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Abstract: An elastomeric class of flexible skin-based polymorphing wings changes its configuration
to maximize performance at radically different flight conditions. One of the key design challenges for
such an aircraft technology is the multiaxial deformation characterization and modeling of nonlinear
elastomeric skins of polymorphing wings. In the current study, three elastomeric materials, Latex,
Oppo, and Ecoflex, are experimentally characterized and modeled under all possible deformation
modes such as uniaxial, pure shear, biaxial, and equibiaxial relevant for flexible skin-based morphing
wing applications. Additionally, a novel material model with four material constants is proposed to
model the considered elastomers-based morphing wings keeping all the material parameters constant
for all the possible deformation modes. The present experimental and theoretical study provides a
concise comparative study of the three elastomers used in the morphing wings tested in all possible
deformation modes.

Keywords: elastomers; hyperelasticity; multiaxial modeling; morphing wing; flexible skin

1. Introduction

In a traditional aircraft, only one or two flight conditions are optimized rather than
optimizing the entire flight envelope. At the same time, the advancement of research is
moving closer to nature, mimicking the flight of birds. In particular, birds reshape their
wing and adjust their profiles to obtain optimal performance in all flight conditions [1–4].
Recently, morphing wings offer excellent aerodynamic efficiency and control authority for
an aircraft over a wide range of flight conditions. Moreover, the morphing wing provides
a potential solution to the rigid aircraft wings with hinged ailerons or flaps connections
that account for noise and vibration in the airframe [5–7]. To this end, lightweight, flexible
elastomeric materials are implemented on the ribs and morphing structures of the wing.
Recently, the focus of the morphing wing has been shifted from a monomorphing wing
(one degree of freedom) to a polymorphing wing (two or more degrees of freedom). Hence,
elastomers are a potential candidate material for morphing skin due to their multiaxial
seamless deformation, low in a plane, and high out-of-plane stiffness with reduced actua-
tion force requirement [8,9].

Researchers have implemented elastomers in the morphing wing, and their mechani-
cal characterization, simulation, and material modeling are investigated. For this purpose,
they either purchased different elastomers or prepared them in the laboratory before imple-
menting them on the morphing structures of the wing. Kikuta [10] is a pioneer in the field
who investigated different elastomers in the pursuit of ideal skin material for morphing
wing applications. They investigated Tecoflex (80A, 93A, and 100A), Ritiflex (663A and
640A), Arnitel, and Shape memory polymer. Mainly they have conducted uniaxial and
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equibiaxial experiments and concluded that TEcoflex 80A would be the best candidate
material for the morphing applications. Thill et al. [11] presented a comprehensive re-
view of the candidate materials for morphing skins. They demonstrated that elastomeric
skins have low crosslink density and are useful for polymorphing where multiaxial high
strains are required. Peel et al. [12] fabricated a morphing skin by reinforcing carbon fiber
in polyurethane elastomers to bear a more aerodynamic load. Their experimental and
simulation results showed smooth elastic cambering and no buckling or waviness in the
skins. Bishay and Aguilar [13] proposed a hybrid morphing skin with composites and
elastomers aligned periodically. Their computational parametric analysis showed that
torsional compliance could be increased by increasing the width ratio and decreasing the
number of elastomeric sections and elastomers’ torsional rigidity. Bubert et al. [14] fabri-
cated an elastomer-based skin that strained smoothly to 100% global strain with 100% area
change. Finite element simulations were conducted to achieve 30% global strain with 1.5%
maximum local strain. Ajaj et al. [15] developed a zigzag wing box-based morphing wing
utilizing rigid and flexible parts together. Latex-based elastomeric skin is implemented as a
flexible part. Their complete mathematical analysis showed that a maximum of 44% span
extension of the wing is achieved due to the integration of the elastomeric part. In a series of
works, Olympio and Gandhi [16–18] conducted comprehensive experimental and theoreti-
cal studies on various flexible elastomer-based morphing wings. Their results highlighted
the advantages of implementing elastomeric skins on different types of cores of a morphing
wing. Woods and Friswell [19] developed an elastomer-based skin for morphing wing
application termed Adaptive Aspect Ratio (AdAR) wing. They tested the silicone-based
elastomeric skin under the uniaxial mode of deformation, and analytical optimization of the
skin was done. Further, Woods and Heeb [20] fabricated a unique, TPU-based morphing
skin with the help of a multi-nozzle 3D printer. They named it Geometrically Anisotropic
ThermOplastic Rubber (GATOR), and a detailed analytical optimization study proved that
the skin is better suited for low in-plane and high out-of-plane stiffness. In another work
from the same group, Rivero et al. [21] designed a modular FishBAC wing with 3D-printed
skins. Uniaxial stress-strain curves are plotted to understand the nonlinear mechanical
behavior of the skin. Parancheerivilvilakkath et al. [22] developed a Latex-based polymor-
phing wing capable of chord and camber morphing. The design, modeling, and mechanical
testing of the Latex-made wing achieved 10% chord extensions and 20% camber changes.

