties and are one of the most
used materials in the world today. However, in 1977, A. J. Heeger, A. J. MacDiarmid and H.
Shirakawa synthesized a new type of polymer material. The conductivity of polyacetylene
doped with iodine was significantly improved to 103 S cm−1 [1]. Subsequently, a series
of polymers with similar properties such as polyaniline, polythiophene, and polypyrrole
were discovered, which largely motivated the development of conductive polymers (CPs).
PPy has attracted much attention because of its advantages, namely simple preparation,
nontoxicity, good stability, excellent mechanical properties, and high conductivity, which
may make it the next conductive polymer that can be industrially produced and applied in
many fields. However, conventional PPy with an amorphous phase has poor solubility and
mechanical ductility, resulting in insolubility and infusion in most organic solvents and
making it difficult process into specific shapes. More importantly, traditional bulk PPy lacks
good electrical, optical, and biological properties due to its amorphous morphology, so
the structure and size must be tuned to achieve optimal performance. Benefiting from the
well-defined nanotopography and larger surface area, nano-PPy has peculiar electrochemi-
cal activity, better optical properties, and excellent biocompatibility compared with bulk
PPy [2]. As nano-PPy can be fabricated into a variety of nanostructures ranging from zero-
dimensional nanoparticles, one-dimensional nanotubes/nanowires and two-dimensional
nanosheets, to three-dimensional nanonetworks, so an in-depth comprehension of prepara-
tion strategy, and morphology control, as well as the relationship between structure and
performance, is essential for promoting further research, as well as the development of
high-performance applications of PPy nanomaterials [3–6].
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Taking this as an opportunity, this paper outlines the research progress of PPy nanoma-
terials since 2010, focusing mainly on three aspects: structure and properties, preparation,
and application of PPy nanomaterials. The structure of PPy nanomaterials includes four
types: PPy nanoparticles, PPy nanotubes, PPy nanowires, and PPy nanosheet. The prepara-
tion of PPy nanomaterials include three main methods: the soft micellar template method,
the hard physical template method, and the templateless method. PPy nanomaterials have
potential applications in the fields of energy storage, biomedicine, sensors, adsorption and
impurity removal, electromagnetic shielding, and corrosion resistance. The applications of
PPy nanomaterials are concentrated in the following areas: energy storage, biomedicine,
sensors, adsorption and impurity removal, electromagnetic shielding, solid-phase extrac-
tion, and actuators. Finally, the current difficulties and future opportunities in this research
area are discussed.

2. Types of PPy Nanomaterials

Classified by structure, there are four main types of common PPy nanomaterials:
nanoparticles, nanotubes, nanowires and nanosheets.

2.1. PPy Nanoparticles

PPy nanoparticles are the most common type of PPy nanomaterial. The formation
of granular PPy often requires the participation of surfactants. Surfactants usually form
micelles in solution, which not only act as templates but also reduce the active energy of the
polymer surface and make it stable. Pure PPy has poor conductivity, and dopants need to be
added to improve its conductivity. The formation and properties of PPy nanoparticles (NPs)
are also affected by surfactants and dopants [7–19]. Rawal et al. [11] prepared PPy NPs at
various concentrations of sodium dodecyl sulfate (SDS) and investigated the mechanism
of charge transport in PPy NPs, as shown in Figure 1. The conductivity of the prepared
NPs increases from 3 to 22 S cm−1 when the surfactant is used. Minisy et al. [19] used
chemical oxidative polymerization to increase the conductivity of PPy from 1–5 S cm−1 to
84 S cm−1 by regulating the concentration of the dopant methyl red salt. When the reaction
temperature was lowered, the conductivity of PPy was further improved.
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The formation of PPy NPs was also influenced by oxidants and other conditions [20–24]. By
introducing 2, 4-diaminodiphenylamine as an initiator into the reaction mixture, Liao et al. [20]
synthesized water-dispersed PPy nanospheres with high yield without any template. It was
found that the morphology and size of the prepared PPy nanospheres were affected by the
concentration of initiator, oxidizer and acid. Among them, spherical PPy nanostructures with
smaller diameters can be obtained when smaller acids (the size of anions) are used. Hong et al. [23]
explored a facile method to synthesize PPy NPs with diameters of 20–60 nm. It was found that
PPy NPs with a narrow size distribution can be easily manufactured by reasonably adjusting the
hydrodynamic radius, turning radius, shape factor and viscosity.

In general, the preparation of PPy NPs uses ferric chloride, ammonium persulfate and
hydrogen peroxide as oxidants. Compared with the other two oxidants, the byproduct of
hydrogen peroxide is only water, which is cleaner and environmentally friendly. However,
the reaction rate of polymerization was slow when using hydrogen peroxide as an oxidant,
which hinders its application [25]. To solve this problem, our group [26,27] prepared
uniform PPy and its derivative NPs using H2O2 with the aid of UV radiation in the existence
of polyvinylpyrrolidone with high efficiency. The involvement of UV light accelerated the
polymerization of pyrrole without introducing impurities into the product.

Particles of different sizes often have different properties. The controllable preparation
of PPy NPs is of great significance. Hong et al. [28] prepared three monodisperse PPy NPs
with particle sizes of 20 nm, 60 nm, and 100 nm by dispersion polymerization. It was found
that the incorporation of 20 nm PPy into organic bistable memory devices enables stable
multistage switching with high on-off ratios. Jang et al. [29] prepared five monodisperse
PPy NPs with different diameters, ranging from 20 to 100 nm, in the presence of Polyvinyl
alcohol (PVA) to assess scale-dependent cytotoxicity. It was found that PPy NPs with
an average diameter of 60 nm had the highest adverse reactions to the test cells. Zhou
et al. [30] synthesized PPy nanoparticles with precisely controllable particle size by chemical
oxidative polymerization, and systematically investigated the relationship between size
and electrochemical capacitance properties. It was found that the capacitive properties of
PPy nanomaterials are influenced by the synergistic effect of particle size, surface area, and
charge carriers, and optimizing the size of the polymer material to 80 nm can significantly
improve the performance. Kwon et al. [31] prepared PPy NPs with diameters of 20, 60 and
100 nm with the aid of the PVA/FeCl3 system. The conductivity and specific surface area
of the PPy NPs decreased with the increasing of particle diameter, while the sensitivity of
the gas sensors prepared based on the PPy nanoparticles increased with increasing particle
diameter.

