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Abstract: Tissues engineering has gained a lot of interest, since this approach has potential to restore
lost tooth-supporting structures, which is one of the biggest challenges for periodontal treatment. In
this study, we aimed to develop an in situ hydrogel that could conceivably support and promote the
regeneration of lost periodontal tissues. The hydrogel was fabricated from methacrylated hyaluronic
acid (MeHA). Fragment/short-chain hyaluronic acid (sHA) was incorporated in this hydrogel to
encourage the bio-synergistic effects of two different molecular weights of hyaluronic acid. The
physical properties of the hydrogel system, including gelation time, mechanical profile, swelling
and degrading behavior, etc., were tested to assess the effect of incorporated sHA. Additionally,
the biological properties of the hydrogels were performed in both in vitro and in vivo models. The
results revealed that sHA slightly interfered with some behaviors of networking systems; however,
the overall properties were not significantly changed compared to the base MeHA hydrogel. In
addition, all hydrogel formulations were found to be compatible with oral tissues in both in vitro
and in vivo models. Therefore, this HA-based hydrogel could be a promising delivery system for
low molecular weight macromolecules. Further, this approach could be translated into the clinical
applications for dental tissue regeneration.

Keywords: hyaluronic acid; hydrogels; drug delivery system; tissue engineering; periodontal
ligament stem cells

1. Introduction

Periodontal or gum disease, a prevalent infectious disease worldwide, causes the
damage to supporting tissues around teeth and can lead to tooth loss. Periodontal disease
can be managed by controlling infections, with mechanical debridement of the tooth
surface (such as scaling and root planning, curettage, flap surgery with or without bone
graft, etc.), and then the loss tissues would be spontaneously restored. Nevertheless, the
regeneration of the lost supporting tissues does not succeed in every case; thus, alternative
treatments are needed. Periodontal tissues engineering has gained interest in recent years,
as this approach provides complexity to restore lost tooth-supporting structures with inert
materials. Attempts for successful tissue regeneration are ultimately dependent on the
interplay among the scaffold, cells, and bioactive signals [1]. Hydrogels, a widely employed
scaffold, can be used as an alternative, as they are cytocompatible, possesses distinctive
qualities, and are utilized in drug-controlled release [2,3].
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Hyaluronic acid (HA), a bio-polysaccharide a prominent component in the extracel-
lular matrix of connective tissues and the periodontal ligament matrix, has the potential
to achieve beneficial effects in periodontal tissue regeneration [4–6]. HA plays a vital
role in regulating cell adherence, migration, and differentiation through various binding
proteins and cell-surface receptors, such as CD44 [6]. The binding of HA fragments (below
5000 Da) to CD44 and receptors for HA-mediated motility (RHAMM) could stimulate
cell cycle progression, resulting in signal transduction activation and mitogenesis [7–9].
However, a limitation of HA administration is its fast turned over rate in the body. HA
is digested by hyaluronidase, resulting in short tissue half-lives ranging from hours to
days [10]. Therefore, modification of the HA chain is needed to customize the properties of
the resulting material.

Chemical modifications of three targeted functional groups (the glucuronic acid car-
boxylic acid, the primary and secondary hydroxyl groups, and the N-acetyl group), on an
HA chain with reactive molecules (e.g., acrylates, methacrylates, maleimides) could permit
crosslinking (including via Michael addition reactions or photoinitiated radical polymeriza-
tions) and generate stiffness hydrogels [4,11]. Hydrogels with proper mechanical properties
would not only stabilize the networking system when placed between two distinct hard-
tissue structures, but would also mimic features of the native extra cellular matrix that
affects to cell behaviors [12,13]. Ibrahim and his team invented a hydrogel system contain-
ing both large and small molecular weights of hyaluronic acid. Their findings showed that
the amount of HA oligomer had effect on the hydrogel’s properties, such as its swelling
ratio and rheological profile. However, greater benefits on the attachment and proliferation
of endothelial cells were observed. Further, the HA oligomer had a very mild ability to
enhance inflammation [14]. At this time, there are few studies which have investigated
the use of hydrogels containing two different molecular weights of HA as a supporting
material for periodontal tissue engineering. Particularly, the effect of this system has not
yet been explored in both in vitro and in vivo models. Therefore, there is a clear motivation
to investigate the application of a hydrogel system that contains two different molecular
weights of HA to support the regeneration of lost periodontal tissues. In this study, the
impacts of incorporated short-chain HA (sHA: 3 kDa) suspended in a thiol-ene crosslinking
HA hydrogel on the physical properties (e.g., gelation time, mechanical properties, swelling,
and degradation profile) and biological properties were investigated.

