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Abstract: The turn to hydrogen as an energy source is a fundamentally important task facing the
global energetics, aviation and automotive industries. This step would reduce the negative man-made
impact on the environment on the one hand, and provide previously inaccessible power modes and
increased resources for technical systems, predetermining the development of an absolutely new life
cycle for important areas of technology, on the other. The most important aspect in this case is the
development of next-generation technologies for hydrogen industry waste management that will
definitely reduce the negative impact of technology on the environment. We consider the approaches
and methods related to new technologies in the area of hydrogen storage (HS), which requires the use
of specialized equipment equipped with efficient and controlled temperature control systems, as well
as the involvement of innovative materials that allow HS in solid form. Technologies for controlling
hydrogen production and storage systems are of great importance, and can be implemented using
neural networks, making it possible to significantly improve all technological stages according to the
criteria of energy efficiency reliability, safety, and eco-friendliness. The recent advantages in these
directions are also reviewed.

Keywords: hydrogen storage (tank); nanocomposite(s); nanotubes; waste management

1. Introduction

Enhancement of environmental friendliness at all levels of energy resources employ-
ment is still a priority task that can be solved by considering hydrogen as an energy
source [1]. Hydrogen is well-known as a carbon-free energy source, and its properties
have been exhaustively studied by generations of scientists. Its wide application could
potentially replace hydrocarbons and, accordingly, emissions of gaseous carbon in a variety
of forms.

The application of hydrogen is based on the employment of fuel cells, which are
efficient energy converters with significant potential for use in transport and other areas of
energy production [2]. Fuel cells have an energy conversion efficiency of about 60–70%,
which is significantly higher than for devices using the Carnot cycle. Currently, fuel cells
have been demonstrated to be safe and efficient devices that can ensure a fast refueling
process and energy efficiency [3]. Cathodic and anodic reaction—implemented on FC with
a pronounced anode and cathode—is characterized by the fact that hydrogen is ionized,
and its energy is released with the accumulation of electrons on the FC anode’s surface.
At the same time, oxygen is reduced at the cathode, which indicates anodic oxidation and
cathodic reduction [4].
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It should be noted that the main material for creating fuel cells is titanium, which
corrodes during operation. To reduce the intensity of the corrosion process, a cathodic
deposition of tungsten trioxide on the titanium surface can be used [5].

There are several main directions for the use of hydrogen that are widespread at the
moment. The most important applications of hydrogen are:

• Chemical industry—synthesis of ammonia, methanol, and hydrocarbons, as well as
the recovery of metals from their oxide form [6].

• Nanotechnology—in the process of CVD synthesis for the reduction of metal oxide
catalysts in the synthesis of carbon nanotubes (CNTs) [7,8]. The reaction takes place at
600–1000 ◦C in propane–butane flow.

• Energetics—an energy source for electric and thermal power engineering [9].
• Petrochemistry—oil refining (hydrogenation purification of petroleum products—

hydrodesulfurization) [10].
• Transportation—cars running on gaseous and liquid hydrogen [11,12].

In this latter case, a distinction should be made between passenger cars [13] and
commercial cargo and passenger transportation means [14,15].

The implementation of hydrogen as the main energy source in various types of buses
with FC in their design features the fact that hydrogen is converted into electrical energy,
and the by-product is water vapor, which condenses into water in the environment [16].
The approach presented—in which H2 is generated electrically to split water into O2 and
H2 or by chemical conversion of methane to H2 (loop conversion of methane with steam on
anti-coking compounds CeO2/La0.9Sr0.1Fe1−xNixO3) [17]—makes it possible to abandon
the use of petroleum products such as motor oils. This will also have a positive and tangible
impact on the ecological situation of megacities, as it will eliminate the need to recycle
used engine oils. The transition to a hydrogen energy system is likely to be based on H2,
obtained as a result of reforming natural gas or electrolysis.

The most widespread use of hydrogen is primarily in the field of motor transport,
which needs environmentally friendly and affordable energy sources that are capable of
replacing hydrocarbons. Another option that should be considered is the generation of
energy at a thermal power plant [18], and in this case, one practice involves the partial
mixing of hydrogen with methane or other gaseous fuels based on hydrocarbons [19].