The above literature studies show that flexible elastomers are currently used in mor-
phing wings along with rigid structures such as ribs. At the same time, the hyperelastic
material modeling under multiaxial deformation modes is of utmost importance for simu-
lation and modeling the entire wing structure. On the contrary, modeling such hyperelastic
materials is generally done using only one mode of deformation at one time. For example,
the uniaxial mode of deformation is selected to understand the hyperelastic behavior of
elastomers through different hyperelastic mathematical models [23–26]. Moreover, a few
researchers investigated the influence of three deformation modes (uniaxial, pure shear, and
equibiaxial) on various constitutive models [27–31]. Besides the developments of different
material models for the hyperelastic response of elastomeric material class, choosing an
appropriate model for a specific application, for example, the morphing wing, which often
deforms in biaxial mode (in the polymorphing wings), is still challenging [32–34]. The cen-
tral aim of such phenomenological defined model expressions of polynomial, exponential,
and logarithmic terms [35–37] is to capture the experimental data accurately, in particular,
a uniaxial test of deformation. At the same time, the fitting accuracy of other deformation
modes such as pure shear, biaxial, and equibiaxial tests were majorly ignored in capturing
the material response of elastomers with the same set of material constants fitted with
uniaxial test data. To the best of the authors’ knowledge, most of the researchers compared
uniaxial, pure shear, and equibiaxial experiments to propose different material models.
However, the biaxial deformation mode (unequal strain rate in the X and Y direction) is
not investigated in detail. Only Ahmad et al. [38] carried out a biaxial deformation test
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experimentally and compared it with other modes of deformations such as uniaxial, pure
shear, and equibaixial only for Latex.

Motivated by the literature, the current research aims to characterize three categories of
elastomeric materials experimentally, Latex (widely applicable), Oppo (highly durable), and
Ecoflex (less viscous) used in aircraft morphing wings by developing a novel material model
keeping all the material parameters constant for all the possible modes of deformations. The
present study is further organized as follows: Section 2 discusses all the experimental details of
the mechanical characterization of three different elastomeric materials. Section 3 revisits the
material modeling of an incompressible isotropic hyperelastic elastomeric material class of skins
for morphing wing applications subjected to different modes of deformations. Furthermore,
a novel material model with four material constants is proposed to model the considered
elastomers-based morphing wings keeping all the material parameters constant throughout
all the possible modes of deformations in the same Section 3. Later, Section 4 validates the
analytical findings of a newly proposed material model in previous Section 3 and identifies
the material constants of the model for each experimentally tested Latex, Oppo, and Ecoflex
elastomers. Section 4 also discusses a summarized mechanical comparison of the elastomers
used in morphing wing applications, connecting with the experimentally validated analytical
findings of the current study. At last, Section 5 summarizes the conclusions drawn from the
present work in the context of morphing wings.

2. Experimental

In the present section, details of the multiaxial testing set up to conduct the experiments
such as uniaxial (UX), pure shear (PS), biaxial (BX) and equibiaxial (EB) at a particular
condition is elaborated. Moreover, the geometry of the specimen and the fabrication
method of Ecoflex are discussed in a separate section.