2. Materials and Methods
2.1. Materials

Sodium hyaluronate (HA, MW 47 kDa and 3 kDa) was purchased from Liuzhou Shengqiang
Biotech Co., Ltd. (Guangxi, China). Methacrylic anhydride (Me, MW 154.16 g/mol), dithiothre-
itol (DTT, molecular weight 153.25 g/mol), carbazole, and crystal violet were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Sodium tetraborate (Na2B4O7), deuterium
oxide (D2O), sodium hydroxide (NaOH), absolute ethanol, and absolute methanol were
from Merck (Darmstadt, Germany). Dulbecco’s Modified Eagle’s Medium (DMEM)—high
glucose, trypsin-EDTA solution, L-glutamine, fetal bovine serum (FBS), and penicillin-
streptomycin (10,000 U/mL) were purchased from Gibco (Waltham, MA, USA). Presto
Blue TM, a resazurin-based solution, was from Invitrogen (Waltham, MA, USA).

2.2. Polymer Synthesis and Structure Elucidation

HA (47 kDa) was modified by Me via an esterification reaction, following the previous
protocol [15]. In brief, 10-fold molar excess of Me was added dropwise into 1% w/v HA
solution in potassium phosphate buffer (PBS) at 0–4 ◦C, under basic conditions (pH 9–10,
adjusted by 5 M NaOH). In this basic solution, the hydroxyl group of HA would be
deprotonated, whereas the ester group of Me was cleaved. The reactive moiety of cleaved
Me interacts with the deprotonated hydroxyl group of HA and generates MeHA plus
methacrylic acid as a by-product. After overnight continuing reaction, the solution was
purified by dialysis against ultrapure water for≥48 h at 4 ◦C before removal of precipitated
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residues by centrifugation. The supernatant was collected, flash frozen and lyophilized for
2–3 days, then stored at −20 ◦C. The lyophilized polymers were dissolved in D2O before
being analyzed with a 400 MHz 1H NMR spectrometer (Bruker, Rheinstetten, Germany).
The D2O peak was calibrated until it represented 4.8 ppm. The degree of modification was
calculated by comparing the integrals of the peaks of the protons on methacrylate alkene at
5.8 and 6.2 ppm to the integrals originating from the protons of HA backbones.

2.3. Short-Chain HA Loading and Hydrogel Formation

Short-chain hyaluronic acid (3 kDa HA or sHA) was physically added at various
concentrations (Table 1) into 3% w/v of methacrylated HA (MeHA) solution. Dithiothreitol
(DTT) was added into the pre-gel solution at a molar ratio of thiol:ene = 2:1, then pH was
adjusted in the range of 9–11 to form a gel.

Table 1. Concentration of sHA in hydrogel.

Hydrogel Formulations (Prefix Name) Concentration of sHA (% w/v)

MeHA 0
0.5% w/v sHA 0.5
1.0% w/v sHA 1.0
1.5% w/v sHA 1.5

2.4. Gel Point Determination

Gelation time of hydrogels was detected by inverted tube methods and oscillation
time sweep. First, the tube containing 0.5 mL of mixed pre-gel solution, prepared as
previously described, was inverted. The gelation time was defined as the time that the liquid
transformed to gel (each sample showed no flow within 20 s during tube inversion). The
gelation time was confirmed by oscillation time sweep mode using HAAKETM MARSTM

rheometer (Thermo Scientific, Karlsruhe, Germany). The pre-gel solution was placed
between 35 mm of titanium parallel plate and rotor, with 1% strain and a frequency of 1 Hz
at 25 ◦C. The gelation time was decided from where the storage modulus (G′) was equal to
the loss modulus (G′′) (cross-over point), which represents liquid–solid transition.

2.5. Mechanical Property Analysis

HAAKETM MARSTM rheometer (Thermo Scientific, Karlsruhe, Germany) was used
to analyze the rheological properties of the hydrogels. One milliliter samples were placed
between the 35 mm of titanium parallel plate and rotor. After that, samples were analyzed
under oscillation amplitude sweep mode (1–1000% strain and a frequency of 1 Hz at 25 ◦C).
The mechanical profile of each formulation was reported, as well as the yield point value,
which was plotted from the relationship between tan δ and percentage of strain. Tan δ was
calculated following this equation:

Tan δ = G′′/G′

2.6. Swelling and Degradation Behavior

The gel disks (1 mm thickness, 8 mm diameter) were punched from the silicone mold
before transferred to centrifuge tubes, weighed, then immersed in 3 mL of PBS for 48 h. At
each time point, the swollen gels were weighed again. The swelling ratio was reported,
which was calculated from the following equation:

Swelling ratio = (µt − µ0)/µ0,

where µt refers to the weight of the swollen gel at each time point, and µ0 is the initial
weight of the gel sample.
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The degradation study was performed in PBS for 21 days. At each time point, the
resting gels were washed with distilled water before being lyophilized for 2 days and
weighed. The degradation ratio was calculated as the below equation:

Weight loss ratio = (µ0 − µd)/µd, (1)

where µ0 and µd are the initial weight of gel sample and the weight of dry gel sample at
each time point, respectively [16].