In addition to spherical particles, researchers have also prepared other nanoparticles
with different morphologies. Yang et al. [32] used porous hollow gold nanocages as
templates to grow PPy layers with uniform thickness on the inner and outer surfaces of gold
nanocages by chemical oxidation and then selectively removed the gold nanocages through
etching to form a double-walled “back” shaped PPy shell. Lee et al. [33] synthesized urchin-
like PPy nanoparticles with different diameters by using a dual-nozzle approach, thus
fabricating a sensor with extremely high selectivity to NH3. Using polymethyl methacrylate
nanospheres and polystyrene hollow spheres with porous surfaces as hard templates,
Su et al. [34] and Xia et al. [35] obtained monolayer PPy hollow spheres and the unique
structure of PPy double-shell hollow particles, respectively. Qiao et al. [36] synthesized
bowl-shaped PPy particles by adding N-methyl pyrrole into an iodine-containing pyrrole
solution. Table 1 summarizes the relevant references for classifying the synthetic conditions,
size and conductivity of PPy nanoparticles.
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Table 1. A summary of synthetic conditions, size and conductivity of PPy nanoparticles.

Morphology Surfactant/Template Dopant Oxidant Diameter (nm) Conductivity
(25 ◦C, S/cm) Ref.

Spheres Castor oil sulfate Castor oil sulfate (NH4)2S2O8 20–100 1–6 [7]
Spheres PVP FeCl3 30–60 10–15 [8]
Particles CTAB HCl (NH4)2S2O8 20 [9]

Particles
Polyoxyethylene

nonylphenyl ether
sulfate

Polyoxyethylene
nonylphenyl
ether sulfate

(NH4)2S2O8 40–150 1–20 [10]

Particles SDS FeCl3 28–52 3–22 [11]

Spheres
Fatty alcohol–

polyoxyethylene
ethers

(NH4)2S2O8 60–230 [12]

Particles Sodium taurocholate
and Tween 20 Citric acid H2O2 100–500 10−2 [13]

Spheres Iodine 35–350 10−7–10−4 [14]
Spheres Heparin 50–80 [17]
Irregular Methyl red Methyl red FeCl3 84 [19]
Spheres Pluronics® F-108 Formic acid (NH4)2S2O8 110–120 [21]
Particles PVA FeCl3 20–60 0–10 [23]

Particles Poly
(ethylene glycol) (PEG)

Organic sulfonic
acid (NH4)2S2O8 71–134 3.26–52.7 [24]

Particles SDS HCl H2O2 28 [25]
Particles PVP H2SO4 H2O2 21–92 7.67 × 10−3 [26]
Particles PVA FeCl3 20–100 [28]
Particles PVA FeCl3 20–80 1.71–149.08 [30]
Particles PVA FeCl3 20–100 1–10 [31]

Double-walled
shells Au nanocages PVP FeCl3

5 nm (two shells
spacing) [32]

Urchin-like
particles PVA FeCl3 30, 60, 100 [33]

Hollow spheres Poly (methyl
methacrylate) FeCl3

136.5 (inner) and
242 (outer) [34]

Double-shelled
hollow particles Polystyrene PVP FeCl3 [35]

Bowl-shaped
particles Iodine FeCl3 [36]

2.2. PPy Nanotubes

Due to its highly ordered structure, large specific surface area and superior carrier
transport capacity, compared with corresponding bulk materials, PPy nanotubes (NTs)
have significant advantages, such as larger surface area, excellent mechanical properties
and high catalytic activity, so their application functions are extensive. In 1990, Martin et al.
first prepared PPy nanotubes using the template method. The diameter and length of the
tubes can be adjusted by changing the characteristics of the template film. The electronic
conductivity of the prepared polymer nanotubes has also been significantly improved [37].
Using methyl orange (MO) as the dopant and FeCl3 as the oxidant, Yang et al. [38] prepared
PPy NTs in large quantities by simple stirring at room temperature without any template
for the first time. Because of its excellent characteristics, this method has been widely used.
However, the formation mechanism and influencing factors of PPy NTs have also been
widely studied by other researchers [39–52]. Mao et al. [52] obtained the film composed of
PPy NTs by template assisted interfacial polymerization, as shown in Figure 2. In addition,
Kumar’s team [53–56] used the MO-FeCl3 self-degradation micellar to support the growth
of PPy NTs with the assistance of cetyltrimethyl ammonium bromide (CTAB) and found
that the diameter of tubes decreased with the increase in CTAB concentration.
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brane (PPy-N). (A) Beginning of TIP (B) End of TIP (C) Final PPy-N membrane obtained after washing
and drying. (D) Nanorod template structure formed by FeCl3 and MO. (E) MO@PPy nanorod struc-
ture on the water side of the membrane. (F) PPy nanotube structure following removal of templates.
(G) MO and PPy molecular structure. (H) Bubbles on the chloroform side. (I) Final PPy-N membrane
is flexible [52]. Copyright 2017 ACS Nano.

In addition, other methods of preparing PPy NTs are also constantly being reported, such
as the template free method, the soft template method using other surfactants and the hard
template method mainly using metal oxides as sacrificial templates [57–64]. Wei et al. [62]
prepared PPy arrays using the templateless electrochemical method, which can easily be tuned
between high adherent hydrophobic NTs and low adherent hydrophilic nanotips using an
electrochemical redox process to dynamically attach and separate mesenchymal stem cells
at the nanoscale. Trchova et al. [63] used resonance Raman spectroscopy to propose and
establish correlations between conductivity, surface area, the ratio of ordered and disordered
PPy phases on the surface and interior of the nanostructures. Minisy et al. [64] prepared PPy
nanotubes in the presence of the cationic dye saffron and phenol saffron. Saffron supported the
one-dimensional growth of PPy, and the PPy spheres became nanorods and later nanotubes as
the concentration of saffron in the solution increased. In the case of the phenol saffron dye, the
resulting PPy nanotubes were very thick and always accompanied by particles.

2.3. PPy Nanowires

PPy nanowires (NWs) not only have some of the excellent properties of conducting
polymers, but also some of the unique properties of nanomaterials. There are many ways
to synthesize PPy NWs [65–70], due to their excellent electrical properties and good bio-
compatibility, they have potential applications in many fields [71–76]. Nie et al. [75] created
a “wet electric” nanogenerator based on gradient-doped PPy NWs using concentration-
controlled electrodeposition (CCED) technology, as shown in Figure 3. The special compo-
nent and structure of gradient-doped PPy NWs enable them to have a large surface area



Polymers 2022, 14, 5139 6 of 28

and one-dimensional transport nanochannels, which can greatly promote the diffusion of
water molecules to produce free charged ions as free carriers.
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Sun et al. [76] prepared proton-doped PPy NWs using ammonium persulfate and
pyrrole monomers with different proton sources. The doping effect is the decisive factor
in improving the electromagnetic absorption performance of PPy NWs based composites.
Only the proton-doped PPy NWs with a load of 10 wt% can realize an EA bandwidth of
6.72 GHz (2.44 mm thickness), and the reflection loss value is less than −10 dB.