2.1. Experimental Set Up

The experimental setup to conduct the multiaxial test on the three elastomers Latex,
Oppo and Ecoflex is shown in Figure 1. The device is compact and easy to use, and it
is called Biaxial Planar Tensile Testing Device (Make: CellScale, Waterloo). All the tests
such as UX, PS, BX, and EB are conducted at a comparatively slow deformation strain
rate to assess the long-term behavior of the elastomers. The elastomer-based skins are
generally used in morphing wings of Unmanned Aerial Vehicles (UAVs) flying at low
altitudes and speeds [11]. At this low altitude and speed, environmental factors such
as temperature, humidity, and ambient pressure do not have a significant role to play
in elastomeric materials. Hence, all the materials are tested at room temperature for a
proposed modeling perspective. The maximum strain achieved during the test is 100%. As
shown in Figure 1, the biaxial device consists of a compact biaxial test setup integrated with
LabJoy software. The LabJoy software is used to analyze the data and process the image to
obtain strain maps. Figure 1b shows the enlarged view of the testing arrangement. The
device consists of four actuators fixed at four sides of the device through goose-necks. Four
magnet-attached grippers are situated at the four corners connected with each actuator
individually. Each gripper has five tungsten-made tiny tines pierced into the specimen
to hold it. The diameter and depth of each tine are 305 µm and 1.9 mm, respectively,
which adequately grips the specimen. The square-shaped specimen is fixed in the gripper
with the help of a mounting bridge that moves up and down with the help of a fluid
chamber, as shown in Figure 1b. A CCD camera is fixed at the top of the specimen through
a camera stand, as shown in Figure 1a. This camera provides high-resolution video of
the specimen during the experiments that are further analyzed in the LabJoy software.
Strains are calculated through images in the software. To this end, a square is created on
the first image of the specimen, and henceforth strains are created in the region as the
deformation takes place, similar to Helal et al. [39]. The highest capacity of the load cell
is 5N which provides the force needed to extend the specimen under different modes of
deformations discussed in the forthcoming Section 2.2. Engineering stress is then calculated
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by dividing the force value by the original cross-sectional area of the specimen. The original
area is obtained by dividing the width by the thickness of the specimen. All the tests are
conducted at least five times to ensure repeatability of the test. For representation purposes,
one experimental data point is used to fit the data in each condition as detailed in Section 3.

Figure 1. Representation of (a) Biaxial testing device and (b) enlarged view of the specimen holder
for conducting uniaxial, pure shear, biaxial and equibiaxial test at a fixed strain rate [40].

2.2. Specimen Geometry, Elastomer Synthesis, and Experimental Conditions

The specimens of Latex, Oppo, and Ecoflex are cut into a square shape of side 7 mm using
a scissor. Grips are fixed from all four sides keeping the end-to-end distance of 6 mm as shown
in Figure 2. We have tested the elastomers of square shape of side 6 mm because of the limitation
of the Biaxial Machine [39]. However, increasing the specimen size does not significantly affect
the parameters of the elastomers, as experimentally verified by Pharr et al. [41]. Graphite
powder is sprinkled over the specimen before each test starts, so strain maps are easily obtained.
Among the three elastomers selected, Latex and Oppo are from the natural rubber class, while
Ecoflex is from the silicone family. These are commercially available low-cost elastomers. Latex
is the most widely used elastomer in the morphing wing and is directly purchased from Radical
Rubber (www.radicalrubber.co.uk, accessed on 10 March 2022), while Oppo is purchased from
Oppo Medical Inc., Seattle, WA, USA. The thickness of both sheets is 0.25 mm. Latex and Oppo
exhibit high-quality finish with translucent and blue colors, respectively. Oppo is selected as it is
already used for medical purposes in physiotherapy. Therefore, its durability is already proven
and can undergo multiple cycles without failure [42]. Ecoflex is purchased from Smooth-ON,
USA, and this is selected because silicone-based elastomers are being used in morphing wings.
Silicone-based Ecoflex elastomer is synthesized in the laboratory by mixing two parts (Part A
and Part B) in equal proportion by weight. Then the mixture is adequately mixed with a stirrer
for 3–5 min. This is spread in a 0.5 mm thick mold made of acrylic sheet. The whole mixture is
then evenly settled in the mold using a hand-made applicator. The mold filled with the mixture
is then kept open at room temperature to dry for 4 h. The sheet is then ready to use. To confirm
its thickness, the thickness of the sheet is measured with the help of a portable thickness gauge
(Model: Yunir1z5xbr97ut, Make: Yunir). The thickness is measured from at least ten different
places of the fabricated sheet to confirm the thickness. The thickness was then found to be in
the range of 50 mm ± 0.04 µm.

Figure 2. Dimension of specimens used for biaxial testing of three different elastomers (a) Latex
(b) Oppo and (c) Ecoflex [40].

www.radicalrubber.co.uk
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2.3. Various Mechanical Tests under Multiaxial Modes of Deformation

Different modes of deformations are elaborated in Figure 3a for uniaxial, Figure 3b
for pure shear, Figure 3c for biaxial and Figure 3d for equibiaxial. The initial and final
positions of the specimen are elaborated in Figure 3(i) and Figure 3(ii), respectively. In
the uniaxial mode of deformation, as shown in Figure 3a, the square-sized specimen is
fixed from the loading side (X direction) and the transverse side (Y direction) is free to
contract. At the same time, the load is applied from the X direction. In this way, the
specimen deforms continually from the Y direction during the testing. In the pure shear
mode of deformation, the specimen is fixed from all sides, and loading is applied from
the X direction keeping the Y direction fixed to prevent the contraction of the specimen
as shown in Figure 3b. For the biaxial deformation mode, loads are applied from both X
and Y directions, but loading from the Y direction is slower than that of the X direction,
as shown in Figure 3c. This is an example of unequal loading from lateral and transverse
directions. For the equibiaxial mode of deformation, equal loads are applied from both the
lateral and transverse directions, as shown in Figure 3d.