The transition to hydrogen as the main type of fuel could form and transform the
design of new types of internal combustion engine, and in particular, hydrogen rotary
Wankel engines could find distribution [20]. Other types of vehicles in which hydrogen can
be used include aircraft or air transport [21] and unmanned aerial vehicles [22]. Commer-
cial hydrogen production currently depends mainly on steam natural gas reforming [23]
and coal partial oxidation [24]. Clean production using both biomass and solar energy
production methods is on its way [25].

Thus, there is a widespread practice of using hydrogen, which has the possibility of
serving as a basis for an entire direction of research. For the successful dissemination of
these achievements, however, several fundamentally important and significant problems
need to be solved, including the safe generation and storage of hydrogen. At the same
time, it should be borne in mind that polymer waste can be used as a source of cheap
raw materials for producing hydrogen and related high-performance materials. There is
also a fundamental possibility when using new control technologies related to artificial
intelligence in the process of hydrogen synthesis and storage.

2. Design and Thermodynamics of HS Tank

HS is currently a “bottleneck” for the implementation of the use of hydrogen as
renewable energy. A key challenge for the full development of hydrogen-based technologies
is the safe, efficient, and economical storage of hydrogen.

Practical materials for HS should have the ability to undergo a reversible hydrogena-
tion/dehydrogenation process, which is determined by the binding energy of hydrogen
atoms. The PCT curve is a graph representing the dependence of pressure on composition
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at different temperatures. Figure 1 demonstrates a graphical interpretation of the Van ’t
Hoff equation [26], which indicates the dependence of the logarithm of the equilibrium
desorption pressure on the reciprocal temperature (T) (Figure 1a), as well as the dependence
of the amount of hydrogen accumulation on pressure (Figure 1b).
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Figure 1. Van ’t Hoff diagram of metal hydride (MH) (a) and phase diagram (b).

It is necessary to consider the temperature regimes that are characteristic of the storage
of liquid hydrogen. Transient heat transfer plays a leading role in multilayer insulation
(MLI) in combination with a steam-cooled shield (SCS) used in liquid HS tanks. In [27], the
profile of the transition temperature and the change in the heat flux of MLI and SCS were
predicted and analyzed, which can help optimize the operating parameters for liquid HS.

Considering the technological aspects of HS in porous materials, a new design concept
for a portable HS tank was identified [28]. Within the framework of this concept, a storage
method is used in which low pressure and cryogenic temperature are realized. To maintain
the cryogenic temperature, three-layer insulation was used, allowing for at least 12.5 days
without the need for an external cooling circuit to maintain the optimum temperature.
The HS tank is portable and can be used in various types of FS electric vehicles (FCEVs).
As a tank filler, porous absorbents can be used, which form such storage conditions at
which a temperature of 77 K and a pressure below 100 bar is maintained. The presented
parameters are significantly lower than the internal pressure of 700 bar in commercial type
IV tanks [29], thus improving safety and reducing the risk of explosion.

The safety of the use of HS tanks with TPRD under fire conditions can be improved
by using composite materials [30]. HS tank model inputs include thermal parameters of
the hydride and tank materials, fire heat flow into the tank, diameter TPRD, and initiation
delay time TPRD. Non-stationary heat transfer from the environment through the tank
wall and lining to hydrogen leads to decomposition of the composite resin for wrapping
and melting of the lining. The lower limit of the diameter of the TPRD hole is sufficient to
prevent the tank from bursting in the case of fire.