In recent years, PPy NWs arrays have received attention from researchers and have
broad application prospects in the field of supercapacitors and sensors [77–84]. Using
oxidative polymerization in air, Kim et al. [78] obtained stretched monomeric menisci by
pulling on a micropipette containing a Py solution. The radius of the wire thus generated is
precisely controlled to 50 nm by adjusting the pulling speed. Huang et al. [82] constructed
a 3D conductive layered structure through electrochemically fabricating ordered PPy
nanowire arrays on the surface of carbon fibers, as shown in Figure 4. Xing et al. [84]
reported a simple method for preparing antibacterial peptide modified PPy NW array
electrode (PNW-AMP). The PNW-AMP electrode exhibits excellent oxidation-reduction
and low interface resistance characteristics, and can eliminate bacterial adhesion in the
microbial microenvironment while maintaining electrochemical stability for a long time.

In addition, as a special structure of NWs, PPy nanobelts have also attracted the
attention of researchers [85–88]. Chi’s team [85,86] prepared 1D conducting polymer
nanobelts with an average width of 50 nm and investigated the conductivities of individual
PPy nanobelts by using conductive atomic force microscopy.
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2.4. PPy Nanosheets

PPy nanosheet is one of the PPy nanomaterials for which there are few studies. The typical
method of synthesizing nanosheets is the organization and polymerization on the interface,
such as Langmuir-Blodgett film, solution-phase synthesis and chemical vapor deposition
(CVD). A typical example of a nanosheet is graphene, which is the thinnest two-dimensional
material. In addition, metal nanosheets have also been obtained by reducing metal precursors
such as palladium, rhodium or gold in solution. In recent years, the synthesis and applications
of PPy nanosheets have also been reported by researchers [89–94]. Jha et al. [91] prepared
free-standing PPy nanosheets using a one-pot method by dropping a porphyrin derivative
(TPPOH) and pyrrole into an FeCl3 solution, as shown in Figure 5. The results show that
TPPOH rapidly forms a J-aggregate film at the air/FeCl3 interface, which can provide an in-situ
template for the growth of PPy nanosheets.
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In addition to the several nanostructures mentioned above, researchers continue to
prepare PPy nanomaterials with new shapes [95–103]. Liu et al. [95] synthesized 2-D PPy
nanoclips with diameters ranging from 50 to 70 nm using an oxidative template consisting
of cetrimonium cations and peroxydisulfate anions. Bao et al. [98] fabricated a biomimetic
hydrogel/nanoporous PPy asymmetric heteromembrane with electrical/pH-responsive 3D
micro/nanoscale ion channels. Since the charge density in the membrane can be regulated
by electrical stimulation and pH stimulation, the ionic rectification of the membrane shows
responsive properties.

3. Preparation of PPy Nanomaterials

Compared with conventional PPy, nano-PPy shows better conductivity, higher specific
surface area, shorter ion migration distance and good electrochemical activity. The prepa-
ration methods for nano-PPy include the soft micellar template method, hard physical
template method and templateless method.

3.1. Soft Micellar Template Method

The soft micellar template method, also called the self-assembly method, generally
uses the interaction between the hydrophobic group and the hydrophilic group in the
amphiphilic molecule to form a specific micelle in the solvent, and the monomer forms a
specific morphology inside or on the surface of the micelle. These nanomaterials are usually
prepared by microemulsion polymerization, which can obtain polymer nanomaterials with
controllable sizes. The soft template method is usually used to prepare PPy NPs and NTs
materials. The structure and concentration of monomers and surfactants are the key factors
for controlling product morphology parameters.

Using CTAB as a template and 1,5-naphthalene disulfonic acid (1,5-NDA) as a dopant,
Han et al. [104] synthesized a hierarchical nanostructured PPy in an aqueous solution with
potential applications in the field of supercapacitor materials. The concentrations of pyrrole
and CTAB, as well as the rate of polymerization, had an obvious effect on the formation
of the hierarchical structures. Northcutt et al. [105] proposed a biotemplate method for
the three-dimensional surface modification of dodecylbenzenesulfonate (DBS)-doped PPy
membranes. The results show that the existence of a biotemplate enables the bulk of the
polymer to create morphologies with a high specific surface area, and raises the surface
area of interface. Due to the higher ionic current, the three-dimensional PPy film has a
higher specific capacitance than that of the planar PPy film. Chen’s team [106] synthesized
nanoscale PPy particles by a soft templating method with the aid of Triton X100 micelles.
The surface acoustic wave sensor containing the nano-PPy particles can detect acetone.
Furthermore, using CTAB as a soft template, his team synthesized ultralong interconnected
PPy NWs via an organic phase (pyrrole)/aqueous phase (oxidant) interfacial reaction [107].
The size and morphology of the prepared PPy can be selectively modulated by changing
the concentration of CTAB. In addition, the CTAB concentration plays an important factor
in enhancing the electrochemical performance of the prepared PPy NWs.

3.2. Hard Physical Template Method

The hard physical template method uses the material with a special inner or outer
surface as the template, fills the polymer monomer into the template, and synthesizes
the polymer with the corresponding morphology by controlling the reaction conditions.
Common templates usually have porous membrane materials, fibers, colloidal particles and
so on. This method is mainly used to prepare PPy hollow particles, NTs and NWs materials.

Martin et al. [37] reported the fabrication of PPy tubes using anodized aluminum
oxide (AAO) as a template for the first time, but the diameter of the resulting tubes was on
the micrometer scale, and template removal was difficult. With the progress of technology,
the method is also improving. Sulkaa et al. [81] successfully fabricated hydroquinone
monosulfonate-doped PPy NW arrays in AAO membranes with an aperture of 80 nm using
a potentiostatic method and used them as potentiometric pH sensors. It was demonstrated
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that the pH sensor based on PPy nanowires has better electrochemical performance than
that of PPy film.

