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Abstract: In this work, considering the current status of conservative and complicated traditional 

thrombosis treatment methods, a kind of flexible intelligent probe (FIP) with a top-driven sensing 

strategy is proposed to realize the expected function of thrombosis accurate localization in a liquid 

flow environment. After throughput fabrication, we find that the FIP has excellent electrical con-

ductivity and mechanical properties. Notable, our FIP with the principle of piezo-resistive sensing 

has a quasi-linear sensitivity (approx. 0.325 L per minute) to flow sensing in the low flow velocity 

range (0–1 L per minute). Via the well-designed magnetically driven method, our FIP has a maxi-

mum deflection output force of 443.264 mN, a maximum deflection angle of 43°, and a maximum 

axial force of 54.176 mN. We demonstrate that the FIP is capable of completing the specified com-

mand actions relatively accurately and has a good response to real-time sensing feedback perfor-

mance, which has broad application prospects in thrombus localization detection. 
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1. Introduction 

Smart materials, including electroactive polymers, shape memory, electrostrictive 

polymers, etc., are regarded as well-organized functional materials that exhibit sensing 

changes and moderate response when exposed to environmental stimuli (e.g., light, heat, 

electricity, magnetism, stress, or chemicals) [1–5]. Smart materials have been widely stud-

ied in flexible electronics, including sensors [6–8], actuators [9–11], and generators [12–14] 

due to their excellent flexibility, wettability, responsiveness, biocompatibility, bioactivity 

[15–17], and their potential in the biomedical field [18–20]. However, although the study 

on smart materials is still in the laboratory stage, the successful application practice of 

some extreme environments (underwater, vacuum, etc.) and special fields (medical treat-

ment, health monitoring, etc.) has become a new spring for smart materials [21–29]. 

Cardiovascular disease is a common disease that seriously threatens the health of 

human beings [30–32]. Interventional therapy is an effective method to treat cardiovascu-

lar disease, which puts higher requirements on the precision of equipment and instru-

ments [33–35]. At present, relevant reports on smart materials serving the treatment of 

cardiovascular disease mainly focus on nanomaterial-based immunosensors for accurate 

diagnostics [36,37], cardiovascular implants [38], antidiastole for cardiovascular disease 

[39], as well as stent designs and coronary applications [40], which present great potential 

in the future medical market. However, in the thrombus treatment operation, a rapid 

thrombus location when intervened in a fluid blood environment is required, and then 

the flexible top-driven strategy is used to realize the targeted thrombus removal. There-

fore, there is an urgent need for an intelligent thrombus localization strategy to assist the 
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surgeon in diagnostic procedures and to reduce the risk of harm to the surgeon. In addi-

tion to the requirement that the probe can work in a liquid flow environment, it is more 

important that the smart probe can accurately locate the thrombus. 

Herein, focusing on the current status of the thrombotic disease treatment, this paper 

proposes a flexible intelligent probe (FIP) with the function of top-driven sensing in a 

simulated blood flow environment. After throughput fabrication, the deflection output 

force of the 3 mm and 8 mm samples with a magnetic particle concentration of 40 wt% 

and molded in a 90° magnetic field reached a maximum of 443.264 mN and 43°, respec-

tively, while the 8 mm sample with a magnetic particle concentration of 40 wt%, formed 

in a 0° magnetic field reached a maximum performance axial output force of 54.176 mN. 

This work is of great significance for the application of multi-functional flexible smart de-

vices and provides inspiration for the development of thrombus removal devices. 

2. Results and Discussion 

2.1. Model and Characterization Analysis of the Flexible Intelligent Probe 

The design of the FIP is oriented towards the working environment within the blood 

vessels. The FIP should first come with the health and safety of the human body while 

taking into account being non-toxic and harmless. Simultaneously, due to the narrow 

working space causing the destruction to the blood vessels, the working characteristics of 

high sensitivity, fast response speed, stable working conditions, etc. are possessed to guar-

antee the accuracy of the work. Additionally, a long working life of the FIP is also ensured.  