Figure 3. Representation of multi axial deformation modes at the (i) initial and (ii) final position of
the specimen. The various deformation modes are shown in (a) UX (b) PS (c) BX and (d) EB.

2.4. Strain Measurement under Various Modes of Deformations

The CCD camera, as shown in Figure 1 is used to measure the real-time deformation
of the specimen. The bi-axial machine has an integrated image analysis software called
’Labjoy’ that captures images to provide strains while testing through the DIC technique.
The analysis can be done by selecting the first image and making a square shape in the
middle of the specimen. The source and target images are first preset, and then all the
square region points are tracked. This will create strains in the middle of the square region
for all the images and can be visualized after selecting. This way, strains in the X and Y
directions can easily be visualized. All the strains obtained for various deformation modes
are elaborated in Figure 4. Strains in the X and Y directions are εx and εy, respectively, as
shown in Figure 4i. Under the uniaxial mode of deformation, the specimens at 0% strain in
both the X and Y directions are represented in Figure 4i(a,b). The strain maps developed
in the X direction are 10%, 30.6%, and 50.4%. Their corresponding strain rates in the Y
direction are−4.5%, −12.4%, and−18.9%, respectively as shown in Figure 4i(a), (b), (c), (d),
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(e), (f), (g), and (h), respectively. Here, εy at different positions are negative, showing the
specimen contraction in the Y direction. Hence, an overall contraction of 40% is observed
in the transverse direction when the specimen is fully stretched under the uniaxial mode
of deformation.

Under the pure shear mode of deformation, the strains developed in the X and Y
direction at different specimen positions are shown in Figure 4ii. The initial strain maps
are 0% in the X and Y directions, as shown in Figure 4ii(a,b). It is clearly shown that as the
strain in the X direction reaches 50%, the corresponding strain in the Y direction is around
−5%. This kind of loading is termed pure shear loading when the transverse contraction (Y)
is less than 10% while extension takes place in the lateral direction (X) [30,43]. They enable
the pure shear mode of deformation test of elastomers in their works by taking a very wide
sample and keeping the width to height ratio greater than 10. This arrangement keeps the
lateral contraction of the specimen within the allowable limit of −10%. In the current work,
the lateral contraction is prevented using a unique gripping system of the biaxial machine.
It consists of tungsten-made small flexible tines which are pierced in the specimen. These
flexible tines move apart easily from the transverse direction when extension occurs from
the lateral direction. This way, the lateral contraction is shown to be around−5%. as shown
in Figure 4ii(h). Furthermore, it is clearly shown from Figure 4ii that strains developed
are εx = 0%, 10.9%, 29.9% and 49.8% in the X direction and their corresponding strains
in the Y direction are εy = 0%,−1.4%,−3.4% and −5.4%, respectively. A negative sign
indicates that the contraction takes place in the Y direction. Hence, the strains for pure
shear deformation at different positions in the Y direction are always under 5.4%.

The strain maps for both the X and Y directions under biaxial deformation modes are
shown in Figure 4iv. In this mode, the extension in the Y direction is considered lesser
than that of the X direction at a particular time, as shown in Figure 4iii(a–h). Hence,
εx = 0%, 9.9%, 30.1% and 50.5% and the corresponding strains in the Y direction are
εy = 0%, 5.1%, 14.9% and 23.4%, respectively. Furthermore, the strain maps for equib-
iaxial mode of deformation Figure 4iv(a–h). In the equibiaxial mode of deformation,
the loading rate in both the X and Y directions is the same. Therefore, strain maps ob-
serve in both directions are the same. For example, the strains along the X direction are
εx = 0%, 9.9%, 29.2% and 50.0% and the strains in the Y direction are εy = 0%, 10.1%, 30.1%
and 49.4% respectively as shown in Figure 4iv.

Figure 4. Strain maps developed under all possible modes of deformation are represented for
(i) UX (ii) PS (iii) BX (iv) EB in the biaxial testing device. The strain maps for X direction are shown in
(a,c,e,g) and corresponding strain maps for Y direction are shown in (b,d,f,h), respectively for each
deformation modes.
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3. Material Modeling

This section summarizes the material modeling of an incompressible isotropic hy-
perelastic elastomeric material class of skins for morphing wing applications subjected
to different modes of deformations by defining the state variables in line with the litera-
ture [44–46].