V2O5 is also a common hard template for preparing PPy nanomaterials [108–112].
Zhang et al. [109] prepared PPy NTs with a pore size of less than 10 nm by using FeCl3 as
an oxidant and V2O5 nanofibers (NFs) as a sacrificial template. Zhao et al. [112] prepared
encapsulated PPy hollow nanowires by in situ polymerizations of pyrrole using V2O5 as
a hard template. The hollow nanowires show a remarkably high adsorption capacity of
839.3 mg g−1 for 200 ppm Cr (VI) at pH = 2.

In addition, it has been reported that 1D PPy nanostructures can also be obtained
by using TiO2 [113,114], MnO2 [115], and Fe2O3 [116] with different morphologies as
sacrificial templates.

3.3. Templateless Method

The templateless method is to control the diffusion of monomers and oxidants in
two incompatible phases and control the polymerization reaction conditions by means of
interface action so that the polymer can be self-assembled into tubes, spheres, films and
other special morphologies by using weak interactions such as hydrogen bonds, electro-
static interactions and coordination bonds between molecules. Template-free methods
include electrochemical control [117–122], lithography [123–125], radiation [126,127] and
others [128–130]. Because its preparation process is simple and does not require a specific
sacrificial template, it has been widely studied for the preparation of PPy nanomateri-
als [131,132].

Using a constant current method, Wang et al. [117] prepared micro/nanoscale highly
electroactive PPy with a hollow “horn”-like structure (h-PPy) in a p-toluenesulfonate
alkaline solution without any templates. The h-PPy has a high specific surface area,
particularly good molecular chain order, and a large conjugation length, which contributes
to improving ionic and electronic conductivity. Fakhry et al. [121] deposited an ultrathin
nonconductive peroxide PPy film on the electrode by the anodic polarization method in an
atmosphere of a high concentration of weak acid anions without the help of any template
(Figure 6), resulting in an aqueous solution of pyrrole with a pH of approximately 9. By
introducing an advanced and simple electrohydrodynamic lithography (EHL) technique,
Rickard et al. [123] patterned conductive polymers (CPs) directly on a high-fidelity substrate.
They constructed thin PPy membranes through field-induced instability, resulting in well-
defined conductive structures with feature sizes in the range of hundreds of nanometers
to tens of microns, thus demonstrating the universality of this robust, low-cost approach.
Furthermore, Cui et al. [127] succeeded in developing a new γ-radiolysis-based alternative
method for synthesizing spherical and chaplet-like PPy nanostructures in solution.Polymers 2022, 14, x FOR PEER REVIEW 11 of 29 
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potentiostatic conditions. Step A: Electrodeposition of an ultra thin PPy film. Step B: Generation of
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of OH·. Step C: Growth of the PPy nanowires. Reaction (1): Py oxidation; Reaction (2): water
oxidation. (b): SEM micrograph of PPy deposited on Au/mica substrate [121]. Copyright 2015
Electrochimica Acta.



Polymers 2022, 14, 5139 10 of 28

In this section, we classify and discuss the different synthesis methods of PPy nano-
materials. Table 2 summarizes the relevant references classifying preparation methods,
morphology and properties of PPy nanomaterials.

Table 2. A summary of preparation methods, morphology and properties of PPy nanomaterials.

Method Morphology Reaction Medium Oxidant Properties Ref.

Hard
template/Electropolymerization Nanowire arrays A 0.1 M LiClO4 solution

A good potentiometric
response to pH changes

and a very good
stability in time

[81]

Soft template/
Chemical oxidation

Nanoscale hierarchical
structure Aqueous solution FeCl3

A high specific
capacitance and good

electrochemical
reversibility

[104]

Soft
template/Electropolymerization

Nanostructured
membranes Milli Q water

A high specific surface
area and high specific

capacitance
[105]

Soft template/Chemical
oxidation Nanoparticles Aqueous solution FeCl3

Potentially useful to
detect acetone [106]

Soft template/Interfacial
polymerization Nanowires Organic/aqueous

interface (NH4)2S2O8
A high specific

capacitance [107]

Hard template/Chemical
oxidation Nanotubes Ethanol solution FeCl3

Undergo a spontaneous
redox reaction with

metal ions
[109]

Hard template/Chemical
oxidation Nanofibers Aqueous solution H2O2 Bulk quantities [111]

Hard template/
In-situ vapor phase

polymerization
Hollow nanofibers In desiccators

A high Cr (VI)
adsorption capacity up

to 839.3 mg g−1
[112]

Hard
template/Electropolymerization Nanopore arrays An ionic-surfactant-

solution

Forming mechanically
stable and underlying

compact films
[113]

Hard
template/Electropolymerization

Nanowires and
nanopore arrays

Electrolyte of dodecyl
sulfate

Well-organized and
mechanically stable [114]

Hard template/Chemical
oxidation Nanofibers Aqueous solution K2Cr2O7

Enhanced electroactive
surface area [115]

Hard
template/Electropolymerization Nanotube arrays CH2Cl2 or acetonitrile

solution

A facile, inexpensive
and large-scale means

for generating
polymeric

nanostructures

[116]

Template-
free/Electropolymerization

Hollow “horns” in
nanometers

P-toluenesulfonate
alkaline solution

High specific surface
area and high ionic and
electronic conductivity

[117]

Template-
free/Electropolymerization Nanotube arrays Phosphate buffer

solution

Enhanced electrical and
electrochemical
performances

[118]

Template-
free/Electropolymerization Nano-snails Aqueous

alkaline solution Fe (CN)6
3−

Promising potential
applications in

supercapacitors and
sensors

[120]

Template-
free/electropolymerization Nanowires A 70:30 H2O/EtOH

mixture
Forming a uniform

polymer film [122]

Template-
free/electrohydrodynamic

lithography

Nanostructured
films Aqueous solution (NH4)2S2O8

Accessing scale sizes in
the low submicron

range
[123]

Template-free/electrochemical
lithography

Nanostructured
films Aqueous solution A reversible, erasable,

and rewritable pattern [124]

Template-free/edge nanoimprint
lithography Nanowires Aqueous solution FeCl3

Exhibiting
representative ohmic

behavior and excellent
sensitivity to NH3

[125]

Template-free/γ-radiation-
induced chemical

oxidative

Polydisperse spherical
nanoparticles Aqueous solution K2S2O8

Well dispersed in water,
easily dried and quite

simply
redispersed in protic

solvents

[127]

Template-free/mechanochemical
route Nanospheres Pre-cleaned mortar K2S2O8

High degree of
processability,

electrochemical activity
and film forming ability

[128]

Template-free/chemical
oxidation Nanospheres Aqueous solution O3

Stable and
unagglomerated [129]

Template-
free/electropolymerization Nanowires Acetonitrile solution Fe (CN)6

3− Low cost, simplicity,
rapidity, and versatility [131]
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4. Application of PPy Nanomaterials

PPy nanomaterials have potential applications in energy storage, biomedicine, sensors,
and other fields due to their excellent electrical, optical, and biological properties.