2.7. Micromorphology Analysis

The punched gels (1 mm thickness, 8 mm diameter) were frozen in liquid nitrogen
for 5–30 min before being lyophilized for 48 h. Sputter films were coated on the materials
for Scanning Electron Microscope (SEM (IT-500HR), JEOL, Tokyo, Japan). Surfaces and
internal sections of each lyophilized hydrogel were observed at 3 random locations per
sample. The pore size was measured by Image-Analysis J 1.45S software.

2.8. Short-Chain HA Released Kinetics

The release kinetics of 3 kDa HA-loaded hydrogels were evaluated in PBS (pH 7.0)
for 48 h. The hydrogels (8 mm thickness, 13 mm diameter) were transferred to dialysis
bags (12–14 kDa (MWCO), Spectra/Por® 4, Spectrum Laboratories, New Brighton, MN,
USA), immersed in 100 mL of PBS, and incubated at 37 ◦C. One milliliter of the solutions
were sampled at each time point and replaced with an equal amount of fresh medium.
Then, 100 µL of the collected samples were digested with 50 µL of 100 U hyaluronidase
and incubated overnight at 37 ◦C before measuring the amount of released uronic acid
by carbazole assay. Briefly, 100 µL of sodium tetraborate in sulfuric acid was added into
each tested sample and heated at 100 ± 5 ◦C for 10 min before being cooled down at room
temperature for 15 min. Then, 0.25% carbazole in 50 µL absolute ethanol was added into
each tube and heated at 100 ± 5 ◦C for 10 min. Following this, 100 µL of final solution was
transferred to a 96-well plate, after being cooled down at room temperature for 15 min, and
analyzed by microplate reader (CLARIOstar®, BMG LABTECH, Rotenberg, Germany) at a
wavelength of 550 nm. The standard curve of D-glucuronic acid was used to convert the
measured absorbances to the concentration of released uronic acid [16].

2.9. Cell Cytocompatibility

PDLs were extracted and cultured as the previous protocol [17]. The isolation and culture
protocols were approved by the Ethic Committee, Faculty of Dentistry, Chulalongkorn University
(No. HREC-DCU 2021-084). Cells at passage 4–14 were used in the in vitro cell studies.

Indirect cytotoxicity assay was performed following ISO 10993-1:2009 (ISO, 2009a)
with slight modification, and the hydrogel samples were described as ISO 10993-5:2009 (ISO,
2012) [18,19]. In brief, pre-gel solution was prepared under sterile conditions. After that,
the gel was transferred to a sterile silicone mold. The gel was incubated at 37 ◦C overnight
to ensure complete hydrogel formation. Afterwards, the hydrogels were punched into a
disk shape with calculated surface area of 3.14 cm2. Each hydrogel disc was immersed in
1 mL of serum-free DMEM containing penicillin/streptomycin for 24 h at 37 ◦C. On the
same day, 1 × 104 of PDLs were seeded into each well of a 96-well plate and incubated at
37 ◦C in a humidified atmosphere supplemented with 5% CO2 for 24 h. The following day,
the sample extracts (prepared at different concentrations of 12.5%, 25%, 50%, and 100%)
were used to replace the cell culture media and incubated at 37 ◦C for 24 h. In this assay,
the extract vehicle, serum-free DMEM, was used as a control. The morphology of the cells
was observed the following day by microscopy (Nikon Eclipse TS2, Nikon, Tokyo, Japan).
Then, 50 µL of 0.5 mg/mL MTT solution was prepared and added into each well after
the medium was removed, and the cells were washed once with PBS. After incubation for
30 min at 37 ◦C, 100 µL of DMSO replaced the MTT solution to the wells for formazan
extraction before being measured by a microplate reader at 570 nm [20].
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2.10. Proliferation Assay

Sterile MeHA polymers were dissolved in complete DMEM media (DMEM mixing
with 10% FBS, 1% L-glutamine, and 1% penicillin–streptomycin) as a pre-gel solution,
before being combined with sHA at each concentration in order to form a gel coated layer
on 96-well plates. Five thousand cells per 100 µL were seeded on the top of the gel layer
and cultured in 5% CO2 incubator at 37 ◦C for 1, 3, 5, and 7 days. At each time-point,
the morphology of cells was observed by using phase contrast imaging with microscope
(Nikon Eclipse TS2, Nikon, Tokyo, Japan). Additionally, 10% resazurin-based solution, a
cell viability indicator, was reacted with the cells at 37 ◦C for 1 h, before being analyzed
with a microplate reader at excitation/emission of 560 ± 15/590 ± 15 nm [21].