3.1. Kinematics of Hyperelastic Deformation

Consider a body Ω = [Pk] containing a set of material points Pk. A reference frame
φ = [O, ei] is set in such a way that it contains the origin O and an orthonormal vector
space ei in a three-dimensional Euclidean space. The time locus of a position vector X(P, t)
relative to φ = [O, ei] describes the mechanical motion relative to the reference frame φ.
The material deformation of an incompressible isotropic hyperelastic body is governed
by a nonlinear deformation field map k(X, t) that transforms a material point X ∈ Pk
onto a current/Eulerian configuration of the material point x = kt(X). If TXΩ0 and TxΩ
are the tangent spaces in the reference/Lagrangian and current configurations, then the
deformation gradient tensor F that maps the unit tangent of the reference configuration
onto the current configuration is given by

F : TXΩ0 −→ TxΩ, F =
dx
dX

. (1)

Further, if dA and dV denote the infinitesimal area and volume elements in the
reference configuration, then cof[F] and J = detF characterize the deformed area and
volume elements in the current configuration given as

cof[F] =
da
dA

, J =
dv
dV

. (2)

Let |dx| = ds and |dX| = dS, where s and S denote the arc length parameters. Then,
the above Equation (1) may be written as

λe = FE, (3)

where e = dx/ds and E = dX/dX are unit vectors tangent to the arc length parameters,
respectively and λ = ds/dS is represented as a stretch parameter defined as the ratio of the
deformed length to the undeformed length of the material element. In the above relation (3),
F rotates E in the direction e and stretches it by 0 < λ < ∞. Physically, it becomes essential
to use the polar decomposition theorem [47,48] of linear algebra applied to the nonsingular
tensor F as

F = RU = VR, (4)

where R denotes the local rigid body rotation of a material element and U, V are the positive
and symmetric tensors describing the local deformation of the element and generally known
as the right and left stretch tensors, respectively. Physically, the above (4) decomposition of
the gradient tensor F is unique and the direct use of the stretch tensors U or V are tedious.
Thus, it is customary to use their squares as

C = FTF = U2, B = FFT = V2, (5)

where B and C represents the right and left Cauchy-Green deformation tensors, respectively.

3.2. Governing Equations of Hyperelastic Deformation

In general, the energy stored in an isotropic material class during deformation is
governed by principal stretches or invariants [44–46]. In this context, one may decompose
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the left Cauchy-Green deformation tensor B and its cof[B] tensor for the corresponding
eigenvalues and eigenvectors as

B =
3

∑
i=1

λ2
i Ni ⊗Ni, cof [B] =

3

∑
i=1

a2
i λ2

i Ni ⊗Ni, (6)

where ai = J/λi (a1 = λ2λ3, a2 = λ3λ1 and a3 = λ1λ2) denote the principal areal
stretches. Thus, the set of principal invariants corresponding to an incompressible isotropic
hyperelastic material deformation are given by [36,49]

I1 = trB = λ2
1 + λ2

2 + λ2
2,

I2 = tr(cof [B]) =
1
2

[
(trB)2 − trB2

]
= a2

1 + a2
2 + a2

3 =
1

λ2
1
+

1
λ2

2
+

1
λ2

3
,

I3 = J2 = det B = (λ1λ2λ3)
2 = 1.

(7)

From the theory of hyperelasticity [49,50], the Cauchy stress tensor σ for a given
invariant-based strain energy density function W(I1, I2, I3) is expressed as

σ =
2√
I3

B
∂W(I1, I2, I3)

∂B
=

2√
I3

(
∂W
∂I1

∂I1

∂B
+

∂W
∂I2

∂I2

∂B
+

∂W
∂I3

∂I3

∂B

)
. (8)

The derivatives of the invariants (8) with respect to the left Cauchy green deformation
tensor B are given by

∂I1

∂B
= I,

∂I2

∂B
= I1I− B,

∂I3

∂B
= I2I− I1B + B2, (9)

where I is the identity tensor. On using the above relations (8) and (9) for an incompressible
balloon actuator made of hyperelastic material, we obtain

σ = −pI + 2
(

∂W
∂I1

+ I1
∂W
∂I2

)
B− 2

(
∂W
∂I2

)
B2, (10)

where p denotes the indeterminate pressure to be determined from boundary conditions. In
the current study, experiments are carried out in a displacement-driven setup wherein the
nominal stresses are readily available due to the experimental lack of actual cross-section. In
line with that, the above expression (10) is utilized to derive the nominal stress expressions
for different modes of deformations such as uniaxial, pure shear, biaxial, and equibiaxial
deformations cases.