4.1. Energy Storage

CPs materials are lightweight, low-priced, and have good environmental compatibility.
The maximum storage capacity of energy storage devices such as capacitors and batteries
can be greatly enhanced by modifying the traditional positive or negative electrodes with
CPs materials [133–136]. For energy storage devices, electrode material is the most critical
factor affecting the performance of the entire capacitor, which determines its power, energy
density and service life. The control of morphology, size and texture of electrode materials
with higher power density, faster charge/discharge rate and longer-term stability is very
interesting and especially important. PPy nanomaterials can be used as electrodes of energy
storage devices, so the preparation of PPy nanomaterials is the key to fabricating energy
storage devices. The preparation of PPy nanomaterials has been relatively mature, and the
required size and morphology of nanomaterials can be prepared by the methods described
above, so that the electrode materials with outstanding performance can be obtained.

4.1.1. Battery

PPy nanomaterials in the field of batteries has mainly focused on three aspects:
dye-sensitized solar cells [137–140], lithium and sodium batteries [34,141,142], and fuel
cells [143–146].

Using SDS as a template, Hwang et al. [138] synthesized ultrathin PPy nanosheets (UP-
NSs) through organic single crystals surface-induced chemical oxidation polymerization.
The power conversion efficiency of dye-sensitized solar cells (DSSC) using HCl-enhanced
UPNS counter electrode was 6.8% (100 mW cm−2). This result is 19.3% higher than that of
the untreated condition and comparable to DSSCs using Pt as a counter electrode. Wen’s
team [141,142] synthesized highly ordered PPy NTs for lithium-sulfur batteries. Lithium-
sulfur battery with the PPy NTs exhibits an inspiring electrochemical property. Sun’s
team [144,145] developed a simple electrochemical polymerization for the preparation of
PPy NWs on Pd modified Nafion® membranes. The ordered PPy NWs can significantly im-
prove fuel cell performance by facilitating mass transfer and enhancing catalyst utilization.

4.1.2. Supercapacitor

In the field of supercapacitors, CP-based supercapacitors have received increasing
attention due to their large specific electric capacity. However, they have poor stabil-
ity, and researchers have attempted unremittingly to enhance the electrical performance
and stability of PPy-based supercapacitors [61,82,97,100,115,117,147–159] (see Table 3).
Santino et al. [155] coated a high-aspect ratio bristle-like nano-PPy continuous network
on a graphitic hard carbon paper current collector through a modified gas phase polymer-
ization. Nano-PPy based electrodes exhibit good performance at high discharge rates, as
shown in Figure 7.

There are abundant heteroatoms in the conductive polymer skeleton, which can be
uniformly dispersed in the carbon skeleton in situ after carbonization, obtaining heteroatom
doped carbon nanotubes with excellent physical and chemical properties. Carbon nan-
otubes derived from conductive polymers show a good application prospect in the fields
of supercapacitor. Shen et al. [158] developed a simple approach to fabricating uniform
PPy nanospheres using 3-chloroperbenzoic acid as an oxidant, dopant and structural guid-
ing agent, then pyrolyzed the PPy nanospheres at 900 ◦C to form nitrogen-doped carbon
nanospheres, which exhibited good conductivity, excellent electrochemical properties and
good stability.
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In addition to being used as traditional supercapacitors, PPy nanomaterials have
recently been reported for flexible supercapacitor applications [160–162]. Shi et al. [160]
reported a simple and versatile synthesis approach to using PPy hydrogels with tunable 3D
microstructures as electrically active materials for flexible solid-state supercapacitors with
high performance. The supercapacitors fabricated on the basis of the flexible symmetric
PPy hydrogels exhibited good capacitive performance and electrochemical stability during
long-term cycling.

Table 3. A summary of the morphologies of PPy and the capacitive properties of PPy-based supercapacitors.

Morphology Configuration Capacitance Cyclability Ref.

Nanowire arrays Symmetric capacitors 699 F g−1 (1 A g−1) 63% (5000 cycles, 50 A g−1) [82]
Nanochains Single electrode 1502 F g−1 (2 mV s−1) 93% (1500 cycles, 1 A g−1) [100]
Nanowires Single electrode 328.7 F g−1 (0.3 A g−1) 75.7% (600 cycles, 1.5 A g−1) [107]
Nanofibers Single electrode 604 F g−1 (1.81 A g−1) 91% (1000 cycles, 9 A g−1) [115]

Hollow “horns” in
micro/nanometers Single electrode 400 F g−1 (3 A g−1) 90% (100,000 cycles, 500 mV s−1) [117]

Nanobricks Single electrode 476 F g−1 (5 mV s−1) [149]
Nanoplates Single electrode 533 F g−1 (5 mV s−1) 78% (5000 cycles, 100 mV s−1) [150]
Nanosheets Single electrode 586 F g−1 (2 mV s−1) 81% (5000 cycles, 100 mV s−1) [152]

The clusters of
nanofibers and
nanoparticles

Single electrode 427 F g−1 (0.02 A cm−1) [153]

Nanobrushes Symmetric capacitors 144.7 F g−1 (20 mV s−1) 70% (20,000 cycles, 5 A g−1) [155]
Nanowires Single electrode 420 F g−1 (1.5 A g−1) 97.9 % (8000 cycles, 1.5 A g−1) [156]

Films with hollow
micro/nano-scaled

horn arrays
Single electrode 360 F g−1 (10 mV s−1) 88.2% (10,000 cycles, 30 A g−1) [157]

Nanospheres Single electrode 176 F g−1 (1 A g−1) [158]
Films with

Micro/Nanosphere
Shapes

Single electrode 568 F g−1 (20 mV s−1) 77% (10,000 cycles, 10 A g−1) [159]

Hydrogels Symmetric capacitors 380 F g−1 (0.2 A g−1) 90% (3000 cycles, 100 mV s−1) [160]
3D interconnected
fibrous structure Symmetric capacitors 168 F g−1 (2 mA cm−2) 97% (2000 cycles, 10 mV s−1) [162]
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4.2. Biomedicine

Compared with bulk CP materials, as well as ceramic and metal nanomaterials, CP
nanomaterials have outstanding physicochemical properties [29,163–165]. Nano-PPy is an
intriguing candidate in biomedical applications due to its unique properties among CPs [166].