2.11. Transwell Migration Assay

Twenty-four-well size transwell inserts with an 8.0 µm pore polycarbonate membrane
and 0.33 cm2 effective growth area (Corning®, Corning, NY, USA) were used to perform
cell migration experiments. The lower wells were layered with hydrogel and topped up
with serum-free media. PDLs were trypsinized and re-suspended in serum-free media, then
seeded in each insert at a concentration of 30,000 cells/well. Each seeded insert was placed
into each lower well and incubated at 37 ◦C for 24 h in order to prevent the effects of cell
migration. After the maturity period, the cells were fixed with 4% paraformaldehyde for
20 min, permeabilized with acetic acid:methanol at the ratio of 1:3 for 5 min, then stained
with 0.7% crystal violet and washed with PBS. A cotton swab was used to remove non-
migrated cells from the upper surface of the membrane. The migrated cells were observed
by microscope (Nikon Eclipse TS2, Nikon, Tokyo, Japan). Image-Analysis J 1.45S software
was used to count the number of migrated cells from five randomly chosen fields (×40) [22].

2.12. Animal Study

Male Wistar rats (250–300 g) were obtained from the Nomura Siam International Co.
Ltd. All the in vivo studies were approved by the Faculty of Pharmaceutical Sciences
Animal Care and Use Committee, Chulalongkorn University, protocol number 1933004.
The housing and experimental procedures complied with the guidelines of the Animals for
Scientific Purposes Act, B.E. 2558 (A.D. 2015), Thailand. Prior to the beginning of in vivo
experiments, animals were quarantined/acclimated for 7 days to adjust to the standardized
laboratory temperature (22 ± 2 ◦C), humidity (40–60%), and light–dark cycle (12:12 h).

In total, 36 animals were used (calculated using G*Power program version 3.1.9.4)
and were randomly divided into three groups with n = 12 per group: Control, MeHA, and
1.5% w/v sHA. The randomization was generated from the random function (Rand) in
Excel program. On day 0, the rats were anesthetized using isoflurane (1–3%) with 100%
oxygen. The depth of anesthesia and vital signs of the animals were monitored every
5 min. Subcutaneous injection of tramadol was used for peri-operative and post-operative
analgesia. Moreover, moist feed was provided at the floor cage level to promote the
eating of the rats after the procedure. The oral wounds were created by 3-mm diameter
punch biopsy on the anterior palate in the mucoperiosteum of the midline of the hard
palate. The soft tissue was removed by sharp dissection. Cotton gauze was placed over the
wound until hemostasis was achieved. All procedures were performed using an aseptic
technique. The treatment gels were applied to the wound. Every 1, 3, 5, and 7 days after
treatment, 3 rats from each group were euthanized by CO2 asphyxiation, following the
open thorax (American Veterinary Medical Association (AVMA) Guidelines for Euthanasia
(2013 edition). The hard palate samples were collected for histopathological studies. The
wound sizes were measured. For the histological analysis, the sample sections were stained
with Hematoxylin and Eosin (H&E) staining and observed by Apotome.2 apparatus (Carl
Zeiss, Jena, Germany) (×400) [23].
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2.13. Statistical Analysis

All results were reported as mean ± standard deviation (SD), resulting from three or
more replications. Statistical significance between different groups was analyzed using
one-way analysis of variance followed by Tukey’s post hoc test using GraphPad Prism
Software (V.5) with a p-value < 0.05.

3. Results
3.1. HA Modification and Hydrogels Fabrication

HA polymers were successfully modified at the primary alcohol with methacrylates
and presented ~80–100% modifications, analyzed by 1H NMR technique (Figure 1). To
evaluate the effects of sHA at each concentration on the physicochemical and biological
properties of base MeHA hydrogels system, sHA was physically added into the pre-gel
solution of MeHA macromers before covalently crosslinking via a Michael addition reaction
using a thiol group-containing crosslinker, dithiothreitol (DTT). All hydrogel systems were
successfully fabricated and were used for the tests in further studies.
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3.2. Gel Point Determination

As the aim of this study was to develop an in situ forming hydrogel, the gelation
time should be tested. The gelation time of hydrogels was observed by the inverted tubes
method at room temperature, which demonstrated the gelling behavior of network systems
in practical use. The results showed that the gelation time of the hydrogel formulations with
or without sHA was around 2–3 min and did not show any significant difference between
different formulations. The gel points were also clarified by rheology profile (performed at
25 ◦C), which determined the crossover point of G′′ and G′ during the transition of sol to
gel state. The results exhibited that the crossover points were around 1–2 min. The presence
of medium and high concentration of sHA in the hydrogel showed faster gelation time
(~1 min), while at a low concentration, appeared to have similar gel time with the base
MeHA hydrogel. Despite the small variation in gelation times there were no statistically
significant differences observed between all groups (Table 2).
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Table 2. The gelation time of four types of hydrogel formulations, detected by inverted tube method
and by rheology profile where G′ = G′′.

