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Abstract: Herein, mechanically robust and flexible graphene oxide/polyimide (GO/PI) hybrid
aerogels (GIAs) were fabricated by a facile method, in which the mixed suspensions of the water-
soluble polyimide precursor and graphene oxide (GO) sheets were freeze-dried, which was followed
by a routine thermal imidation process. The porous GIAs obtained not only exhibit excellent elasticity
and extremely low density values (from 33.3 to 38.9 mg.cm−3), but they also possess a superior
compressive strength (121.7 KPa). The GIAs could support a weight of up to 31,250 times of its
own weight, and such a weight-carrying capacity is much higher than that of other typical carbon-
based aerogels. Having such a porous structure, and high strength and toughness properties make
GIAs ideal candidates for oil spill cleanup materials. The oil/organic solvents’ absorption capacity
ranges from 14.6 to 85, which is higher than that of most other aerogels (sponges). With their broad
temperature tolerance and acidic stability, the unique multifunctional GIAs are expected to further
extend their application range into extreme environments.

Keywords: GIAs; compressive strength; absorption capacity

1. Introduction

With increasing industrial oily wastewater generation and numbers of oil spill ac-
cidents, materials that can selectively absorb oil from wastewater are becoming greatly
desired [1–5]. The interconnected porous structures of aerogels could offer a passageway
to absorb, store, remove and transport oil and organic liquids [6–9]. As a result, various
inorganic aerogels, including SiO2 aerogels, carbon nanotube sponges and graphene aero-
gels have been made to remove oil from wastewater [10–12]. However, inorganic aerogels
generally suffer from weakened mechanical properties, extreme brittleness and a loss of
functionality. Traditional polymer aerogels, on the other hand, are flexible, but they are
relatively weak in extreme environments, such as in high and low temperatures and acidic
conditions [13–16]. To meet the specific requirements of such applications, the integration
of nanofillers and polymers to form hybrid aerogels absorbents is one of the most promis-
ing strategies for taking full advantage of their unique structures and properties. As a
result, several methods have been reported to take advantage of this combination. The first
method involves nanocasting conformal inorganic coatings on the preformed 3D porous
skeletons of aerogels [17,18], however, the inorganic coating can be easily detached when
the sorbent is manually squeezed [19]. The infiltration method sacrifices the high inner
surface area of the aerogel, as the open pores are filled with inorganics [20]. Alternatively,
mixing a suspension of the polymers or their precursors with inorganic materials was
found to be an efficient method to make hybrid aerogels with considerable mechanical
properties [20–24]. Considering their practical application, a more facile approach and
more robust and flexible absorbent materials are essential as well.

As a type of high-performance polymeric material, polyimide (PI) features superior
mechanical strength and flexibility properties, a high glass transition temperature, as
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well as excellent thermal and chemical stability properties [25]. These features make
PI an attractive candidate for aerogel with high oils and organic solvents absorbency,
selectivity, and excellent recyclability. In our previous works, we fabricated PI aerogels
with efficient oil/water separation and reusability even in extreme environments, e.g., high
or low temperatures and harsh acid environments [26,27]. However, the hydrophobic and
hydrophilic groups endow the PI with amphiphilic characteristic [28]. Instead, it should
be more hydrophobic for aerogels to possess high absorption capacity and oil/water
selectivity for practical applications. Furthermore, the previously reported PI aerogels have
ordinary mechanical properties, which cannot satisfy the versatile applications in extreme
environments, especially those with large mechanical stresses or thermal shocks.

To solve these problems and further enhance the mechanical strength of the PI aerogels,
graphene oxide (GO) was chosen as the nanofiller due to its water solubility, prominent
mechanical strength and flexibility, large surface-to-volume ratios, and it having plenty
of oxygen-containing groups on its surface [29], which enable the formation of strong
hydrogen bonds with PI and its precursor. Freeze-drying was adopted to prepare hybrid
aerogels as a cost-effective and environmentally friendly approach that can shape advanced
materials in various geometries [30]. In this study, highly robust and flexible GO/PI hybrid
aerogels (GIAs) were designed and facilely fabricated, which involved mixing the water-
soluble PI precursors and GO sheets and freeze-drying and thermal imidizing the resulting
suspension. The GIAs can efficiently, in a selectively and recyclable way, absorb various
oils and organic solvents with high absorbencies of up to 85 times their own weight.