Based on the above considerations, our FIP adopts the principle of piezo-resistive 

sensing (PRS) and magnetic driving (MD), and the schematic diagram of the design model 

is shown in Figure 1a. The FIP is mainly composed of a PRS part and an MD part, which 

are connected through a conductive silver paste layer. The PRS part of the FIP is located 

at the front end, whose deflection is driven by the MD part. The former is to detect the 

blood flow rate and the position of the thrombus, and transmit the electrical signal in real 

time. The latter is to drive the probe and the catheter at the rear end in an in-and-out and 

deflecting motion, and approach the thrombus position to achieve the relevant operation. 

As shown in Figure 1b, the PRS part is fabricated from a poly dimethyl siloxane (PDMS) 

film spin-coated with conductive silver paste, while the MD part is composed of PDMS 

solution incorporating rubidium iron boron magnetic particles, which is formed at high 

temperature under a specific directional magnetic field. 

To deform elastically in response to external environmental stimuli, it showed that 

the conductive silver paste layer is closely bonded to the PDMS substrate, and the cross-

section of the PRS part is homogeneous in texture (Figure 1c). Furthermore, the composi-

tion analysis of the X-ray presented that the distribution of silver elements is very uniform, 

indicating the presence of a conductive silver paste layer on the PRS part (Figure 1d). This 

enables the normal transmission of electrical signals for piezo-resistive sensing. In the MD 

part, the dense PDMS matrix has a fine pore structure (Figure 1e), which provides good 

storage for the encapsulated and fixed neodymium ferrum boron magnet (NdFeB) mag-

netic particles, avoiding interference with the magnetic response of driving motion. Here, 

the neodymium element in NdFeB was selected to characterize the internal magnetic par-

ticle distribution by localization. The particles showed a chain structure parallel to the 

molded magnetic field of 45° (Figure 1f). At low content of NdFeB, the chain structure is 

short and thin, and the number of the chain structures is small, but the spacing between 

adjacent chains is large. On the contrary, the law is the opposite. The spacing between 

adjacent chains decreases, and sometimes, the chain structures are interlaced. 
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Figure 1. Model and characterization of the flexible intelligent probe (FIP). (a) Working model dia-

gram of FIP, (b) Composition model diagram of FIP, (c) SEM images of cross-section of the piezo-

resistive sensing part, (d) Element distribution of the piezo-resistive sensing part, (e) SEM images 

of cross-section of the magnetic driving part; (f) Element distribution of the magnetic driving part. 

2.2. Sensing Mechanisms and Working Performance of the FIP 

As shown in Figure 2a, the conductive silver paste connected with wires and PDMS 

substrate are encapsulated in a waterproof layer. The entire area of the PRS part is slightly 

larger than the area of the MD part, in order to better sense the changes in low-velocity 

water flow. When the PRS part is deformed, the length of the neutral layer does not 

change. However, the conductive silver paste is located on one side of the neutral layer, 

so it is extremely simple for deformation to occur. According to the resistance formula of 

R = ρL/S, where ρ is the resistivity, L is the length along the circuit conduction direction, 

S is the cross-sectional area perpendicular to the circuit conduction direction. When the 

conductive silver paste is deformed, it will cause its own resistance length L to change, 

thus causing a change in resistance value (Figure S1). 

The sensing detection mechanism of the flow velocity is shown in Figure 2b. The 

impact of the blood flow will produce a compressive deformation when the FIP enters. 

Since the area of the PRS part is larger than the area of the MD part, the two ends of the 

PRS part are in a free state and will compress backward upon impact, causing the entire 

surface of the PRS part to form a shape with the least possible resistance. This shape, in 

turn, causes the conductive silver paste inside it to be compressed so that its length L is 

less than the initial length L0, resulting in a lower resistance. The faster the flow rate in the 

blood vessel, the stronger the impact effect on the PRS part. Also, the more pronounced 

the deformation of the PRS part, the more pronounced the change in resistance. Indirect 

sensing of blood flow velocity is achieved through this phenomenon. Simultaneously, the 

sensing detection mechanism of the thrombus position is shown in Figure 2c. When the 

FIP touches the thrombus, which forms a kind of splint with the fixed surface of the PRS 

part, and it will squeeze the PRS part from both sides. This results in a compressive elon-

gation of the PRS part, where the length L of the conductive silver paste layer is greater 

than the initial length of L0, resulting in an increase in resistance. 