With respect to the option of storing hydrogen in liquid or solid form, storage in the
solid state is preferable. This is due to the improvement in explosion and fire safety, and
also provides better volumetric and gravimetric density, which improves the weight and
size parameters of hydrogen accumulators. It should be noted that hydrogen in solid-
state storage is bound by physicochemical forces [31]. The strength of the interaction
between hydrogen and the carrier material varies from weak van der Waals interactions,
which are characteristic of the physisorption binding of molecular hydrogen, to the strong
chemisorption binding of atomic hydrogen [32]. The storage density of hydrogen can be
improved by using hydride-type materials; hydrogen is packed with a HH distance of up
to 170 kg/m3, which is more than twice the density of liquid hydrogen.
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When storing hydrogen based on MH, it is necessary to use specialized heat exchangers
or thermal control systems due to both endothermic and exothermic reactions taking
place during the filling and unloading of MH tanks (Figure 2). In the absence of a heat
exchanger or a suitable temperature range, the operation of the MP will have a negative
influence, leading to the instability of the supply of hydrogen in FS systems. In [33], the
influence of the tank surface temperature on the hydrogen consumption and hydrogen
flow characteristics for the HS system MH of an electric vehicle operating on hydrogen FC
was studied. Various temperature values were provided with the help of an external heat
circulation device and a heat exchanger inside the MH tank. The FC operated in a power
range from 200 to 600 W, and was regulated depending on the temperature and flow rate
of the pumped reservoir [34].
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Figure 2. (a) Schematic of FC-based electric vehicle [29]. (b) The process of charging the cell
with hydrogen.

MH cartridges based on the hydride of La0.75 Ce0.25 Ni5 can be used for HS [35].
The low thermal conductivity of MH is a limiting factor with respect to the technological
problems of HS. To improve the thermal and physical characteristics of MH, metal foam
with a porosity gradient can be used [36].
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3. Composite Materials for HS—Thermoset Composites

The safe storage of a reasonable amount of hydrogen is associated with many problems
related to the method and materials. Hydrogen accumulator materials can be of different types:

1. Dissociative material in which molecular hydrogen is dissociated into hydrogen atoms
occupying internodes;

2. Materials with chemically bonded hydrogen;
3. Materials that adsorb molecular hydrogen, in which molecular hydrogen attaches to the

surface due to weak interactions, such as the Van der Waals force or physical sorption.

The ability of certain materials to accumulate hydrogen depends on the structure
and type of interaction with hydrogen. There are some new materials for HS. Storage of
hydrogen in solid form can be briefly divided into the following categories:

1. MHs;
2. Hydrides based on light metals;
3. Chemical hydrides (complex hydrides);
4. Nanostructured materials (adsorption of molecular hydrogen).

Intermetallic compounds can be used as hydrogen accumulators [37,38]. This is
due to the peculiarities of their atomic structure, in which interstices with the optimal
binding energy for hydrogen are observed, forming the process of absorption or desorption
under conditions close to standard. In this regard, for the storage of hydrogen, the class
of compounds of the Laves phase with the formula unit (AB) needs to be taken into
consideration [39]. Because they change from one to the other on heating and cooling
(usually C14 at high temperatures and C15 at low temperatures), hydrogen absorption–
desorption can be thought of as a phase change process. Structure C15 is an fcc structure
containing six atoms per unit cell, while structures C14 and C36 are hexagonal structures
containing 12 and 24 atoms per unit cell. Figure 3 demonstrates the crystal structures of
C14- and C15-type alloys. Ideally, the lattice parameters are closely related in each structure
and between structures. However, in real MH alloys with a predominance of C14, the c/a
ratio is slightly lower than the theoretical value (223–

√∼=1633) [40]. Three types of position
are available for tetrahedral hydrogen filling positions (A2B2, AB3 and B4) for both C14
and C15 structures, as shown in Figure 3. There are no octahedral positions at all in the
Laves phases, so further discussion will focus only on tetrahedral positions [41].
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High-temperature MH, such as MgH2, is considered one of the most promising HS
technologies [42]. However, there are two main bottlenecks, including the low rate of H2
absorption and the low power of the MH reactor. In this regard, heat removal from the
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MG tank plays a crucial role in the HS process. The results show that the charging time
is significantly reduced by increasing the number of air channels, as the heat transfer rate
is significantly improved. When the initial coolant temperature rises, the charging time
increases; however, as the Reynolds number of the coolant increases and the hydrogen inlet
pressure increases, the absorption process accelerates. The recommended configuration of
the heat exchanger is introduced taking into account both the loading time and production
constraints. It is shown that the loading of a new multi-zone hydrogen energy storage using
four air channels is approximately 30 min, which provides a more applicable hydrogen
fuel system.