2. Materials and Methods
2.1. Materials

4,4′-Oxydianiline (4,4′-ODA, 99.8%, CAS: 101-80-4) and pyromellitic dianhydride
(PMDA, 99.5%, CAS: 89-32-7) were purchased from Beijing Chemical Reagents Company
(Beijing, China). Triethylamine (TEA, 99.0%, CAS: 121-44-8) and N,N-dimethylacetamide
(DMAc, 99.5%, CAS: 127-19-5) were purchased from Beijing Chemical Works (Beijing,
China). Graphite oxide (CAS: 149-91-7) was purchased from Nanjing Xianfeng Nanomate-
rials Technology Co., Ltd. (Nanjing, China). Deionized water (CAS: 7732-18-5) was used in
the experiments. All of the chemical reagents were used without further purification.

2.2. Preparation of GIAs via the Freeze-Drying Method

The GIAs were prepared according to Scheme 1. Into a 100 mL three-necked round-
bottom flask, 0.012 mol 4,4′-ODA (2.4 g) was added, and it was mechanically mixed with
36.784 g DMAc at room temperature. After the ODA was completely dissolved, equivalent
moles of PMDA (2.616 g) were added slowly to the above solution, and the mixture was
stirred for 4 h at room temperature. After a continuous stirring for another 4 h, a poly(amic
acid) (PAA) solution with a solid content of 12 wt% was obtained, which was poured into
deionized water, and it was allowed to deposit afterwards. PAA powder was obtained by
washing, drying, and crushing the precipitate. After adding PAA (1 g) and triethylamine
(TEA, 0.48 g) into varying amounts of deionized water, such as 0, 27.62, 27.11, and 26.08 g
of it, and continuously stirring until the solutions became homogeneous, the ammonium
salt solutions of PAA (PAS) were prepared. GO suspension with a mass fraction of 1 wt%
was prepared by exfoliating 0.1 g graphite oxide in 9.9 g deionized water with the aid of
sonication for 30 min. Typically, the as-prepared GO suspension with varying amounts,
such as 0, 0.5025, 1.0101, and 2.0408 g of it, were added to the previously prepared PAS
solutions, correspondingly. Afterwards, the resultant solutions were continuously stirred
until they were homogeneous. Later, the obtained solutions were poured into to 5 mL
cylindrical vials, frozen at −18 ◦C in a laboratory freezer, and freeze-dried for 24–36 h in
a lyophilizer. Finally, the resulting samples were taken out and thermally imidized in an
oven at 100 ◦C for 1 h, at 120 ◦C for 1 h, at 150 ◦C for 1 h, at 180 ◦C for 0.5 h, at 250 ◦C for
1 h and at 300 ◦C for 1 h step by step. A series of GO/PI hybrid aerogels with different GO
contents were prepared and named as GIAx, where x is the weight ratio of GO to PAA and
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GO. As an example, after PAA (1 g) and TEA (0.48 g) in 27.62 g deionized water became
homogeneous (the molar ratio of TEA and carboxyl groups on PAA molecular chains is 1:1),
0.5025 g GO suspension was poured into the vessel. The mixture was vigorously mixed
using an electric mixer for hours to obtain the GO/PAS solution with a solid content of
5 wt% and to create the GIA0.5 sample.
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Scheme 1. Schematic diagram for the preparation of GIAs.

2.3. Characterizations and Instruments

The microstructures of GIAs were observed by SEM (Quanta 250 FEG). The wetting
properties of the GIAs were analyzed through contact angle tests (DCAT21 contact angle
analysis system) at room temperature. The densities of the GIAs were calculated from the
ratio of mass/volume. The bulk masses were measured using an electronic balance. The
dimensions and heights were measured using a slide caliper to calculate the bulk volumes.
The compression tests of the GIAs were performed using a testing machine (Instron 5843)
with a 1000-N load cell, and the crosshead speed was maintained at 10 mm/min.