In conjunction with the previous mechanics of sensing blood flow velocity, the pres-

ence of a thrombus causes a narrowing of the blood vessel, which leads to an increase in 

flow velocity in the vicinity of the thrombus, assuming that the human blood flow is con-

stant. As the FIP slowly approaches the thrombus from the distal end, the flow velocity 

tends to increase within a certain range, at which point the resistance of the piezo-resistive 

sensing component gradually decreases, reaching a minimum value when the FIP is close 
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to the thrombus. When the FIP touches the thrombus, the resistance of the PRS part in-

creases rapidly. The dynamic process of this feature is monitored to determine if a throm-

bus is present, and the related laboratory bench is shown in Figure S2. 

The flow sensing performance mechanism can be valued by the sensitivity equation 

of S = d(ΔR/R0)/dv, where ΔR is the changing resistance value, R0 is the initial resistance 

value and v is the flow velocity. A curve of the relative resistance change of the PRS part 

with the flow velocity is measured and is shown in Figure 2d, and the sensing perfor-

mance curves for different flow rates are shown in Figure S3. In the low flow rate range 

(0–1 L per minute (LPM)), the PRS part shows a quasi-linear sensitivity to the flow rate of 

approximately 0.325 LPM. The higher sensitivity in the low flow rate range is mainly due 

to the good elastic deformation of the PDMS substrate, which deforms well in a linear 

fashion and causes a change in resistance. As the flow rate continues to increase, the sen-

sitivity of the device gradually is decreased due to the degree of elastic deformation be-

yond the linear deformation, which is influenced by the elastic resistance of the PDMS 

material but is still able to differentiate sensing for different flow rates. 

 

Figure 2. Sensing mechanism and performance of the FIP: (a) Deformation sensing mechanism of 

the FIP, (b) Velocity sensing mechanism of the FIP, (c) Positioning sensing mechanism of the FIP, 

(d) Sensitivity curve of the FIP, (e) Response time curve the FIP, (f) Distance sensing curve of the 

FIP. 

Figure 2e shows the response speed and recovery characteristics of this PRS part for 

flow rate detection at 3 LPM. The response time is measured to be approximately 0.8 s for 

one cycle of flow rate application and release, demonstrating a relatively fast response 

rate. In contrast, the response time for detection at flow rate withdrawal is approximately 

1.2 s. The sensing response at different flow rates shows a recovery response time that is 

higher than the detection sensing time due to the fact that at high flow rates, the PDMS 

substrate is out of its elastic deformation state and returns to its original form more slowly 

and takes longer. During a cycle of flow application and release, when the flow rate is 

removed, the resistance does not return to its initial value but becomes slightly higher 

than the initial resistance R0, which is approximately 1.3 times the initial resistance value. 

This is due to a certain inertia in the recovery of its own deformation after the withdrawal 

of the flow rate, resulting in a recovery of the deformation even after reaching its original 

shape, making the resistance value larger.  
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In order to investigate the distance sensing performance of the thrombus, the FIP was 

used to slowly approach (2 mm/s) the simulated thrombus at a constant flow rate (1.5 

LPM). As shown in Figure 2f, the resistance value increases as the FIP is brought closer 

and closer due to the presence of the simulated thrombus, which causes a change in the 

actual internal tube diameter, resulting in a significant increase in the flow velocity around 

the thrombus. This increase in flow velocity causes the PRS part to deform itself, which in 

turn causes a change in resistance value. The faster the flow rate, the more the PRS part is 

bent backward, and the more the conductive silver paste layer is squeezed, resulting in a 

gradual reduction in resistance by approximately 0.04 of its own resistance value. This 

change in resistance allows for a good approximation of the thrombus location.  