Ref [43] presents experimental studies concerning the absorption of H2 in a solid-
state HS device based on LmNi4.91Sn0.15 with integrated cooling tubes (ECT). MH with
ECT 36 and 60 loaded with 2.75 kg LmNi served as the basis for a hydrogen accumulator
that implements various modes of supply pressure (10–35 bar), absorption temperature
(20–30 ◦C) and coolant flow (2.2–30 L/min).

It has been found that at any given absorption temperature, the rate of H2 absorption
and the amount of absorbed H2 increase when the H2 supply pressure rises to about 35 bar.
Assuming the supply of H2 at a pressure of 35 bar and an absorption temperature of 30 ◦C,
using oil as a coolant at a flow rate of 3.2 L/min, the maximum absorption of hydrogen is
≈1.2 wt.% for 10 min for 36 ECT and 8 min for 60 ECT. Under absorption conditions with a
supply pressure of 25 bar, a water flow rate of 30 L/min and an absorption temperature of
30 ◦C, the absorption time in the reactor with 60 ECT was reduced to 5 min. Most metals
are able to absorb hydrogen reversibly. Undoubtedly, the MG reactor (MR) is the main
device used to achieve the desired stability and integrated operation of the HS system.

It has been found that at any given absorption temperature, the rate of hydrogen ab-
sorption and the amount of hydrogen absorbed increases as the hydrogen supply pressure
rises to about 35 bar. Assuming a hydrogen supply pressure of 35 bar and an absorption
temperature of 30 ◦C, using oil as the heat transfer medium at a flow rate of 3.2 L/min, the
maximum absorbed hydrogen is ≈1.18 wt% per 10 min for 36 ECT and 8 min for 60 ECT.
Under absorption conditions with a supply pressure of 25 bar, water flow 30 L/min and
absorption temperature 30 ◦C, the absorption time in the reactor from 60 ECT is reduced
to 5 min. The majority of metals can reversibly absorb hydrogen. Undoubtedly, the MH
reactor (MHR) is the main device used to achieve the stable and integrated operation of HS
systems desired.

Furthermore, each of the materials of this class in the form of nanocomposites will be
considered to give a reasonable explanation for the improvement in the storage conditions
of hydrogen as an energy source.

4. Hydrogen Generation and Storage on the MoS2-Containing Materials

It appears that MoS2 possesses great prospects as a cost-effective replacement for Pt
for catalysis of the hydrogen evolution reaction (HER) in water, despite its claimed catalytic
efficiency being lower than that of Pt. The latter is known to be the best HER catalyst, but it
appears to be too expensive for mass production in the hydrogen industry. Monolayer (ML)
MoS2 films were grown using CVD processes. Substrates are able to affect the catalytic
activity of MoS2 in two ways: by forming an interfacial tunnel barrier with MoS2; and by
changing the chemical nature of MoS2 through charge transfer (proximity doping).

The catalytic characteristics can be further improved such that they are even better than
those of Pt by crumpling films on flexible substrates, since the Tafelian slope of the film is
significantly reduced in the presence of compression deformation caused by crumpling [44].
MoS2 can be used for the hydrogen evolution reaction (HER). Thermal effects formed an
effective electron transfer in the atomic MS MoS2 and at the electrolyte–catalyst interface,
leading to an increase in the activity of GWR [45].

Vertically grown MoS2 nanolists supported by conductive carbon nanotubes and reduced
graphene oxide (CNT-rGO) on traditional Vietnamese paper (MoSx/CNT-rGO/VTP) can be
used for the electrochemical reaction of hydrogen evolution (HER). The catalyst demonstrates
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excellent electrocatalytic activity of HER, including a low initial potential of 190 mV, a Taffel
slope of 59 mV/◦, and excellent stability in an acidic electrolyte solution [46].

The Taffel slope shows the dependence of the catalytic reaction rate on the applied
overvoltage. The smaller the Taffel slope, the faster the reaction rate increases when
applying overvoltage. Typically, the Tafel slope (n) of an electrochemical reaction is dictated
by the rate-determining reaction stage, and can be written as a function of the number
of electrons involved (z) and the charge transfer coefficient (α) of the limiting factor. The
extraction step is n = 2.3zRT/aF, where R is the ideal gas constant, T is the absolute
temperature, F is the Faraday constant [47]. For MoS2 materials, which are usually found
in an acidic environment, three reaction stages can be involved:

• Primary discharge stage (Vollmer reaction):

H3O+ + e− → Hads + H2O

• Electrochemical desorption stage (Geyrovsky reaction):

Hads + H3O+ + e− → H2 + H2O

• Recombination stage (Tafel reaction):

Hads + Hads → H2

The edge regions of MoS2 are catalytically active in hydrogen evolution reactions
(HER). F atoms with high electronegativity are doped into the edge nodes of MoS2, leading
to a fivefold increase in activity compared to the initial edges, which is explained by the
more moderate binding energy for hydrogen particles [48].