2.4. Organic Liquids Absorption of GIAs

The absorption capacities (Q) of the GIAs were measured by immersing them into
and removing them from various organic solvents and oils with different surface tensions,
including ethanol, toluene, cyclohexane, Arawana cooking oil and glycerol. The weight
measurements of the wet GIAs should be performed quickly to avoid the evaporation of
absorbed organic liquids. Q was calculated according to the following equation:

Q = St/S0 (1)

where S0 is the weight of dry GIA, and St is the total weight of wet GIA.
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3. Results and Discussion
3.1. Morphology of GIAs

According to Scheme 1, hybrid aerogels were designed and facilely fabricated, in
which the mixed suspensions of the PAS and GO sheets were freeze-dried and thermally
imidized. As shown in Figure 1a,b, GIA0, i.e., the pure PI aerogel, changed from being
white to brown in appearance, and the higher content of the GO was, the darker the
hybrid aerogels were. Moreover, due to the extreme lightness that originated from their
porous structure, the GIAs could rest atop stably on a bristlegrass, without causing any
deformation to the bristlegrass (Figure 1c,d). As demonstrated in Figure 1e–h, the GIAs
possessed 3D porous interconnected networks with finely dispersed GO in a PI matrix,
and most of the pores were continuously distributed at several micrometers to dozens
of micrometers apart. Unlike the dense pores observed in GIA0, these larger and looser
pores with similar honeycomb-like structures, which may be caused by freezing-induced
orientation [31], were observed in GIA0.5, GIA1 and GIA2. The densities of the hybrid
GIAs (GIA0.5, GIA1 and GIA2) ranged from 0.033 to 0.039 g·cm−3 (Figure S1), and they
showed linear relationship with respect to the GO contents. This relationship indicates
that the porous structures of the GIAs are similar to each other [32], which is consistent
with the observed microstructure in the SEM images (Figure 1e–h). It is noteworthy to state
that the shrinkage of GIA0 has led to a much higher density than that of the hybrid GIAs,
and the addition of GO can reduce the drying shrinkage and the aerogel density [33]. The
explanation of these finding lies in the formation mechanisms of the GIAs. On the one hand,
during the freeze-drying process, the pore size difference created a high capillary pressure
gradient which further led to the shrinkage or even collapse of the porous structure [34].
On the other hand, the capillary tension during drying was too large [34], and so multiple
non-covalent bonds of PAS chains [35] were not strong enough to withstand the capillary
pressure, resulting in the shrinkage of the GIAs. Compared with the pristine ones, the
GIAs with GO shrunk much less, and the reasons for this are likely twofold (Figure S2).
Firstly, because of its excellent mechanical strength and strong covalent interaction with
PAS, GO can significantly fortify the structures and inhibit the shrinkage of cryogels during
the drying process. Secondly, GO can act as a huge barrier between the PAS chains and
obviously hinder the connection of the chains, which may reduce the shrinkage or even
collapse of the cryogels as well [33]. The higher the GO loading is, the heavier the weights
of the GIAs are, and with similar porous structures, the larger the densities of the GIAs are.
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Figure 1. Macroscopic and microscopic structures of GIAs. Digital photograph of GIAs (a) before
imidization and (b) after imidization. Digital images of GIA0 (c) and GIA2 (d) rested on a bristlegrass.
SEM images of GIA0 (e), GIA0.5 (f), GIA1 (g) and GIA2 (h).