Formulation
Gelation Time (Minute)

Inverted Tube Method G′ = G′′

MeHA 2.20 ± 0.60 2.30 ± 1.10
0.5% w/v sHA 2.50 ± 0.80 3.00 ± 1.40
1.0% w/v sHA 2.50 ± 0.50 1.00 ± 0.20
1.5% w/v sHA 3.00 ± 1.20 1.10 ± 0.30

G′: storage modulus. G′′: loss modulus. Data are represented as mean ± SD. No statistical significance is
represented.

3.3. Mechanical Property of Hydrogels

Rheological analysis quantitatively estimated the elastic responses of the MeHA-
based hydrogel by simulated giving an external strain ranking from 1–1000% to the gel.
Figure 2a–d showed the mechanical profile of each hydrogel formulation using ampli-
tude sweep mode. The storage modulus (G′) of four types of gel were in the range of
1000–1500 Pa, as shown in Table 3. Given % strain above 100, the networks became rup-
tured. Tan delta (δ), calculated from G′′/G′, plotted versus strain of investigated materials
are shown in Figure 2e. The intersections of the horizontal line across the graph (where tan
δ = 1 is the origin) are known as yield points, which represent the maximum strain that the
materials could tolerate. The yield point decreased with an increase in the amount of sHA.
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Table 3. The mechanical analysis of four types of hydrogel formulations.

Formulations Storage Modulus G′ (Pa) Yield Point (tan δ)

MeHA 1210 ± 140 290 ± 160
0.5% w/v sHA 1120 ± 210 270 ± 80
1.0% w/v sHA 1480 ± 360 250 ± 170
1.5% w/v sHA 1300 ± 340 180 ± 70

Data are represented as mean ± SD. No statistical significance is represented.

3.4. Swelling and Degradation Behavior

The swelling ratio across time of four formulations was reported in Figure 3a. The
maximum swelling ratio of hydrogels occurred within 1 h. The hydrogel containing a high
content of sHA (1.5% w/v sHA) exhibited the largest swelling ratio (~0.24), while the other
formulations were in the range of ~0.14–0.16. The swollen hydrogels reached equilibrium
after being immersed in PBS for 7 days. We found that the overall swelling profile of the
hydrogel with the low content of sHA was similar to the base MeHA hydrogel. It was
noticeable that the medium amount of sHA hydrogel presented the lowest swelling ratio
and started to degrade faster than other formulations. Though the hydrogel loaded with
high concentration of sHA had the highest swelling ratio at the initial time point, later
we also observed a degradation trend. From this study, we can conclude that having a
high content of sHA would increase the swelling ratio of the networks. To confirm the
effect of sHA on the hydrogel’s degradation, the degradation test was performed in PBS at
37 ◦C for 21 days, as shown in Figure 3b. The base MeHA hydrogel was the only formula
that exhibited a stable weight loss ratio. The higher the content of sHA, the greater the
degradation ratio that occurred.
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3.5. In Vitro Release Study of sHA

Figure 3c exhibited the release profile of sHA from the modified HA hydrogel networks
performed under a controlled temperature of 37 ◦C for 48 h. In this study, we found that,
even in the base MeHA hydrogel, some free part of HA from the MeHA scaffold was
released in the medium. Some amounts of glucuronic acid were detected, which were
generated by the hyaluronidase enzyme digestion prior to the carbazole assay. For the three
sHA incorporated hydrogels, there is no sHA concentration-dependent activity regarding
the release profile of glucuronic acid. We also found the correlation between release profile
and swelling behavior of the hydrogels. The hydrogel containing of 1.0% w/v of sHA
presented the highest released amount of glucuronic acid (~26 mg after soaking in PBS for
48 h or ~65% of total solid mass).

3.6. Microstructure of Hydrogels

The microstructures of all gel types investigated by SEM are shown in Figure 4. The
hydrogels in all formulations appeared porous in architecture, which related to their
resemblance to a crosslinking system. The high sHA hydrogel generated the smallest pore
size (~58 µm) compared to others (~64–66 µm). This SEM result showed that the increase
in polymer mass by having interpenetrating sHA could reduce the pore size of hydrogel.
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3.7. Wound Healing Activity of Hydrogels on Periodontal Ligament Stem Cells (PDLs)

To assess the wound healing properties of MeHA hydrogels loaded with sHA, we
first performed in vitro cell studies, including a proliferation assay and migration test with
PDLs, because establishing a PDL cell population in a periodontal defect is an important
requirement for the remodeling and rebuilding of the periodontium [24].