The photocatalyst of the MoS2@ MoO3 heterojunction with the (S)-scheme stage was
prepared by partial sulfidation in situ. The excellent design of the MoS2@ MoO3 interface
nanomaterials provides a high rate of surface reaction of hydrogen evolution. The on-site
vulcanization strategy gradually causes corrosion from the outside to the inside. The rate
of hydrogen formation is 12,416.8 mmol/h·g [49].

The improvement of MoS2 properties can be achieved by the formation of a chemical
bond between the MoS2 nanolayer on graphene and vacancies. There is a clear decrease
in the metallic state of the MoS2 nanolayer as electrons are transferred to form a strong
contact with the restored graphene substrate. The absence of a metallic state associated
with unsaturated atoms in the peripheral regions in turn changes the activity of hydrogen
release. The easiest path of evolution is from the marginal regions of the Mo, and the
presence of graphene leads to a decrease in the energy barrier from 0.17 to 0.11 eV. The
evolution of H2 from the S-edge is complicated due to an increase in the energy barrier
from 0.43 to 0.84 eV [50].

The formation of S-vacancies on the basic plane of MoS2 by electrochemical desulfur-
ization makes it possible to improve the process of hydrogen generation. The formation of
S-vacancies is possible on various 2H- MoS2 nanostructures. By changing the applied desul-
furization potential, it is possible to vary the degree of desulfurization and the resulting
hydrogen release activity [51].

A three-dimensional hierarchical hybrid composite of MoS2, reduced graphene oxide
(GO) and CNT demonstrates excellent electrocatalytic activity and stability in the hydrogen
evolution reaction, with a low initial potential of only 35 mV, a Taffel slope of ~38 mV/◦, and
an apparent exchange current density of 74.25 mA/cm2. The excellent hydrogen release
activity is due to the synergistic effect of MoS2 with its electrocatalytically active edge
regions and excellent electrical coupling with the underlying graphene and CNT grid [52].

Hierarchical MoP- MoS2 electrocatalysts on hollow carbon spheres co-doped with N,
P and S (MoP- MoS2/HCS) demonstrate remarkable HER characteristics. MoP- MoS2/HCS
not only exhibit significant electrocatalytic activity at low overvoltages (71 mV and 125 mV
in 1.0 M KOH and 0.5 M H2SO4, respectively) at a current density of 10 mA/cm2, they also
exhibit outstanding stability with respect to its process [53,54].
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5. Processing of Composite Materials from the Hydrogen Industry

Global industry actively uses various types of plastic, which inevitably leads to the
formation of a large amount of plastic waste. More than 60% of used plastic ends up in
landfills or is incinerated, which harms the environment and the ecosystem as a whole [55].
Thermal processing by pyrolysis and gasification of plastic waste into fuel and chemical
products has been identified as a promising technology for solving the problems of plastic
waste [56]. Pyrolysis is a method of thermochemical treatment of plastic waste, which
can solve such pollution problems, as well as restore valuable energy and products such
as oil and gas. Pyrolysis of solid plastic waste has become important because it offers
great advantages in terms of environmental pollution and reducing the carbon footprint of
plastic products by minimizing carbon monoxide and carbon dioxide emissions compared
to combustion and gasification [57].

In [58], a simple and highly efficient method initiated by microwave plasma discharge
for the decomposition of plastics into hydrogen and carbon nanotubes was proposed. Iron-
based catalysts applied to activated carbon calcined at 400 ◦C showed the best catalytic
activity due to excellent physicochemical properties. H2 was rapidly released in 25 s, with
a hydrogen efficiency of more than 85%.