2.3. Driving Mechanisms and Performance Testing of the FIP 

The motion mechanism of the MD part of the FIP is relatively straightforward and is 

driven by the interaction between the driving magnetic field and the hard magnetic par-

ticles (NdFeB particles) dispersed in the polymer matrix (PDMS matrix) (Figure 3a). The 

PDMS matrix containing the NdFeB particles can be divided into multiple magnetic pol-

ymer units. In a magnetic field, the driving force can be thought of as a magnetic torque, 

and the magnetic polymer unit is subjected to the magnetic torque to generate movement 

and deformation, which ultimately results in the movement of the MD part of the FIP. As 

the actuating magnetic field is much smaller than the saturation field, the magnetization 

of the magnetic polymer units (voxels) is independent of the actuating magnetic field. As 

shown in Figure 3b, as the FIPs are molded under different magnetic fields, the internal 

magnetic particles are arranged in different directions, which results in different output 

forces and deflection angles when a directional magnetic field is applied.  

The hysteresis lines of the MD parts molded under different magnetic field orienta-

tions are shown in Figure 3c. The differences in values also indicate that the direction of 

the magnetic field molding has an effect on the magnetic response, which corresponds to 

the analysis of the mechanical motion properties. The very small coercivity (approx. 105 

emu/g) and remanence (approx. 2.51 Oe) indicate that the magnetically responsive flexible 

actuator is softly ferromagnetic. The area enclosed by the hysteresis lines indicates the 

energy consumed to magnetize a ferromagnetic substance for one week, which is often 

converted into heat and consumed. The smaller area of the hysteresis lines of different 

magnetic field orientations of the flexible actuators above indicates that less energy is re-

quired to drive them and that they can be driven at low power, which is beneficial to the 

design of the equipment.  

The motion performance of the FIP was investigated using an aqueous solution of 

propylene glycol formulated to the same viscosity as blood. Figures 3d–f and S4–S7 

showed the deflection output force, deflection angle, and output force of the magnetically 

driven part of the FIP located in a liquid environment at different magnetic induction 

strengths (0°, 45°, 90°). Obviously, the sample molded in a 90° magnetic field has the 

strongest response to the deflecting magnetic field because its magnetic induction direc-

tion is the same as the deflecting magnetic field direction, while the sample molded in the 

45° and 0° magnetic fields is less responsive because of the angle with the deflecting mag-

netic field direction, which leads to a decrease in the output force. If the number of internal 

magnetic particles in line with the direction of the external deflection field is higher, the 

output force performance is better, and vice versa. 
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Figure 3. Driving mechanism and performance of the FIP: (a,b) Driving mechanism of the FIP, (c) 

Hysteresis line of the MD part, (d) Deflection output force curve of the FIP, (e) Deflection angle 

curve of the FIP, (f) Axial output force curve of the FIP. 

Meanwhile, the sample molded in a 90° magnetic field has the strongest response to 

the deflection field (Figures 3e and S6), as its magnetic induction direction is the same as 

the direction of the deflection field, which makes the initial deflection response extremely 

fast, but when deflection occurs, the magnetic induction direction of the internal particles 

becomes angled to the deflection field, and the deflection angle performance is slightly 

reduced later on. The 45° and 0° magnetic field samples are initially less responsive be-

cause of the angle with the deflecting magnetic field, but as the deflection process pro-

ceeds, the angle with the deflecting magnetic field is smaller, and there is a higher upward 

trend later on. As for the free-forming sample without a magnetic field, its internal mag-

netic particle direction is not fixed, so there is uncertainty in the output angle. If the num-

ber of internal magnetic particles in line with the direction of the external deflection mag-

netic field is higher, the better the deflection angle performance, and vice versa, so it pre-

sents an uncertain situation. 

In addition, the response to the axial magnetic field is the strongest for the 0° sample, 

because the magnetic induction direction is the same as the axial magnetic field direction, 

while the response of the 45° and 90° samples is reduced due to the angle with the axial 

magnetic field direction, which leads to a decrease in the output force (Figures 3f and S7). 

If the number of internal magnetic particles in line with the direction of the external axial 

magnetic field is higher, the output force performance is better and vice versa, so it pre-

sents a situation between the sample molded under 0° magnetic field and the sample 

molded under 90° magnetic field. 