Prior to evaluating the wound healing activity, the cytocompatibility of hydrogels
was performed via indirect cytocompatibility assay. The results indicated that all hydrogel
formulations were compatible with PDLs (% cells viability ≥80%) (Figure 5a).
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Figure 5. Wound healing activity of hydrogels on PDLs; the hydrogels were tested for their cytocom-
patibility, indirectly, before being utilized in the other in vitro cell studies (a). (c) shows the capability
of the hydrogels when performing the transwell migration test (for 2 days), serum-free media and
serum-contained media were used as a blank and positive control in this study. The significant level
of the p value was marked with *, ** and *** which refer to p value ≤ 0.05, 0.01 and 0.001, respectively.
The performance of the hydrogels on promoting the proliferation of PDLs (for 7 days) is shown in (b,d).
(b) presents the viability of PDLs, which was indicated and converted into the fluorescence intensity
using a resazurin-based solution. (d) illustrates the physical appearance of the cells after being cultured
on the gels for 7 days.

The proliferation test was performed by growing PDLs on the surface of hydrogels
to demonstrate their practical use dimension, wherein the cell would directly contact to
the surface of hydrogels. Figure 5b illustrated the alterations in the metabolic activities
and morphology of the cells during the culture time of 7 days. The results of the metabolic
activities, measured by resazurin assay, showed no significant differences among all sam-
ples. Cells on hydrogels had lower proliferation rates than cells on tissue culture plates
(TCP), with an observable deficiency of cell attachment on the hydrogels’ surfaces. The
changes in cell morphology into spheroid shape shown in Figure 5d reflected the low
binding behavior. Moreover, we found that extra sHA in the hydrogel formulation showed
a lower proliferation rate than the non-sHA formulation.

The transwell migration assay was performed to observe the effects of chemoattractant,
released from hydrogels, on PDLs migration. In this study, the cells treated with starving
serum and serum containing media were used as a blank and positive control, respectively.
The sample hydrogels were layered in the lower well, while the cells were seeded in the
insert well. The observed cells were migrated from the upper surface to the lower surface
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of the polycarbonate membrane of the insert well. The results showed that cells treated
with all types of hydrogels had a lower number of migrated cells when compared to the
positive control, yet a greater number than the blank. The cells treated with the low content
of sHA hydrogel showed the greatest number of migrated cells, following by the medium
content of sHA hydrogel. The hydrogel containing the high sHA content exhibited a similar
number of migrated cells to the base MeHA hydrogel (Figure 5c).

3.8. In Vivo Oral Wound Healing Study

In order to evaluate the effect of hydrogels on wound healing, the wounds were
created on the upper palate of rats by punching. The physical appearance of each sample
was captured and is shown in Figure 6a. In this study, we had three conditions to compare;
untreated, treated with MeHA hydrogel, and treated with 1.5% w/v sHA. All wound areas
were completely recovered by 7 days. The histological samples indicated that the puncture
destroyed two outer layers of the epidermis, including the keratin layer and keratinized
stratified squamous epithelium [25]. The results showed that both hydrogel formulations
were compatible with the rat oral tissues, with undetectable side effects. Moreover, faster
recovery of the epithelium layer (after one day of treatment), when compared to the
untreated groups, was observed. Further, the restoration of the keratin layer was also found
in both hydrogel groups (Figure 6b). However, we did not find any significant differences
between both groups that received hydrogel treatment, due to the limitations of the wound
size measurement.
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4. Discussion

There are numerous clinical HA products that have been approved by the Food
and Drug administration for use as medical devices for dental diseases (e.g., Gengigel,
Flex Barrier) [26,27]. These products are in gel form, that provides weak mechanical
properties and stability, resulting in increased frequency of use. Since the treatment of
periodontal disease is long-term management, reducing frequency of use could improve
patients’ compliance. In this work, we chose to fabricate the scaffolding of hydrogels
from a modified HA chain (MeHA), since this system can be digested and supply HA
itself. Moreover, the mechanical properties of this hydrogel can be adjusted by degree
of modification or crosslinking system. Another attractive characteristic of this hydrogel
system is that it represents itself as an in situ gel system, a feature of drug delivery systems
that are in liquid forms before administration; once it reaches the target areas, it transforms
into a gel [28]. This feature is very useful as it could prevent the deposition of food residues
into the depth or irregular shapes of periodontal wounds.