In [59], pyrolysis and catalytic decomposition of polypropylene were carried out in
the technological process for the production of hydrogen and carbon nanomaterials. A
series of new Fe/Ni catalysts was prepared, and the effect of the active metal component
of the catalyst (Fe, Ni, FeNi) and the synthesis method (sol–gel and impregnation) was
studied. The results showed that the production of hydrogen and solid matter occurred
in descending order with loading of Fe-Ni, Fe and Ni, while the catalysts prepared by
sol–gel were more catalytic than their impregnated counterparts. FeNi (SG) demonstrated
optimal activity in the production of 25.14 mmol/g of hydrogen plastic and 360 mg/g of
high-quality plastic made of carbon nanomaterials.

In [60], the use of Ni-Fe catalysts was studied for the catalytic pyrolysis of plastic
waste to produce hydrogen and CNT, as well as the influence of the composition of the
catalyst and carrier materials. The bimetallic Ni-Fe catalyst showed higher catalytic activity
in H2 yield than monometallic Ni or Fe catalysts due to the optimal interaction between the
metal and the carrier. The effect of steam supply and catalyst temperature on the yield of
CNT (287 mg/g of plastic) and hydrogen (31.8 mmol H2/g of plastic) is optimal at 800 ◦C
in the presence of a bimetallic Ni-Fe/γ-Al2O3 catalyst (Figure 4).
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Figure 4. Schematic of pyrolysis of polymer with catalyst and hydrogen release.

For the catalytic pyrolysis of plastic waste, a two-stage fixed-bed reactor (with pyrolysis
zone, height 310 mm; bottom: pyrolysis zone, height 310 mm) was reported (Figure 5 [60]).
Three series of experiments were conducted to determine the technological parameters for
the generation of hydrogen and CNTs: with the use of Fe/γ-Al2O3, Fe/α-Al2O3, Ni/γ-
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Al2O3, Ni/α-Al2O3, and Ni-Fe/γ-Al2O3 catalysts; with ratios of mass of steam to mass of
plastic of 0, 0.3, 1, and 2.6; and with catalytic temperatures of 700, 800, and 900 ◦C.
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The analysis of waste gases and thermodynamic calculations [61] showed that the H2
emission, through the decomposition of the by-product CH4, acted as a thermal microniza-
tion medium, where FexOy is gradually restored after the waste is converted into activated
carbon (CA). The resulting CA is then effectively involved in the catalytic decomposition of
H2O, leading to the microgeneration of secondary H2, creating a controllable system. Thus,
the fast release of H2 from the system was eliminated, resulting in improved recovery of
FexOy due to a simplified H2 microgeneration/regeneration process.

A two-stage catalytic pyrolysis steam reforming process with MSM-41 mesoporous Fe-Ni
bimetallic catalysts was used to produce hydrogen-enriched synthesis gas from a simulated
mixture of waste plastics (SMWP) [62]. Various weight ratios of Fe:Ni catalyst materials (0:20,
5:15, 10:10, 15:5, 20:0) were investigated to determine the effect on H2 production. The results
showed that the combined presence of Fe and Ni leads to a synergistic increase in the total gas
yield and the formation of hydrogen and carbon monoxide. The highest gas yield of 95 wt.%,
the highest H2 yield of 46.1 mmol H2/g plastic, and the highest CO yield at 31.8 mm/g plastic
are characteristic of the Fe/Ni/MCM-41 catalyst (1:1). This catalyst gives a hydrogen yield of
46.7 vol.% and a CO yield of 32.2 vol.% [62].

Ni/SiO2 and Fe/SiO2 catalysts with metal particles of different sizes were studied in
the production of hydrogen and CNTs during the catalytic processing of polypropylene
waste using a two-stage fixed-bed reaction system we reported [63]. The results show that
Fe-based catalysts, in particular those with large particle size (~80 nm), gave the highest
hydrogen yield (~25.60 mmol H2/g of plastic) and the highest carbon yield (29 wt. %), as
well as the largest proportion of graphitic carbons (according to the analysis of the TPO of
the reacted catalyst).