2.4. Working Process and Simulation Experiments of the FIP 

The overall workflow of the FIP can be described as follows (Figure 4a). Initially, the 

front piezo-resistive sensing part is operated to set the initial value, and when the sensing 

signal is stable, the motion coil is energized and activated, sliding forward to drive the FIP 

forward rapidly. When the monitoring signal changes (the resistance value decreases), the 

FIP is approaching the thrombus. The control system controls the size of the coil voltage 

output and the sliding speed by the degree of signal change, with low voltage, low mag-

netism, and slow deceleration. When the preset minimum resistance value is reached, it 

is considered to be close to the thrombus, and the motion coil stops supplying power and 

movement, activating the deflection coil, which deflects the FIP to make close contact with 
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the thrombus. When the sensing signal value changes (rises), the thrombus has been con-

tacted, and the deflection coil maintains the operating voltage at this point, ensuring that 

the FIP remains in its current form and is able to complete the corresponding operation in 

a stable manner. At the end of a cycle of corresponding operations, the deflection coil 

voltage is removed, and the FIP is returned to its natural state, at which point the sensing 

signal is monitored and compared to the signal in the absence of a thrombus.  

According to the above working mechanism, two working modes are selected in the 

following cycle. If the signal differs significantly from that in the absence of a thrombus, 

then the operation is not complete, and the deflection coil is activated to drive the FIP 

through another operation cycle. However, if the signal is close to the signal in the absence 

of a thrombus, then the operation is considered complete, and the operation is continued 

to the next step or the probe is withdrawn to end the operation.  

To demonstrate the working parameters under actual operating conditions, real-time 

sensing feedback signals of FIP were recorded simultaneously to facilitate a clearer anal-

ysis of the sensing signals. Figure 4b showed all three sensing performance curves are 

consistent with the thrombus characteristic curves of the three working cycles (Figure 4a), 

indicating that the general location of the thrombus can be detected in all three cycles. 

This regular change in flow rate, which is the heart pumping blood, was simulated and 

the sensing signal was also able to respond in the form of resistance fluctuations. Mean-

while, as the distance between the FIP and the simulated thrombus decreases, the flow 

velocity around the probe increases, and the resistance value decreases. When the simu-

lated thrombus is touched, the PRS part of the probe is elongated by compression and the 

resistance increases. The real-time sensing feedback performance tests during the actual 

working conditions provide a good response to the working condition and environment 

of the FIP. 

 

Figure 4. Simulation experiments of the FIP: (a) Workflow diagram of the FIP: ① initial state; ②,

③ fast monitoring; ④ intelligent positioning; ⑤ pumping and clearing; ⑥ end and next moni-

toring, (b) Sensing feedback curves in the simulation experiments, (c) Experimental testbed for 

thrombus simulation and real FIP, (d) Experimental procedure during simulated thrombus re-

moval. 

The construction of the entire vascular simulation environment is shown in Figure 

4c. After assembling and commissioning the experimental equipment and devices, the ac-

tual working motion state of the FIP was simulated and investigated in Figure 4d. The 
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main focus of this process was to observe and investigate the accuracy of the working 

attitude of the magnetic driving part of the FIP. The FIP, stimulated by the driving mag-

netic field, follows the coil in its slow forward motion, reaching the second half of the line 

at approximately 11 s. At approximately 20 s, the PRS part detects the presence of the 

thrombus and the drive coil stops moving forward and switches off the drive magnetic 

field, at which point the FIP is positioned close to the location of the simulated thrombus. 

The deflection coil is then energized to generate a deflecting magnetic field, which drives 

the probe to one side and performs a close proximity movement, which is confirmed by 

the sensing signal. During the entire working process, the FIP is able to complete the spec-

ified command action more accurately under the stimulation of the driving and deflecting 

magnetic fields according to the operation needs. In the future, this kind of throughput 

smart probe shows great potential market prospects during minimally invasive surgery 

for positioning and removal of the human thrombus. 