4.2.1. Drug Delivery and Release

CPs can undergo reversible electrochemical reactions, with volume shrinkage dur-
ing reduction and volume expansion after oxidation, which is beneficial for the con-
trolled release of various drugs [167–177]. PPy nanomaterials have the advantages of
easy drug loading, having little effect on drug activity, and a controllable drug release rate.
Samanta et al. [170] synthesized PPy NPs that were stably dispersed in solution and had
good drug loading capacity (15 wt%) through a simple microemulsion polymerization
technique. The prepared PPy NPs can be adjusted to release drugs by changing the pH, the
charge of the drug, and adding a small amount of charged amphiphiles. In order to provide
high loadings of hydrophobic drugs, Moquin et al. [176] obtained linear hydrophobic
pyrrole-based polymers with attached hydrophilic polyethylene glycol chains by one-pot
coupling of diimine, terephthaloyl chloride and substituted alkynes. The amphiphilic
PEGylated PPy can easily self-assemble into soft NPs.

4.2.2. Photoacoustic and Photothermal Therapy

PPy nanomaterials has good biocompatibility, outstanding photostability and pho-
tothermal conversion properties, which has broad application prospects in the field of
photothermal therapy. Among PPy nanomaterials, PPy NPs are the first and most widely
used in photothermal therapy [178–186]. Yang et al. [180] prepared biocompatible PPy-PVA
core-shell NPs for the photothermal elimination of tumors in vitro and in vivo at ultralow
laser power density. The composite NPs were injected intratumorally and further irradi-
ated with a 0.25 W cm−2 power near-infrared laser, a good tumor therapeutic effect was
achieved and no obvious side effects were observed. Later, Dai’s team [181,182] prepared
homogeneous PPy NPs by a simple chemical oxidation polymerization method. Owing
to strong near-infrared absorption and good photostability, the as-prepared colloidal-
stabilized PPy NPs exhibited remarkable photothermal conversion efficiency. In order to
obtain materials with high photothermal conversion efficiency, Guo et al. prepared PPy
NPs using hydrophilic poly (2-hydroxyethyl methacrylate-co-N, N-dimethyl acrylamide),
P(HEMA-co-DMA) as a template and Fe3+ as an oxidant. The prepared PPy NPs are further
encapsulated by vancomycin conjugated oleic acid (Van-OA) to provide final pathogen
targeting Van-OA@PPy, which exhibited a high photothermal conversion efficiency of
~49.4%. The preparation process and photothermal conversion mechanism of Van-OA@PPy
are shown in Figure 8.

The application of hollow PPy nanomaterials in the field of photothermal therapy
has also been reported [187–189]. Bhattarai et al. [188] prepared PPy hollow fibers by
polymerization of pyrrole on the sacrificial templates of electrospun polycaprolactone fibers.
The results show that the initial concentration of pyrrole, near-infrared laser power and
irradiation time are the key factors affecting their photothermal performance. Compared
with the PPy-NPs counterpart, the manufactured PPy hollow fibers exhibit enhanced
photothermal performance.

In addition to the above mentioned nanostructured PPy, researchers found that PPy
nanosheets also have positive effects on photothermal therapy [190,191]. Wang’s team [190]
fabricated 2D ultrathin PPy nanosheets via a space-constrained approach. The as-prepared
PPy nanosheets showed special broadband absorption at 1064 nm and had a large extinction
coefficient of 27.8 L g−1 cm−1, which could be applied as an effective photothermal agent
in the second near-infrared window.
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self-assembled with vancomycin-tethered oleic acid (Van-OA) to afford the resultant phototheranostic
Van-OA@PPy. [183]. Copyright 2020 Nanoscale.

4.3. Sensors

In the field of sensor applications, it is very important to increase the sensitivity and
reduce the operating temperature. CP-nanomaterials based sensors have the advantages
of low price, high sensitivity, detecting diversity and fast response speed. The sensors
prepared from PPy nanomaterials are mainly used for biological and chemical detection.

4.3.1. Biosensors

PPy nanomaterials have been used in the fabrication of various biosensors due to their
unique properties [192,193]. Biosensors mainly detect proteins [194–196], hormones [197,198],
DNA [199–201], RNA [202,203], Cu2+ [204,205] and others [206–210].

Field effect transistor (FET) is a kind of transistor that uses electric field to control
the conductivity of charge carriers in semiconductor materials. The FET based biosensor
device uses its current amplification characteristics to improve its measurement accuracy,
thus increasing the detection possibility of low concentration analytes. FET-type sensors
based on PPy nanomaterials can be used to detect proteins used as cancer suppressors or
markers. In order to fabricate PPy-based FET sensors to detect bioactive factor, Jang’s team
carried out the following:

1. Introduced amino groups on an interdigitated microelectrode array (IDA) substrate;
2. Immobilized carboxylated PPy nanomaterials on IDA substrate to maintain stable

electrical contact between the PPy and the microelectrodes;
3. Attached the aptamer to the surface of carboxylated PPy nanomaterials by coupling reaction.
4. Acting as the grid dielectric of the p-type FET sensor, the target molecule specifically

interacted with the adapter attached to the PPy surface.

Through the above means, his team [194] developed a speedy and effective technique
for detecting a novel heat shock protein 90 inhibitor as an anticancer medicine using a
FET sensor based on carboxypolypyrrole nanotubes (CPNTs). In addition, his team used
a p-type FET biosensor to detect vascular endothelial growth factor (VEGF) as a cancer
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biomarker in vitro electrochemical detection [195]. A high-performance FET sensor based
on an anti-VEGF RNA aptamer combined with CPNTs can detect VEGF concentrations as
low as ca. 400 fM. Furthermore, his team [197,198] prepared carboxylated PPy NPs and
NTs (Figure 9) for the detection of various hormones, such as peptide hormone and 17
beta-estradiol.
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The detection of DNA and RNA is also commonly used in biosensors based on PPy.
PPy nanomaterials modified with redox markers are a promising platform for electro-
chemical biosensors, which can be applied to various diagnostic prospects. Without using
any templates, Khoder et al. [201] prepared PPy NWs using simple electropolymerization.
Without any amplification operations, the detection limit of the PPy NWs modified E-DNA
biosensor with ferrocene as the redox marker is 0.36 aM. Wang et al. [203] developed an
ultrasensitive biosensor based on PEG-PPy NWs substrate using a simple electrochemical
model strategy to provide better antifouling performance. The developed biosensor has
good selectivity and can effectively identify miRNA mismatches.