HA fragments have been found mostly in tissue inflammation areas [29,30]. On the other
hand, it has been reported that HA fragments could probably enhance the regeneration of
damaged tissues [31]. A previous study has revealed that a hydrogel containing two different
sizes of HA (long-chain vs. fragmented HA), could lower the inflammatory effect of HA
fragments, and improve the attachment and proliferation of endothelial cells. They also
found that HA fragments showed some interference with the physical properties of hydrogels
(swelling profiles, mechanical properties, crosslinking density) [14]. Trakiatkul and team,
illustrated the suitability of a MeHA-based hydrogel for loading polysaccharides and proteins,
such as mannitol and BSA. They found no significant changes to the physical properties of this
hydrogel system when carrying mannitol/BSA [32]. Accordingly, we decided to explore the
possibility of directly incorporating HA fragments (or sHA) into a MeHA injectable hydrogel,
and we sought to investigate the impact of sHA content on the gel’s physical properties, in
addition to their biological effects (e.g., biocompatibility, migratory).

One of the huge challenges in developing an in situ gel system is to obtain an appro-
priate gelation time. Having a short gelation time is essential for the prompt attachment of
the gel to the wound or pockets in oral cavities and to minimize the loss of intra-pocket
carriers, further, enhancing patients’ compliance [33]. In order to observe the effects of
incorporated sHA on gelation time, the concentration of MeHA and the crosslinking molar
ratios (thiol:ene) were fixed at 3% and 2:1, based on our prior work [34]. The content of
the incorporated sHA were divided into three concentrations, 0.5%, 1.0%, and 1.5% w/v
(referring to the concentration of commercial products containing HA, which are in the
range of 0.2–1.0% w/w) [27,35]. Our prior work reported the typical gelation time of a
hydrogel fabricated from MeHA with 40–60% modifications, which was in the range of
15–30 min [34]. The increase in modification degree minimizes gelation time, due to the
increasing of crosslinking moiety (vinyl groups) [36]. In this study, we adjusted the degree
of modification of MeHA into the range of 80–100% in order to minimize the gel onset
time. From the results, we could achieve gelation time within a few minutes. Additional
sHA seemed to have effects on the gelation time, since the gel time of the formulations
containing 1.0 and 1.5% w/v of sHA were less than others, which was related to their
pre-gel viscosity, which seemed to be lower than the 0.5% w/v and non-sHA formulation.
Existing HA fragments in an HA macromers solution has been reported to interrupt the
interpolymeric interaction of HA solutions [33]. Therefore, a higher content of sHA in
a MeHA solution may interfere with the networking system between MeHA macromer
chains dissolved in aqueous solutions, resulting in the decrease of viscosity that allowed a
faster crosslinking reaction and showed an earlier sol to gel transition. Nonetheless, adding
sHA at this range of concentration did not have a significant impact on the gelation time.

Rheological analysis quantitatively estimated the elastic responses of a MeHA-based
hydrogel by simulating an external strain ranking from 1–1000% to the gel. By increasing
the degree of modification of MeHA, we could obtain the storage modulus (G′) of approx-
imately 1000–1500 Pa; that was even higher than that of a previously developed MeHA
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hydrogel with 40% degree of modification; the G′ was ~400 Pa [16]. Though sHA did not
have an effect on G′, it seemed to have interference with the yield point of hydrogels, which
represents the maximum tolerance of the material to given strain. Increasing amounts of
sHA reduces the yield point of hydrogels; we believed that this event was related to the
possible causes of the high solid contents in the formulation. We observed a correlation
between the yield point and microstructure of the hydrogels. A high percentage of sHA
incorporation causes a weaker gel structure; additionally, the presence of small pore size
might be the effect of entanglement between polymers which formed an impermanent
interaction across networks [37]. Another possible reason is the disturbance of sHA to
the crosslinking system. Overall, there was no significant difference among all hydrogels,
they could tolerate to external strains of 150–300% strain, which could be survivable when
surrounded by distributed strain during mastication [38].

In order to evaluate the long-term retention of incorporated sHA within the MeHA
hydrogel, a swelling and degradation study, and in vitro release study should be performed.
We found that a high content of sHA increased the gel swelling and degradation ratio. This
phenomenon was related to a previous study, which reported that the effect of having HA
oligomers in an HA hydrogel could increase the swelling ratio and cause low crosslinking
density [14]. We also found an association between the release profile and swelling behavior
of the hydrogels. The highest released amount of glucuronic acid was found in the 1.0%
w/v of sHA hydrogel, it also had the highest swelling ratio and fastest weight loss, which
could refer to the early degradation of the hydrogel formulation. On the other hand, the
formulation containing 1.5% w/v of sHA could slow release the amount of glucuronic acid,
which associated to the smaller pore size of itself, compared to the other formulation. All
in all, the addition of sHA at these concentrations did not have much interference on the
hydrogels’ physical properties.

