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and Václav Švorčík 1
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Abstract: In this article, we present a unique combination of techniques focusing on the immo-
bilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the
improved phase-separation technique. The procedure consists of two main steps: the preparation
of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an
immobilization procedure realized by the honeycomb pattern’s exposure to an excimer laser in a
noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface mor-
phology and chemistry, are characterized in detail in the study. The two-step procedure represents
the unique architecture of the surface immobilization process, which reveals a wide range of potential
applications, mainly in tissue engineering, but also as substrates for analytical use.

Keywords: honeycomb; polystyrene; nanostructure; gold nanocluster; immobilization; morphology;
excimer laser

1. Introduction

Honeycomb structures have been thoroughly studied in last decade, mainly for the
simplicity of their preparation based on two basic approaches, the breath figure (BF)
method [1,2] and improved phase separation (IPS), developed by Bui et al. [3–5]. The
advantage of the IPS approach relies on the fact that relatively large areas can be processed
in a short period of time, with the honeycomb pattern’s homogeneity being comparable
to the BF technique [6]. Applications of honeycomb structures in the research area can be
mostly observed in tissue engineering practices as substrates for different types of cells [7],
where the materials used for honeycomb formation may consist of biopolymers, such as
Poly-l-lactic acid (PLLA) [8,9], cellulose acetate [10], or other materials [11], which also
creates a wide range of possibilities for further applications, e.g., as antibacterial substrates,
if noble metals, such as silver, are additively used [12]. Subsequent pattern formation can
be realized by the immobilization process, as has been demonstrated for PEN (polyethylene
naphthalate) in [13], the LIPSS (laser-induced periodic surface structure) pattern having an
outstanding application for targeted cell growth [14,15].

Honeycombs are widely applied in the fields of electronics and sensors. The fabrica-
tion of the selective assembly of Ag nanoparticles on honeycomb films and their highly
sensitive surface-enhanced Raman scattering (SERS) of R6G (rhodamine 6G) molecules
were demonstrated by Zhang et al. [16]. Honeycomb films prepared based on an am-
phiphilic block polymer (polystyrene-block-polyacrylic acid) by the breath figure method
decorated with AgNPs exhibited strong SERS of R6G molecules. The combination of
parylene deposition with the polymer auto-organization phenomenon creates the breath
figures mechanism. This mechanism creates stable porous films that can be filled with
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a chloroform solution of fluorescent materials [17]. It has been demonstrated that liquid
crystals can be encapsulated inside the patterned surface between two layers of parylene,
presenting interesting organization features dictated by spatial constraints, suggesting a
new approach for the development of honeycomb-based liquid-crystal cells for flexible
displays [18]. Triboelectric nanogenerators (TENGs) composed of PLA (polylactic acid)
biomaterial, a surfactant-free graphene oxide-polylactic acid (GO/PLA) nanocomposite
with customizable honeycomb patterns, was prepared via a scalable two-step solution
method to achieve a power-boosted biocompatible TENG for application in healthcare areas
thanks to its boosted output performance and persisting biocompatibility [19]. Additionally,
exotic forms of polymers were prepared by breath figure methods, and microporous films
with tunable honeycomb structures were fabricated based on the self-assembly of a series
of clusto-supramolecular star polymers (CSPs) guided by breath figure templates. The
CSPs consisted of a hydrophilic polyoxometalate cluster core and several hydrophobic
polystyrene arms that were electrostatically connected to the core [20], which provided a
facile way to incorporate inorganic functional components into microporous polymer films.
As stated above, different types of incorporated particles were applied as a precursor for
subsequent doped honeycomb growth. Highly ordered honeycomb films were produced
from arborescent graft polystyrene (AGPS) solutions using breath figures (BF), multiwall
carbon nanotubes (MWCNTs) were introduced into AGPS solutions, and the application
of the BF process using the solution blends yielded patterned hybrid films [21]. A sum-
mary of the application of breath figure methods in the last 10 years and a discussion of
the influencing factors of breathing figure arrays have been comprehensively described
in [22]. The advantage of the direct exposure of samples in the liquid medium, such as a
solution of nanoparticles [23], is an easy method for the preparation of the immobilized
surface, which can be considered as a polymer–nanoparticle composite [24]; only the sur-
face layer is affected due to the application of an excimer laser wavelength. The noble
metal nanoparticles diffuse into the polymer and the isolated character of the noble metal
is preserved [24]. The use of an aromatic polymer as a material for a honeycomb primary
pattern presents various possibilities to combine these two techniques. Another study [25]
presented a way to prepare the noble metal nanoparticles’ immobilization on self-assembled
honeycomb-patterned films as a substrate suitable for surface-enhanced Raman scattering
(SERS); the honeycomb pattern immobilized with noble nanoparticles or rGO was also
studied in [26,27]. The creation of an LIPSS pattern on an aromatic polystyrene polymer
following laser irradiation is a well-known phenomenon [28]. An LIPSS pattern created on
composite aromatic polymers containing acetylsalicylic acid has also been reported in the
literature [29] for polystyrene, or for different polymers [30,31].