Heavy metals have caused great harm to the environment and human health. The
biosensors developed by Lin et al. [204,205] include carboxyl end-capped peroxidized
PPy NW/NT electrodes and tripeptide (Gly-Gly-His) probes for the selective recogni-
tion of Cu2+.

4.3.2. Chemical Sensors

Chemical sensors are commonly used for the detection of NH3 [33,87,89,92,211–218],
volatile organic compounds [31,106,219–221], variation in pH values [81,109,222] and oth-
ers [223–228] (see Table 4).

The researchers compared the performance of PPy nanomaterials and bulk PPy for
ammonia sensors. It was found that the sensors made of PPy nanomaterials perform
better than those made of bulk PPy materials, and the sensors made of PPy nanomaterials
with larger specific surface area have better properties. Yang et al. [211] synthesized
homogeneous PPy NFs with high yield using FeCl3 as an oxidant and MO as a template.
Compared with the sensors based on bulk PPy and PPy NPs, the NH3 sensors based on
PPy NFs showed a remarkably enhanced performance. Rawal et al. [216] obtained PPy
NWs in the existence of MO, while PPy NPs were prepared under similar conditions with
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the aid of CTAB. Compared with PPy NPs, PPy NWs were found to have a higher doping,
bipolaron concentration, porosity, and conductivity. Meanwhile, the PPy NWs-based
sensors exhibited better sensitivity than the PPy NPs-based sensors.

Table 4. A summary of PPy nanomaterials for sensors.

Morphology Analyte Linear Range Detection Limit Ref.

Nanoparticles Acetone 5.5–80 ppm 5.5 ppm [106]

Nanotubes Heat shock protein 90
inhibitors 40 nM–8 µM 40 nM [194]

Nanotubes Vascular Endothelial
Growth Factor 400 fM–4 µM 400 fM [195]

Nanowires IgE protein 0.01–100 nM 0.01 nM [196]
Nanoparticles Peptide hormones 48 fM–48 pM 48 fM [197]

Nanotubes 17β-estradiol 1 fM–1 nM 1 fM [198]
Nanowires DNA 10 pM–500 nM 10 pM [199]
Nanowires Escherichia coli DNA 0.1 nM [200]
Nanowires DNA 1 aM–100 fM 0.36 aM [201]
Nanowires microRNA 0.1 pM–1 nM 0.033 pM [203]
Nanowires Cu2+ 20–300 nM 20 nM [204]

Nanotube arrays Cu2+ 0.1–30 µM 46 nM [205]
Nanoribbons Viral plant pathogen 10 ng ml−1–100 µg ml−1 10 ng ml−1 [206]

Films SARS-CoV-2-S
glycoprotein 0–25 µg ml−1 0.15 µg ml−1 [207]

Nanotube arrays Glucose 0.2–13 mM 50 mu M [208]
Nanoparticles H2O2 5–100 µM 5 µM [209]

Nanorods Nitrate 1.0 × 10−4–5.0 × 10−3 mol L−1 5.0 × 10−5 mol L−1 [210]
Nanotubes NH3 0.01 ppm [212]
Nanowires NH3 1–100 ppm 0.4 ppm [213]

Nano-dumbbells NH3 1 ppb–1 ppm 1 ppb [217]
Nanoparticles NH3, acetic acid 1–100 ppm 0.1 ppm, 1 ppm [221]

Nanowires H2 600–2500 ppm 12 ppm [223]

Nanonecklaces
2,4-

dichlorophenoxyacetic
acid

0.1–8 µM 100 nM [224]

Nanobelts Methanol 20 µM–0.16 mM 6.92 µM [225]
Nanoparticles Pb2+ 0.1–50 µM 55 nM [226]
Nanoparticles Bisphenol A 1–104 fM 1 f M [228]

The technology of detecting volatile organic compounds (VOCs, such as acetone,
ethanol, acetic acid, etc.) with high sensitivity and a fast response time has many poten-
tial applications in home health care, work automation and disaster prevention. Sensors
based on PPy nanomaterials are also commonly used to detect VOCs. Alizadeh et al. [219]
prepared nanostructured conductive PPy on interdigital electrodes by galvanostatic elec-
trodeposition under anion doping. Sensors based on anion-doped PPy have been confirmed
to have a response time of less than 1 s, high selectivity and calibration sensitivity, and
good reproducibility for methanol at room temperature.

Sensors based on PPy nanomaterials are also used for pH monitoring. Shirale et al. [222]
synthesized PPy NWs with different diameters using electrochemical deposition inside
AAO templates and investigated the effects of different aspect ratios on real-time pH moni-
toring on FET sensors based on single PPy nanowires. These single PPy nanowire-based
FET sensors exhibited excellent and adjustable sensitivity to pH changes and recorded
higher sensitivity with a higher aspect ratio of the PPy nanowire.

4.4. Others
4.4.1. Absorption and Impurity Removal

PPy nanomaterials have received remarkable attention in the area of adsorption and
impurity removal owing to ease of preparation, and environmentally friendly and excellent
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oxidation-reduction properties. Usually, PPy nanomaterials are used to absorb heavy metal
ions [110,112,229–232] and organic pollutants [233,234].

Because heavy metals have high solubility in water and are widely used in different
industries, removing heavy metals from water in an efficient manner has become a global
challenge. Among many heavy metals, chromium (VI) is harmful and widespread. Due to
the nitrogen-containing structure of pyrrole, PPy exhibits excellent adsorption capacity for
Cr (VI). Zhan et al. [110] reported a reusable bamboo-like PPy nanofiber mat for Cr (VI)
adsorption. At pH = 2, the flexible bamboo-like PPy nanofiber mat has a high adsorption
capacity of 961.5 mg g−1 for Cr (VI). Using Fe3O4 nanoclusters as a template and oxidant,
Yao et al. [229] prepared hierarchical porous PPy nanoclusters with a larger specific surface
area and higher conductivity in a one-step method. The as-prepared PPy nanoclusters
showed an outstanding capacity for removing Cr (VI) compared to active carbon and
PPy NPs.

The organic dyes in wastewater are harmful to human beings and the environment,
so it is important to remove them effectively. Xin et al. [234] reported an adsorbent of PPy
NFs for removing MO from an aqueous solution. The adsorption capacity of MO by PPy
NFs can reach 169.55 mg g−1 at 25 ◦C.