Polymers 2022, 14, 4903 5 of 12

3.2. Mechanical Properties of GIAs

Besides acting as an anti-shrinkage additive to lessen the structural shrinkage, GO
can also play another important role in enhancing the compressive strength and toughness
of the GIAs. During the loading process, the stress–strain curves exhibited two distinct
stages (Figure 2a–d). The linear-elastic regime, at ε < 15%, which is demonstrated by the
elastic bending of cell walls, and the non-linear regime, at 15% < ε < 50%, which features
an increased slope where the deformation is still recoverable because of the elastic buckling
of the cell walls. Such behaviors are consistent with previous reports [36–38]. Similar
to most resilient cellular materials [11,31,39], the GIAs also suffered from hysteresis. As
shown in Figure 2, hysteresis loops were found in the loading−unloading cycles, indicating
energy dissipation that can be ascribed to the sliding of graphene and the rupture of the
sacrificial bonds. Detailed discussions on this topic are given later. As shown in Figure 2e,
the maximum compressive strengths of GIA0.5 and GIA1 at the 50% cyclic compression
strain showed 27.4% and 28.6% increases over that of GIA0, respectively. However, as the
GO content increased from 1 to 2 wt%, the maximum compressive strength of the GIAs
decreased from 121.7 to 112.4 KPa, probably because the GO content exceeded the critical
level and formed small agglomerates [40]. At low percentage content of GO, the special
combination of covalent and non-covalent interactions between the PAS chain and the
GO nanosheets helped to improve the mechanical properties of the hybrid aerogels, and
this involved three possible interactions (Figure S3) [41–43]: (1) H-bonding between the
O-atoms of the PAS chains and the COOH-functional group of the GO nanosheets; (2) π–π
interaction between the PAS chain and the GO nanosheets; (3) the carboxyl groups on
the graphene surfaces or edges may react with the amido groups of PAS during the high-
temperature imidization process [41]. Surprisingly, the maximum compressive strength
of the various GO-containing GIAs shown in this work is higher than that of many other
aerogels (sponges) which were reported at a 50% strain (Figure 2e) [11,20,44–51]. Moreover,
GIA1 with mass of 6.4 mg can support a counterweight of 200 g, which is at least 31250 times
of its own weight, without a sign of deformation (Figure S4). Judging from this, our hybrid
aerogels are much more robust than most aerogels that have been reported previously
are [52–62]. The weight-carrying capacity of the GIAs in this work is approximately thirty
times higher than that of carbon nanotube aerogels [63] and about six times higher than
that of a graphene sponge [64] and a reduced graphene oxide-konjac glucomannan carbon
aerogel [58]. As far as we know, the weight-carrying capacity of our aerogels is only lower
than that of rGO aerogels, which can support about 100,000 times their own weight [65] and
supercritically dried PI aerogel which is able to support the weight of a car [66]. However,
these two types of areogels encounter severe difficulty during industrialization and in
meeting the requirements of possible applications. On one hand, it is difficult for the
rGO aerogels be used in industry applications due to their relatively poor compressive
strength and toughness. On the other hand, for the supercritically dried PI aerogels, five
factors can be taken into consideration. (1) Industrially, curing is carried out by the direct
heating of the PI precursor at high temperatures, instead of chemical imidization which is
adopted for the supercritically dried PI aerogel, to ensure the complete imidization and
conversion of undesirable isoimides to imides [67]. (2) Compared with supercritical drying,
the freeze-drying method that is adopted in our paper is more facile, cost-effective and
environmentally friendly. (3) As a strong covalently bonded network structure may sacrifice
its toughness [68,69], it cannot be applied in pressure sensors as they cannot be squeezed
for oil spill recyclability. (4) With primary micropores and mesopores, it is difficult for the
oils to permeate into the supercritically dried PI aerogels [70], which may hamper their
utilization as oil sorbents. (5) From the standpoint of their application, the high density
(ranging from 131 to 333 mg·cm−3) of the supercritically dried PI aerogels are not the
preferred choice for lightweight devices. As such, with marvelous strength and toughness
properties, our hybrid aerogels would be ideal candidates for various applications [71].
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and GIA2 (d) at the strain of 50% for 5 cycles. Maximum compressive strengths of different aerogels
(sponges) at 50% cyclic compression strain (e).

The intriguing high elasticity and mechanical robustness of our hybrid aerogels may
be attributed to the low densities and unique honeycomb-like microstructures of them,
the outstanding mechanic properties of PI and GO, as well as the synergistically covalent
and non-covalent interactions between the PI chain and the GO nanosheets. As shown
in Figure 3a, under compression, the motion of the PI chains during deformation caused
the cracking of the π-π stacking and therefore, the energy that dissipated in this process
resulted in an increased toughness of the GO-free aerogel. When the GO-free aerogel was
severely compressed, the reconstructed π-π stacking between the PI chains allowed for
the van der Waals adhesion to be overcome by the elastic energy and the GO-free aerogel
spring back to its original volume afterward. GO can be partially reduced during the
thermal imidization process [41]. The functional groups that remained may react with the
PI chains and the π-π stacking interaction, hydrogen bonding and covalent bonding formed
between the PI chains and partially reduced GO, and graphene may also form π-π stacking
interaction with the PI chains and the partially reduced GO. Upon compression, the motion
of the PI chains during deformation may engender the sliding of the graphene and the
breaking of π-π bonds (sacrificial bonds), and thus, this provides an energy dissipation
approach (Figure 3b). The dissociation of the hydrogen bonds (sacrificial bonds) resulting
from further increasing of the load may enable additional energy dissipation. With an
enormous surface area, the partially reduced GO and graphene can endow numerous
sites for the formation of sacrificial bonds, i.e., hydrogen bonds and π-π bonds. All of
these can ensure the elasticity of the hybrid aerogels which are comparable to the GO-free
aerogel. The mechanical robustness of hybrid aerogels is ascribed to the densely clustering
of multiple non-covalent interactions of the sacrificial bonds and the strong interaction
between the carboxyl groups of the partially reduced GO and the amido of PAA.
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3.3. Oil Absorption Properties of GIAs