In the process of hydrogen production, a more complex three-component catalyst
can be used [64]. The yield of hydrogen increased with an increase in the gasification
temperature from 600 to 900 ◦C for both Ni-Mg-Al and industrial nickel catalysts. The
maximum hydrogen production was 52% of the maximum theoretical amount of hydrogen
available in polypropylene, which is 22–38 g H2/100 g of polypropylene obtained with a
Ni-Mg-Al catalyst, at a gasification temperature of 800 ◦C and a water flow rate with an
injection speed of 28–46 g/h.
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Real waste plastics contain dissimilar materials. In [64], the production of H2 from
pyrolysis–catalytic steam reforming of polyethylene, polystyrene (PS), and polyethylene
terephthalate waste plastics was considered. The highest yield of hydrogen (125 mmol/g
plastic) was obtained with PS at a catalyst temperature of 900 ◦C and a steam hourly
space velocity of 7.59 g/(h/g catalyst) with 10 wt% Ni/Al2O3) catalyst. The high catalyst
temperature (900 ◦C) and the optimized steam rate significantly increase the hydrogen
yield. The authors found that Ni/Al2O3 has the highest selectivity and catalytic activity for
hydrogen yield.

Comparison of energy spendings of various methods is presented in Table 1, from
which it can be observed that that with the highest energy consumption is water electrolysis.

Table 1. Comparison of energy efficacy of different processes of hydrogen generation.

Process of Hydrogen
Generation

Specific Heat
Consumption for

Endothermic
Reactions, qx (kJ/kg H2)

Specific Consumption of
Reference Fuel (rf) to Provide

Endothermic
Reactions,

b (kg rf/kgH2)

Specific rf
Consumption for Production

of kg H2,
b* (kg rf/kgH2)

The Ratio of the
Calorific Value of the Total

Amount of
Fuel to H2 on kg H2

∆ (kJ/kJ)

Conversion of Methane with
Steam in Reactors with a

Fluidized Bed of a Dispersed
Catalyst

CH4 + 2H2O→ CO2 + 4H2
(by-product CO2)

34,987 1.32 4.74 1.12

Carbon gasification of solid
fuel with water vapor

C + 2H2O→ CO2 + 2H2
(by-product CO2)

67,958 2.89 6.24 1.37

CH4 pyrolysis at 1350 ◦C
CH4→2H2 + C
(by-product C)

18,922 0.72 7.56 1.815

Water electrolysis
2H2O→ H2 + 0.5O2 + H2O

(by-product O2)
214,268.4 27.77 27.77 1.77

6. Conclusions

The use of hydrogen includes a variety of directions from chemical technologies
to unmanned aerial vehicles. The field of motor transport is a key one for the mass
development of water generation and storage technologies.

New technologies in the field of HS are based on the use of specialized equipment
with temperature control systems, as well as the use of innovative materials that make it
possible to store hydrogen in solid form. For the storage of hydrogen in solid form, Mg- or
Li-based MHs in the form of classical composites or having nanostructured morphology
show the greatest efficiency. Hydrides of nanometals can be obtained using the “bottom-up”
and “top-down” strategies. It should be noted the principal possibility of using carbon
materials for HS, namely carbon nanotubes, both single-layer and multi-layer. To explain
the mechanisms of the catalytic effect of impurities in the metallic alloy on the properties of
CNTs with respect to hydrogen accumulation, a spillover mechanism or hydrogenation of
the Cubas type can be used.

MoS2 and the wide variety of composites based on it exhibit serious prospects in tech-
nologies for the production and storage of hydrogen. It is obvious that further technological
development will provide novel solutions.

To produce hydrogen, waste polymer products are used—the processing of which
is realized on the basis of catalytic pyrolysis. Catalytic pyrolysis also makes it possible
to obtain carbon nanotubes that can be used for HS. Control technologies for hydrogen
production and storage systems are implemented on the basis of neural networks, making
it possible to significantly improve all technological stages according to the criteria of
energy efficiency and reliability, as well as safety. An analysis of the energy costs for
hydrogen production shows that direct current electrolysis is the most expensive, and
thermal decomposition (pyrolysis) is less expensive.
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It is worth underlining that the contemporary situation in the energy market does not
demonstrate logical tendencies and therefore does not allow us to make clear predictions
on the directions of hydrogen industry development in the closest future. However, the
long-term prospective requires continued scientific research in this direction [65–67].
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