3.2.1. Uniaxial Mode of Deformation

In this deformation case, the material is stretched in x-direction (σ11 6= 0) while others
directions are stress-free (σ22 = σ33 = 0). The deformation gradient tensor F and the
nominal stress tensor under uniaxial tension applied in the x-direction are given by

F =

λ 0 0
0 1/

√
λ 0

0 0 1/
√

λ

, σ =

σ11 0 0
0 0 0
0 0 0

. (11)

Using the above expressions (11) in (10), the nominal stress under uniaxial tension
applied in x-direction is obtained as

σ11 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)(
λ− 1

λ2

)
− 2
(

∂W
∂I2

)(
λ3 − 1

λ3

)
. (12)
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3.2.2. Pure Shear Mode of Deformation

In this deformation case, the material is again stretched in the x-direction (σ11 > 0)
while the other directions are constrained (σ22 > 0, λ2 = 1) and stress-free (σ33 = 0). The
deformation gradient tensor F and the nominal stress tensor for the given deformation case
are given by

F =

λ 0 0
0 1 0
0 0 1/λ

, σ =

σ11 0 0
0 σ22 0
0 0 0

. (13)

Using the above expressions (13) in (10), the nominal stress under pure shear deforma-
tion case is obtained as

σ11 − σ22 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)(
λ− 1

λ3

)
. (14)

3.2.3. Biaxial Mode of Deformation

In this deformation case, the material is stretched unequally in two directions (σ11 6= σ22)
while the third direction is stress-free (σ33 = 0). The deformation gradient tensor F and the
nominal stress tensor for the given deformation case are given by

F =


λ 0 0

0
λ + α− 1

α
0

0 0
α

λ2 + αλ− λ

, σ =

σ11 0 0
0 σ22 0
0 0 0

, (15)

where α > 0 is a positive constant. Using the above expressions (15) in (10), the nominal
principal stresses under biaxial deformation case are obtained as

σ11 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)[
λ− α2

λ(λ2 + αλ− λ)
2

]
− 2
(

∂W
∂I2

)[
λ3 − α4

λ(λ2 + αλ− λ)
4

]
,

σ22 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)[
λ + α− 1

α
− α3

(λ + α− 1)(λ2 + αλ− λ)
2

]

−2
(

∂W
∂I2

)[(
λ + α− 1

α

)3
− α5

(λ + α− 1)(λ2 + αλ− λ)
4

]
.

(16)

3.2.4. Equibiaxial Mode of Deformation

In this deformation case, the material is stretched equally in two directions (σ11 = σ22)
while the third direction is stress-free (σ33 = 0). This deformation case is considered as
a special case of the above biaxial deformation case for α = 1. On substituting α = 1 in
the above Equation (16), the nominal stress for the given equibiaxial deformation case is
given by

σ11 = σ22 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)(
λ− 1

λ5

)
− 2
(

∂W
∂I2

)(
λ3 − 1

λ9

)
. (17)

3.3. A Newly Proposed Material Model

There are so many existing material models [34] that are frequently used to model
the hyperelastic behavior of an elastomeric material class. Such material models are phe-
nomenologically defined using mathematical expressions of polynomial, exponential, and
logarithmic terms [36,37]. The central aim of such early proposed material models was to
accurately capture the experimental data, particularly a uniaxial test of deformation. At the
same time, the standard deformation modes such as pure shear, biaxial, and biaxial tests are
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generally becoming ineffective in capturing the material behavior of elastomeric materials
with identical values of material parameters used to fit the model to experimental data. This
fact creates hurdles in connecting fitting procedures and computational calculations with
physical explanations of the hyperelastic deformation of an elastomeric material class. To
the best of our knowledge, no existing hyperelastic material model captures all the modes
of deformations data of uniaxial, biaxial, and pure shear-based experimental tests with the
same values of material parameters with a low margin of error. However, very few material
models [37,51] exist that can capture experimental data of uniaxial tension, equibiaxial
tension, and pure shear deformation with significant-margin of error. Furthermore, such
existing material models contain many mathematical complexities that are not good for
computational calculations. In this context, an alternative form of strain energy function
W(I1, I2) = µ(W1 + W2 + W3) consisting of one exponential term W1 and two logarithmic
terms W2 and W3 is proposed as

W1 =
1
a

exp (a[I1 − 3])− 1
a

, W2 = b(I1 − 2)[1− ln (I1 − 2)]− b,

W3 = c
[

1− ln
(

1
I1 − 2

)]
− c,

(18)

where a, b, and c are the material parameters. All together, the exponential term W1 and
two logarithmic terms W2 and W3 manifest the proposed “Exp-ln-ln” strain energy density
function given as