It is well known that surface wettability is determined by the geometric structure and
the surface energy [72–74]. On one hand, with porous microstructures and a low surface
energy, the PI aerogels can be highly hydrophobic [26]. On the other hand, during the
curing process, GO undergoes thermal reduction, and the hydrophilic functional groups
on the surface of GO are partially reacted, thus is turns into a more hydrophobic partially
reduced GO and graphene. Therefore, it is possible to achieve more hydrophobic hybrid
aerogels after the addition of graphene with a low surface energy. As expected, more
hydrophobic hybrid aerogels are prepared (Figure S5). Interestingly, the water contact
angles of the hybrid aerogels increase with an increasing GO content, which is in consistent
with previous reports [75,76].

Inspired by the porous framework, the superior mechanical properties, high hydropho-
bicity and high absorption capacities of PI aerogels at high/low temperature and in harsh
acid environments were demonstrated in our previous works [26,27], and we also consider
hybrid aerogels to be an ideal candidate for highly efficient sorbents. Various kinds of
organic solvents and oils, e.g., Arawana cooking oil (Figure 4a), were investigated, and
the hybrid aerogels exhibit very high absorption capacities for all of them. In general,
the hybrid aerogels could absorb the liquids from 14.6 to 85 times their own weights
(Figure 4b), which is in the range of values that have been reported in the literature for
similar materials [10,17,21,77–87]. The absorption capacities of the GIAs increased with
increasing GO loading as well, and three reasons may be ascribed to this phenomenon. (1)
Compared to GO-free aerogels, the hybrid aerogels with less shrinkage have a larger pore
size and a larger pore volume to store more absorbed liquid [70]. (2) During the curing of
hybrid aerogels, the GO surface can decompose into CO2 and water, and thus, voids and
interconnected tortuous pathways can be generated, which further increase the surface
area and pore volume. (3) Sheet-like graphene provide a tremendous surface area, which
facilitates the adsorption of oil [88]. The absorption capacity is determined by the surface
tension of liquid. The following formula can be used to calculate the mass (m) of liquid
penetrating into the pores of aerogel [89]:

2πrγcosθ = mg (2)
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When the surface of the liquid is completely wetted, the contact angle θ is zero, and
for such surfaces:

2πrγ = mg (3)

or
m = kγ (4)

where γ is the surface tension of the liquid, r is the pore radius of the aerogel, g is the gravi-
tational acceleration, and k = 2πr/g. Therefore, according to Equation (4), the absorption
capacities of the GIAs increase linearly with an increase in the surface tension of the liquid
(the surface tensions of these organic liquids [89–91] are listed in Table S1), as demonstrated
in Figure 4c.

4. Conclusions

To prepare aerogels with high absorption capacity and mechanical strength properties,
GIAs were produced by freeze-drying of water-soluble PI precursor/GO suspensions,
which was followed by a multistep thermal imidation. The resulting GIAs exhibited an
extremely low density (33.3–38.9 mg.cm−3), a high absorption capacity (14.6–85) and supe-
rior compressive strength (121.7 KPa). Moreover, the GIAs could support a weight of up to
31,250 times their own weight. This research provides a versatile platform for fabricating
hybrid aerogels with synergistically ameliorated multifold properties, such as reduced
shrinkage and high hydrophobicity properties and a high absorption capacity. Furthermore,
the honeycomb-like structures and the dense clustering of multiple non-covalent interac-
tions of the sacrificial bonds and their strong interaction give rise to excellent flexibility as
well as considerable compressive strength of hybrid aerogels. The successful synthesis of
such fascinating GIAs with good mechanical properties, broad temperature tolerance, acidic
resistance, high hydrophobicity and a high absorption capacity paves the way to explore
aerogels for multifunctional practical applications, especially in extreme environments.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14224903/s1, Figure S1: GIAs densities as a function of
GO contents; Figure S2: Schematic diagram of the freeze-drying processes of PAS solutions with
GO (a) and without GO (b); Figure S3: Schematic of the interactions that might exist between GO
and PAS; Figure S4: A GIA1 with a weight of 6.4 mg (left); the same sample supporting a 200 g
poise (middle) that is 31,250 times its own weight; the same sample after remove of the poise (right);
Figure S5: Water contact angles of GIAs as a function of GO contents; Table S1: Surface tensions of
organic liquid/oil absorbed by GIAs.
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