The main topic of this paper concerns the laser irradiation of a polystyrene honey-
comb construction prepared using the improved phase-separation technique in solution
followed by noble metal immobilization. To the best of our knowledge, the improved
phase-separation technique used for the polystyrene honeycomb construction followed by
noble metal immobilization from the solution has never been used to date. Moreover, this
approach can be applied to other types of aromatic polymers suitable for the construction
of honeycombs by the phase-separation technique. The advantage of polystyrene is that
it has been proved to be a biocompatible polymer, even as a tissue engineering standard
(Petri dishes). Since it has an aromatic core in its chain, it is possible to prepare an LIPSS
pattern on pristine polystyrene, or the pattern can be enhanced by noble nanoparticle
immobilization if a 248 nm wavelength is applied. The assistance of a laser beam led to
immobilization on the surface of the polymer’s upper layers combined with a pattern
morphological update. The combination of the technique of improved phase separation
followed by time-effective laser treatment is used here for the first time, to the best of our
knowledge, and strongly contributes to the field of material and polymer science with
possible applications in both antibacterial surfaces, constructs for soft and hard tissue
engineering and sensor analysis.
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2. Materials and Methods
2.1. Materials and Treatment

The perfluoroethylene propylene (FEP) polymer (the density of 2.15 g cm−3, 50 µm
thick foils), supplied by Goodfellow Ltd. Goodfellow, Ltd., Huntington, UK) was used as
a primary substrate. The FEP film was plasma treated with Ar plasma discharge, using
a Balzers SCD 050 device (Bal-Tec AG, Lichtenstein). The gas purity was 99.997% with a
gas pressure of 10 Pa. The treatment parameters were as follows: plasma power 8 W and
exposure time 240 s, with an electrode distance of 50 mm.

The polystyrene was purchased from Goodfellow as oriented polystyrene foils with a
thickness of 50 µm (PS, 1.05 g cm−3, Tg ~ 100 ◦C). Polystyrene solutions were homogenized
in an ultrasonic bath XUBA 1 (Grant Instruments (Cambridge) Ltd., Cambridgeshire
United Kingdom) for 300 s. PS microstructures on the FEP were constructed by the
improved phase-separation process using the dip-coating method; the PS solution of
chloroform and methanol (100 mL, 90:10 by volume) was prepared and mixed with 2 g of
PS until a homogeneous solution was produced. Briefly, IPS is a simple two-step method,
where, in the first step, a polymer layer is applied to a solid substrate, and in the second
step, the substrate is immersed in a mixture of two solvents: “good” (chloroform) and
“bad” (methanol). After extracting the substrate from the binary mixture of solvents, they
evaporated into the air. Because chloroform is more volatile, it evaporates rapidly and
methanol droplets accumulate on the surface of the polymer. At the same time, based on
the BF principle, the rapid evaporation of chloroform cools the polymer surface, and the
high relative humidity condensed air water vapor into a polymer phase rich in methanol.
Water causes an acceleration of droplet growth and an increase in droplet surface tension.
This is essential for the conformational stability of methanol droplets, when the droplets
are tightly packed due to capillary forces, and thus form a porous structure. The effect of
humidity on the formation of HCP was confirmed by Bui in an experiment conducted in a
dry environment [4].

Silver nanoparticles were prepared by the electrochemical dissolution of two Ag elec-
trodes in sodium citrate electrolyte according to the procedure described in [24]. Following
the synthesis, the concentration of an AgNPs colloid was determined by AAS. For further
experiments, the concentration of AgNPs was set to 30 mg L−1 by adding a 1 mM solution
of sodium citrate. Prior to the immobilization process, AgNPs colloids are characterized by
TEM (Figure 1).