W = µ

[
1
a

exp(a[I1 − 3])− 1
a
+ b(I1 − 2)[1− ln (I1 − 2)]− b + c[1− ln

(
1

I1 − 2

)
]− c

]
. (19)

Moreover, the proposed “Exp-ln-ln” type of new strain energy function (19) satisfies all
the necessary and sufficient conditions to predict the mechanical behavior of the elastomeric
material class as (i) it disperses in undeformed configuration (i.e., at W(I1−3) = 3), (ii) it
tends towards infinity at large deformations along with the corresponding stress, and (iii)
it satisfies zero stress value at undeformed configuration. In the proposed strain energy
function (19), the material parameter µ physically signifies the shear modulus, a explicitly
linked with the limiting chain extensibility of monomers in polymeric chains, b accounts
for material micro-voids, porosity, and molecular chain breakage, and c physically linked
with the strength of intermolecular forces between chain molecules.

4. Results and Discussions

This section firstly validates the analytical findings of a newly proposed material
model (19) in previous Section 3 with the experimental data set obtained in Section 2 for
Latex, Oppo, and Ecoflex elastomers. Then, the corresponding material constants of a
newly proposed material model (19) are identified for each tested material specimen of the
mentioned elastomers. Later, a summarized mechanical comparison of Latex, Oppo, and
Ecoflex elastomers used in morphing wing applications is also discussed, connecting with
the experimentally validated analytical findings of the current study.

4.1. Identification of Material Parameters

Experimental validation of any material model is commonly examined based on how
accurately the model works in different regions of the stress-strain curve. In the related
studies [36,37], the authors used well-known uniaxial experimental data in general by
fitting a set of material constants. The authors commonly ignored checking the fitting
accuracy of the material model with the same material constants in other biaxial and pure
shear modes of deformations. If they do so, they may find that various material models do
not accurately fit all the modes of deformations with a single set of material constants. In
this regard, we perform an exercise on the experimental validity of our newly proposed
material model (19). The model (19) is fitted with three different elastomers-based tested
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data investigated in previous Section 2 in all possible deformation modes compared with a
few well-known existing material models, namely, the Mooney Rivlin and Gent given by

WMR = C1(I1 − 3) + C2(I2 − 3), WG =
−µ

2
Jm ln

(
1− I1 − 3

Jm

)
, (20)

where C1 and C2 are the Mooney Rivlin material constants, whereas µ and Jm represent
the Gent material parameters. A group of stress versus stretch plots shown in Figures 5–7
demonstrates a material constant fitting exercise for the material models in all possible
modes of deformations such as uniaxial, pure shear, biaxial, and equibiaxial for Latex,
Oppo, and Ecoflex elastomers, respectively. The corresponding set of material parameters
of the considered material models are indicated in Tables 1–3 for Latex, Oppo, and Ecoflex
elastomers, respectively.

Table 1. Material parameters of proposed (19), Mooney Rivlin (20), and Gent (20) material models
for Latex.

Constitutive Model Material Constants

Proposed model µ = 0.30 MPa, a = 0.08, b = 0.28, c = 0.15

Mooney Rivlin model C1 = 0.14 MPa, C2 = 0.11 MPa

Gent model µ = 0.39 MPa, Jm = 6

Table 2. Material parameters of proposed (19), Mooney Rivlin (20), and Gent (20) material models
for Oppo.

Constitutive Model Material Constants

Proposed model µ = 0.39 MPa, a = 0.1, b = 0.0018, c = 0.001

Mooney Rivlin model C1 = 0.21 MPa, C2 = 0.19 MPa

Gent model µ = 0.6 MPa, Jm = 6

Table 3. Material parameters of proposed (19), Mooney Rivlin (20), and Gent (20) material models
for Ecoflex.