To assess the wound healing properties of MeHA hydrogels loaded with sHA, we
firstly performed in vitro cell studies, including a proliferation assay and migration test with
PDLs, because establishing a PDL cell population in a periodontal defect is an important
requirement for the remodeling and rebuilding of the periodontium [24]. All hydrogels
were proved to be biocompatible with PDLs. We executed the proliferation test by culturing
PDLs on hydrogels to demonstrate their practical use dimension, wherein the cell would
directly contact to the surface of the hydrogels. We found that PDLS appeared to have poor
attachment on the surface of hydrogels, forming a spheroidal shape, which impacts their
proliferation behavior. Two factors known to influence this phenomenon are the material
stiffness and receptor binding affinity of the cell and modified hyaluronan. Material
stiffness plays a vital role in controlling cell behavior. Recently, a study reported that the
hardness of culture material (ranking from 6–135 kPa) had effects on the alteration of PDLs’
proliferation rate. PDLs cultured on soft material (6 kPa) showed an inferior proliferation
rate [12,39]. Therefore, it can be presumed that the elastic modulus of the hydrogels
(around 1–1.5 kPa) would not be strong enough to support cell proliferation. Another
related reason is the binding affinity of the cell and modified HA. The hydroxyl groups
on the HA chain are used as one of the binding sites that could associate to CD44 [40].
Kwon and coworkers disclosed the relationship between the level of HA modification and
binding affinity to CD44. A high level of HA modification had poor binding affinity to
CD44 due to the unavailable binding site [41]. Since the investigated MeHA had very high
degree of modification, this could cause the deficiency of HA-CD44 binding which resulted
in poor cell-surface attachment.

For the transwell migration test, we found that the hydrogel containing 0.5% w/v of
sHA presented the best performance in inducing migration. We hypothesized that some
amount of sHA would have a chemo-attractive effect. This assumption is in agreement
with an earlier study, which found that HA promotes the migration of human meniscus
cells in a concentration-dependent manner [42]. On the contrary, the result of this study
showed that the increased amount of sHA resulted in the decrease of migrated cells. The
possible reason for this is that the release of sHA from the highest content of sHA hydrogel
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formulation was hindered by the small pore size of the hydrogels. The microstructure
study mentioned above found that the pore size of the gels was reduced as a consequence
of an increase in the content of sHA in the network.

As the hydrogel formulation containing 1.5% w/v of sHA appeared to have a pro-
longed release effect of sHA, it was selected for further study of its impacts on tissue
regeneration in an in vivo model, while the base MeHA gel was utilized as a blank. Small
defects were simulated on the rats’ upper palates by punching, which damaged the epider-
mis layers (keratin layer and keratinized stratified squamous epithelium) [25]. Our findings
showed that applying hydrogels to the wound site reduced the treatment consuming time.
In histological section, our hydrogels could induce epithelium cells originating from the
three basal layers of the oral squamous epithelium which migrated and repaired the injury
caused by the shallower depth of the wound [43]. Our work has proved the possibility of
forming two different sizes of HA and clarified the interference with the physical properties
of the hydrogel, which did not show any significant changes. Our study illustrated that our
hydrogels were biocompatible with tissues in the oral cavity, in both in vitro and in vivo
models. The ability to shorten the healing time of the hydrogels could promote the chance
to use this approach as a medical device to support the regeneration of damaged tissues
related to dental diseases; however, further studies are needed.

5. Conclusions

In summary, this work provided evidence that supports the possibility of applying an
injectable HA-based hydrogel approach to dental tissue regeneration. This system could
contribute an optimal gelation time for practical use. Physical incorporation of sHA could
minimally alter the networking system. The overall physicochemical properties of all types
of hydrogels were not significantly different. Therefore, the MeHA hydrogel could be
a suitable delivery system for low molecular weight macromolecules of approximately
the same molecular weight as the sHA used in this study. Moreover, all hydrogels were
biocompatible with PDLs. sHA showed chemo-attractive activity, with the 0.5% w/v
sHA treated in transwell culture of PDLs exhibiting the greater migratory activity. The
interpenetration of sHA into the hydrogel scaffolding network was assumed to be the
cause of the lower amount of free sHA released from the scaffold. However, the hydrogel
containing a high concentration of sHA and the non-sHA hydrogel showed good benefits
by providing faster restoration of damaged epithelial tissue (in vivo model). These results
encourage further development and investigation of hyaluronic acid-based hydrogels in
periodontal regeneration.
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