The TEM characterization of AgNPs colloids was performed using JEOL JEM-1010
(JEOL Ltd., Akishima, Japan) operated at 80 kV. The particle size was measured using the
TEM micrographs and calculated by considering at least 500 particles using the AnalysSIS
2.0 software. The average size of spherical AgNPs was approximately 20 nm. The samples
for TEM were centrifuged, and NPs were transferred into distilled water. A drop of colloidal
solution was placed on a copper grid coated with a thin amorphous carbon film on filter
paper. The samples were air-dried and kept under vacuum in a desiccator before being
placed on a specimen holder.

The immobilization process (see Figure 2) was conducted using a KrF excimer laser
(COMPex Pro 50F, Coherent, Inc., Silicon Valley, CA, USA; wavelength: 248 nm; pulse
duration: 20–40 ns; repetition rate: 10 Hz; 6000 pulses). Polystyrene foil with a honeycomb
pattern (preparation method as discussed in Section 3) was centered in the spectroscopic
cuvette (Starna Scientific Ltd., Ilford, UK, type 3/Q/100) and charged with the AgNPs
solution. In this set-up, PS foil was irradiated by 6000 laser pulses at a fluence of 10 mJ cm−2

through a linear polarizer (UV-grade fused silica prism, model PBSO-248-100).
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Figure 2. Scheme of the preparation of a honeycomb pattern immobilized with Ag nanoparticles.

2.2. Analytical Methods

The study of material surface morphology was performed using atomic force mi-
croscope Dimension ICON (Bruker Corp. Billerica, MA, USA). ScanAsyst mode in air
was applied with a silicon tip on Nitride Lever SCANASYST-AIR and spring constant of
0.4 N m−1. The acquired data were processed using NanoScope Analysis software 1.80.



Polymers 2022, 14, 4944 5 of 11

The concentration of Ag in the colloidal solutions was determined by atomic absorp-
tion spectrometry (AAS) with a flame atomization technique. Measurements were obtained
using a Varian AA880 device (Varian Inc., Palo Alto, CA, USA). The typical uncertainty of
concentration determined by this method was less than 3%.

The surface visualization of the samples with immobilized AgNPs was determined
using a high-resolution FEGSEM microscope MAIA3 (TESCAN, Brno, Czech Republic)
equipped with detectors for secondary and backscattered electrons. Measurements were
obtained in high-resolution mode at an accelerating voltage of 3 kV.

3. Results
3.1. Surface Morphology—Honeycomb Pattern (HCP)

An FEP polymer was used as a substrate for the preparation of the scaffold. The foil
was modified with argon plasma at different powers (3 and 8 W) and an exposure time of
240 s. Plasma treatment was performed to strengthen the attachment of the polystyrene
layer and to alter the wettability for the subsequent step of the improved phase separation
of the polystyrene. Based on the improved phase separation, HCPs were successfully
formed (as stated in scheme in Figure 2) on all modified surfaces.

Figure 3 presents the surface morphology of the FEP foil prior to and following the
preparation of the honeycomb pattern. The creation of honeycomb patterns is described in
the IPS method, which is based on the presence of methanol in a binary mixture of organic
solvents. Methanol substitutes for a humid environment, stabilizes water droplets, and
guarantees the creation of a regular pattern. Plasma treatment slightly increased the surface
roughness; thus, the surface chemistry was significantly altered [32]. The enlarged image of
the plasma-modified sample presented a wrinkled structure on the FEP surface. Images of
the samples treated at a high power (8 W) and for a long exposure time (240 s) were selected
for further experimentation. The formation of the honeycomb film significantly increased
in surface area (121.0%) and roughness Ra (333.0 nm), as expected. The pores were circular
and regularly arranged. The effect of different plasma-power values (3 and 8 W) at the
same modification time (240 s) on the pore size and shape and the corresponding chemical
surface compositions are presented in Figure 4. Circular-shaped pores were created. The
results of the elemental analysis of these patterns are presented in Figure 4. The values
listed in the table show that the chemical composition does not change when using different
plasma discharges, and oxygen concentration significantly increases when compared to
pristine FEP [24].