Constitutive Model Material Constants

Proposed model µ = 0.012 MPa, a = 0.1, b = 0.0018, c = 0.001

Mooney Rivlin model C1 = 0.009 MPa, C2 = 0.007 MPa

Gent model µ = 0.023 MPa, Jm = 6

Figure 5 presents a comparison among currently tested Latex elastomer data under all
possible deformation modes such as uniaxial, pure shear, biaxial, and equibiaxial and the
above-mentioned material models in (19) and (20). The proposed material model (19) shows
exact one-to-one corroboration with uniaxial test data and a qualitative agreement with
another pure shear, biaxial, and equibiaxial test data for a single set of material constants
calculated in Table 1. On the other hand, the Mooney Rivlin model does not show a good
agreement with any type of deformation mode test data except uniaxial. At the same time,
the Gent material model does not fit properly any tested data investigated here, not even for
a uniaxial case. The primary reason behind such disagreements is a restriction in varying
material constants while changing the deformation modes, such as uniaxial to biaxial or
pure shear to equibiaxial. Figure 6 presents a comparison among currently tested Oppo
elastomer data under all possible deformation modes such as uniaxial, pure shear, biaxial,
and equibiaxial and above-mentioned material models in (19) and (20). Similarly, Figure 7
presents a comparison among currently tested Ecoflex elastomer data under all possible
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deformation modes, the proposed material model (19), Moony Rivlin model (20), and Gent
material model (20). Figures 6 and 7 both repeat the similar capturing trends of Figure 5 as
accurately fitting the proposed material model (19) and poorly fitting the existing Moony
Rivlin and Gent material models (20). The respective single set of material constants for
Oppo and Ecoflex elastomers are calculated in Tables 2 and 3, respectively.

In practice, there is a possibility that the Gent material model may accurately fit
the tested data after varying a single set of material constants fitted from an uniaxial
deformation case. However, in actual practical conditions, this should not be allowed.
Hence, the proposed material model (19) is the only qualified material model that accurately
captured the currently tested data for Latex, Oppo, and Ecoflex elastomers account for
flexible skin-based aircraft morphing wing applications.
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Figure 5. Experimental validation of the proposed model with Latex test data compared to the
existing material models under all possible deformation modes, (a) uniaxial, (b) pure shear, (c) biaxial,
and (d) equibiaxial for a single set of material constants.
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Figure 6. Experimental validation of the proposed model with Oppo test data compared to the
existing material models under all possible deformation modes, (a) uniaxial, (b) pure shear, (c) biaxial,
and (d) equibiaxial for a single set of material constants.
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Figure 7. Cont.
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Figure 7. Experimental validation of the proposed model with Ecoflex test data compared to the
existing material models under all possible deformation modes, (a) uniaxial, (b) pure shear, (c) biaxial,
and (d) equibiaxial for a single set of material constants.

4.2. Mechanical Comparison of Latex, Oppo, and Ecoflex Elastomers

It is evident that the material for morphing wings cannot be wholly rigid but should
be flexible enough to morph its shape during flight operations. To meet such requirements
of morphing wings, the materials must be elastic and flexible enough for easy deformation
with adequate strength to bear aerodynamic loads. Additionally, the materials should
easily recover to its original state with no plastic deformation as excess material causes
drag that reduces efficiency markedly [10]. Elastomeric materials closely fulfill all the
criteria mentioned above for plausible skin materials. Natural rubber-based elastomers
such as Latex and Oppo and silicon-based materials such as Ecoflex are being utilized for
the purpose. Latex and Oppo have the advantage of higher fracture toughness and large
elasticity with excellent durability. At a particular condition, both have higher stiffness
(µ = 0.3–0.4 MPa), which accounts for a higher actuation force requirement. On the other
hand, Ecoflex, which can be easily synthesized in the laboratory with different shore
hardness, can be a better candidate material for the morphing wing. This is because
silicone-based Ecoflex has at least ten times lower stiffness (µ = 0.012–0.02 MPa) than
Oppo and Latex. Therefore, less actuation force is required to morph the wing. Moreover,
earlier researchers investigated that it has lesser flaw sensitivity [52], larger elasticity [53],
low hysteresis losses, and low-stress relaxations [40] that best suit its application in the
morphing wings.

5. Concluding Remarks

The present work provides a comprehensive multiaxial experimental and theoretical
study of three potential elastomers (Latex, Oppo, and Ecoflex) relevant for morphing
wing application. In addition, a novel nonlinear hyperelastic constitutive model “Exp-ln-
ln” with four material parameters is proposed to reasonably predict multiaxial modes of
deformations (UX, PS, BX, and EB) mimicking polymorphing wing. The unique feature
of the proposed model is that it reasonably fits all modes of deformations using a single
set of material parameters. Limitations of the applicability of the proposed material model
apply only to a few elastomers in biaxial transverse stress states (σ22) with a single set
of material constants fitted with uniaxial test data. This needs further refinement of the
currently proposed material model in the future. Nevertheless, except for such may or may
not capture transverse stresses (σ22), the proposed material model qualitatively fitted all
the elastomeric experimental data in the current study, eases the modeling and simulation
task of morphing wing. Moreover, the major conclusion from the present work is that
silicone-based skin, including Ecoflex, has superior characteristics for morphing wings
(monomorphing and polymorphing) owing to its significantly less stiffness leading to lesser
actuation force requirement.
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