4.4.2. Wave-Absorbing Materials

As a conductive loss-absorbing material, PPy will generate an induced electric field
when it is induced by an external magnetic field, and the induced electric field will generate
an induced magnetic field opposite to the external magnetic field, thereby absorbing
and shielding electromagnetic waves [76]. Wong et al. [235] first used the large-scaled
PPy doped with toluenesulfonate anion in the electromagnetic shielding field. However,
the preparation of PPy materials is not convenient in experiments and requires a long
processing time. The preparation of PPy nanomaterial is convenient and the electromagnetic
shielding effect is better. Kaur et al. [236] synthesized PPy NPs by a surfactant-directed
chemical oxidation method. It is found that the particle size of the PPy NPs decreases while
the dc conductivity and total shielding effectiveness increase with surfactant concentration
in the reaction solution. Xie et al. [237] synthesized one-arm helical PPy nanostructures
through the chirality induction route. Due to the gradually constructed conductive network
and spiral chirality, it has tunable and impressive electromagnetic protection performance.

4.4.3. Solid Phase Extraction

Solid phase extraction (SPE) is currently the most widely used sample pretreatment
technology. In recent years, the miniaturization of SPE technology, especially the combina-
tion of SPE technology and fast-developing nanomaterials to achieve efficient and rapid
sample pretreatment has become a research focus. Wu and others in the research group of
Pawliszyn, the founder of SPE, have performed a series of studies on the extraction separa-
tion use of PPy [238–240]. Based on previous work, the applications of PPy nanomaterials
in SPE have made progress [241–246]. Lazzari et al. [245] reported a modified electrode
coated with PPy NTs on the surface of a steel mesh as an adsorption phase, which can
easily, quickly and inexpensively extract atrazine, progesterone, and caffeine from aqueous
solutions. Due to the larger surface area and lower relative standard deviation (RSD) value,
PPy NTs improved the extraction efficiency and showed better performance for adsorption
phenomena. Xie et al. [246] proposed a prospective fiber-filled SPE precleaning approach
that uses PPy electrospun NFs as adsorbents to simultaneously extract three water-soluble
vitamins from human urine.

4.4.4. Actuators

PPy is characterized by its small mass, soft plastids, ease of processing, good biocom-
patibility, large electrostrain (bending or stretching), and ability to work in the air and
liquid media. Under voltage stimulation, a reversible oxidation-reduction reaction will
occur inside it, causing changes in volume and mechanical properties, and it can return
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to its original shape or volume after the voltage excitation is removed. Therefore, it can
be used as an actuator. This kind of material can be miniaturized for component design,
making it a microelectronic mechanical system device that is widely used in microrobots,
microvalves, biomedical electronic devices and other fields [247–252].

According to the mechanism that allows PPy to change its volume according to the
redox state, Christoph et al. [248] proposed a novel electrically tunable nanovalve array
based on nanostructured PPy that has a naturally open state when no potential is applied
and can be closed when a reduction potential is applied, as shown in Figure 10. It was found
that the PPy layer doped with DBS shows a driving performance of up to 10% of the planar
volume change. During the oxidative fabricating process of PPy, the positively charged
framework is introduced on the conductive surface of porous noble-metal substrate. The
flow and integration of doped anions that fix in polymer matrix balance the charge, thus
creating an opened nanovalve. In the reduction process of PPy, the reduction potential
is applied to neutralize the polymer chain. Cations around the electrolyte transfer to the
anions fixed in polymer to achieve charge balance. This process is accompanied by osmotic
pressure, leading to the incorporation of water, which causes the expansion of polymer and
finally closes the nanovalve.
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Taking advantage of the hydrophobicity of implants and the conductivity of PPy,
Liao et al. [250] incorporated the amphiphilic biomolecular taurocholic acid (TCA) into the
1D nanostructured PPy array for implants. TCA plays an important role in the fabrication
of this device. Within a suitable concentration range, it is used as a surfactant to conduct
the self-assembly of pyrrole micelles on biomedical titanium implants to form a tapered 1D
nanostructured PPy. In order to respond the periodic switching of potential, TCA molecules
will change the orientation of their hydrophobic and hydrophilic surfaces in PPy matrix.
The implant surface doped with TCA showed reversible wettability between the open
state of 152◦ (superhydrophobic) and the closed state of 55◦ (hydrophilic) in response to
switching on and off power potentials periodically between the two potentials of + 0.50
and −0.80 V.

In addition to the application fields investigated above, the application of PPy-based
nanomaterials in other aspects has also been reported, such as the moistelectric nanogen-
erator [75], corrosion protection [253,254], hydrogen evolution [255], thermoelectric [256],
chemical mapping [257] and ink formulations [258].

5. Conclusions and Perspectives

PPy nanomaterials show high conductivity, large surface area and many other prop-
erties. As described in this paper, many innovative fabrication methods have been de-
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veloped for the preparation of spherical, tubular, wire, rod, sheet, helical and other PPy
nanomaterials, including electrochemical polymerization, interfacial synthesis, emulsion
polymerization, radiation-initiated polymerization, surfactant-assisted polymerization,
gas-phase polymerization, electrospinning, etc. Functional PPy nanomaterials prepared by
these means display many attractive properties, which have been extensively explored in
the applications of energy storage, biomedicine, sensors, adsorption and impurity removal,
microwave absorption, solid-phase extraction and actuators.

Although research on PPy nanomaterials is progressing rapidly, there are still many
tasks to be completed. Firstly, precisely controlling the size and morphology of PPy nano-
materials is still a major challenge in this field. By accurately controlling the size and
morphology of PPy nanomaterials, a series of materials with excellent optical, thermal
and electrical properties can be obtained, which broaden the application of PPy. Therefore,
future developments should focus on improving synthetic methods and deriving novel
assembly processes for better control of the size and structure. Secondly, the accuracy of
characterization is expected to improve, while the repeatability also needs to be improved,
which has a certain impact on the study of the mechanism. Lastly, there are still many impor-
tant problems in the application of PPy nanomaterials, and few can be used in commercial
applications. In order to realize commercial application as soon as possible, the following is
necessary: the environmental stability of PPy nanomaterials needs to be improved, the new
environmentally friendly PPy nanomaterials need to be developed, and the application
fields of PPy nanomaterials need to be further expanded. It is foreseeable that combining
another suitable component with PPy nanomaterials will be a very promising material for
various applications. However, there is still a need to study new methods of preparing this
material, discover interesting and enhanced properties, and expand its applications.
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