As stated above, the preparation of the primary honeycomb polystyrene layer was
based on an improved phase-separation technique in combination with dip coating; the
process is described in detail in [7]. We aimed to immobilize noble metal nanoparticles into
this structure, on the basis of the excimer exposure of the sample, which was immersed in
the nanoparticle solution. The immobilization can be performed also on polymer without
the honeycomb pattern. The key element is the aromatic core, so that it may interact with
the applied excimer wavelength (248), the excimer exposure guides the immobilization
process. One has to point out that the plasma treatment is a crucial step for primary
surface modification (construction of honeycombs prior to further excimer exposure),
which induces surface physico-chemical changes in FEP, changes its morphology and
wettability properties, while the contact angle decreases [7–9]. The morphology of laser-
immobilized samples of polystyrene honeycomb patterns is presented in Figure 5 (first line)
for two different scanning areas. For the purpose of comparison, the results obtained from
the immobilized polystyrene pristine samples are introduced in the bottom line of Figure 5.
The immobilization process is successful, and the honeycomb structure is covered with
globular noble metal nanostructures, as it is evident from the images on the right-hand side
of Figure 5.
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bottom line of this Figure: 10 micron scans on the left-hand side.

3.2. Surface Chemistry and SEM Analysis

The SEM analysis revealed the successful surface immobilization of silver nanopar-
ticles onto the honeycomb pattern (Figure 6). As introduced in the first line of Figure 6,
the principle of immobilization was used primarily on the pristine polystyrene (not the
honeycombs), and thus different quantities of silver may have been immobilized on the
polystyrene surface. This approach was extended to the honeycomb pattern, where the
immobilization process led to a uniform formation of Ag nanoclusters on the surface layer
of the honeycomb units. The immobilized nanoparticles on the polystyrene pattern are
clearly visible in Figure 6 (second line), a detailed image of the immobilized nanoparticles
on the hexagonal pattern on the right-hand side of the image. In the figure, it is evident that
immobilization occurs homogeneously over the large area of the constructed hexagonal
pattern, with the morphology of immobilized nanoparticles being similar to that of pristine
PS. The formation of the enriched layer and its homogeneity is well-documented in Figure 7.
From the elemental mapping, it is clear that the honeycomb pattern is preserved over a
large area. The most important point is that the immobilization is homogeneously realized
on the round areas of the honeycomb pattern, as well as on the edges of the structure
(bottom-right side of map). Additionally, the oxygen concentration is maintained over the
surface area.
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The elemental composition of the immobilized honeycomb structure is presented
in Figure 8. It is evident that the immobilization led to a significant increase in silver
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concentration in the upper layers of the honeycomb structure. The EDS method is able
to provide information from several hundreds of nm; therefore, it can be expected that
the surface is even more enhanced by silver nanoparticles. They also diffuse during the
immobilization process into the bulk material, thus forming an Ag–polymer composite,
as previously described by Siegel et al. [24]. The 8 wt.% concentration confirmed the high
immobilization ratio and thus the possibility to apply the abovementioned technique for
this type of polymer and polymeric structures. Moreover, we also applied EDS mapping
to one honeycomb unit, as is presented in Figure 9. We confirmed the homogeneous
elemental distribution of Ag and the concentration of silver to be approx. 8 wt.%, which
is the same value as for large-scale mapping presented in Figure 7. It is obvious that the
signal produced by the immobilized silver nanoparticles is collected from the area almost
homogeneously (purple), which confirms the success of the immobilization process. Some
minor areas presented less uniform or homogeneous immobilization, but the whole surface
was still enhanced by silver.
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plied to the polystyrene HCP structure. This technique can be extended to other aromatic 
polymers, such as polycarbonate, which are able to interact with an excimer laser wave-
length. The application of surface-immobilized polymers can be predominantly observed 
in SERS analysis, but also as constructs for soft and hard tissue engineering and in the 
construction of antibacterial surfaces. 
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4. Conclusions

In this experiment, we suggested a very simple and robust technique for large-scale
patterning with polystyrene honeycomb units followed by silver immobilization from a
silver nanoparticle solution supported by excimer laser treatment. The polystyrene honey-
combs were successfully constructed of perfluorinated substrate, FEP, activated with argon
plasma. The immobilization obtained from the solution was then successfully applied to
the polystyrene HCP structure. This technique can be extended to other aromatic polymers,
such as polycarbonate, which are able to interact with an excimer laser wavelength. The
application of surface-immobilized polymers can be predominantly observed in SERS
analysis, but also as constructs for soft and hard tissue engineering and in the construction
of antibacterial surfaces.
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Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials 2021, 14, 4051.
[CrossRef] [PubMed]
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