3. Conclusions 

In this work, we propose the design of a flexible intelligent probe (FIP) with a top-

driven sensing strategy to realize the function of thrombus location sensing in a liquid 

flow environment. The sensitivity, response rate, and recovery characteristics of the FIP 

were analyzed to confirm its sensing performance for both flow velocity and thrombus 

position. Via the well-designed magnetically driven method, the deflection output force 

of the 8 mm, 3 mm sample with a magnetic particle concentration of 40 wt% and molded 

in a 90° magnetic field reached a maximum of 443.264 mN and 43°, while 8 mm, magnetic 

particle concentration of 40 wt%, formed in a 0° magnetic field with a maximum perfor-

mance axial output force of 54.176 mN. The workflow of the FIP is described, and the 

operating position and signal detection performance of the FIP under simulated real-

world conditions indicate its promising potential for thrombus location detection. In the 

future, this cheap and intelligent flexible probe is expected to serve as an important part 

of the intelligent localization and removal of human thrombus in minimally invasive sur-

gery. In addition, the development of the control algorithm for this intelligent probe is 

also an effort trend that has to be considered in the application of thrombus removal sur-

gery. 

4. Experimental Section 

The FIP consists of a piezo-resistive sensing (PRS) part and a magnetic driving (MD) 

part. The process of fabricating the PRS part of the FIP is as follows. Firstly, the PDMS 

main agent and the curing agent (SYLGARDTM 184 Silicone Elastomer) are weighed in a 

mass ratio of 10:1, poured into a beaker, mixed for 15 min, then vacuumed to remove air 

bubbles by spin-coating on a glass plate, and dried in a drying oven at 60 °C to produce 

the PDMS substrate. The conductive silver paste (made by Luxianzi Co. Ltd in Shenzhen, 

China) is applied evenly to the surface of the PDMS substrate with a brush, cleaned to 

remove the excess conductive silver paste and ensure the surface is smooth and flat, then 

placed in a 60 °C drying oven for 1 h to dry. The dried PDMS substrate conductive silver 

paste composite layer is cut according to the required size, then the surface ends are fixed 

with small pieces of copper tape to connect the wires, and then the whole sample is sealed 

with sealing film to obtain a PRS part of FIP.  

Moreover, the process of fabricating the MD part of the FIP uses the following pro-

cess, where a 10:1 ratio of PDMS master agent and curing agent (SYLGARDTM 184 Sili-

cone Elastomer) are added to different concentrations of rubidium iron boron magnetic 

particles, stirred for 15 min until homogeneous, and vacuumed to remove air bubbles. 

Cylindrical molds of different diameters (3 mm, 5 mm, 8 mm) were made by 3D printing 

and the PDMS mixture was poured into the molds, which were then dried at 60 °C under 

different magnetic fields. Here, the angle between the direction of the molding field and 

the axis of the cylindrical mold is called the angle of the molding field, e.g., the direction 

of the field is parallel to the axis, i.e., the angle is 0°, which is defined as a 0° molding field; 
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the direction of the field is perpendicular to the axis, i.e., the angle is 90°, which is defined 

as a 90° molding field; and there is also a 45° molding field with an angle of 45° to the axis. 

After waiting for the mixed system to dry and form, magnetically responsive MD sections 

of different concentrations, sizes, and directions of the forming field are prepared.  

The front side of the PRS part of the prepared FIP (the side coated with conductive 

silver paste) is connected to one end of the MD part. The wire of the PRS part is then fixed 

to the MD part to prevent the wire from vibrating and causing interference to the PRS 

part. A detailed fabrication process of the FIP is shown in Figure S8. Here, an efficient 

process method of high-throughput fabrication [41] was developed that can acquire a 

large number of different experimental samples in a short period of time. By the above 

preparation process, a large number of FIPs with different magnetic response properties 

can be fabricated. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/polym14235124/s1. Figure S1: Resistance value of the piezo-resis-

tive sensing part of the FIP in each state, Figure S2: The laboratory bench for the piezo-resistive 

sensing part of the FIP, Figure S3: Flow rate sensing performance test curves, Figure S4: The labor-

atory bench for the magnetic driving part of the FIP, Figure S5: The deflection output force of the 

magnetic driving part of the FIP with different parameters in a liquid environment as a function of 

magnetic induction strength, Figure S6: The deflection angle of the magnetic driving part of the FIP 

with different parameters in the liquid environment as a function of magnetic induction, Figure S7: 

The axial output force of the magnetic driving part of the FIP with different parameters in liquid 

environment with magnetic induction Figure S8: The detailed production process of the FIP. 
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