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Abstract: An active film composed of corn starch/κ-carrageenan and ethanolic grape seed extract
(0, 1, 3, and 5 wt% of GSE on corn starch basis) were successfully prepared using the solvent
casting technique. The effects of the different concentrations of ethanolic grape seed extract (GSE)
on the physicochemical properties, antioxidant properties, and antibacterial properties of CS/κC
films were analyzed. The results showed that the addition of GSE inhibited the recrystallization of
starch in the composite film. The glass transition temperature of composite film is 121.65 ◦C. With
the addition of GSE, the surface roughness of the composite film increased, and the cross-section
displayed a stratification phenomenon. Meanwhile, when GSE was added to the composite film, the
tensile strength of the composite film decreased (3.50 ± 0.27 MPa), the elongation at break increased
(36.87 ± 2.08%), and the WVP increased (1.58 ± 0.03 g mm/m2·d· kPa). With the increase of the
concentration of GSE in the composite film, the a* value and b* value of the composite film increase,
the L* value decreases, and the opacity increases. The lipid oxidation test proved that the composite
films containing 1% GSE has a significant inhibitory effect on the oxidation of lard (p < 0.05). The
above results indicate that the GSE can be used as a food-grade packaging material and has a good
application prospect in the food industry.

Keywords: grape seed ethanol extract; corn starch; κ-carrageenan; antioxidant; lard packaging;
active film

1. Introduction

Today, as a product of petrochemical industry, plastic is widely used in food pack-
aging because of its low price and convenient use [1]. However, plastics are not easy
to degrade, and the harmful gases produced after incineration can significantly pollute
the soil, water, and the atmosphere, ultimately endangering human health. To this end,
safe and biodegradable biological films are gradually being developed to replace plastic
films to reduce environmental pollution [2,3]. At present, biodegradable materials, such as
polysaccharides (starch, cellulose, and chitosan), proteins (soy protein, corn zein, and whey
protein), and lipids (paraffin, acetoglyceride, and shellac resins) have been used to prepare
biodegradable films [4,5]. Starch has the advantages of low price, non-toxic, comprehensive
sources, renewable, and good film-forming properties, and it is therefore used to develop
naturally biodegradable bio-based films as one of the significant plastic alternatives [6–8].
Moreover, corn silk polysaccharide has a good immunomodulatory effect [9].

Although starch-based materials have good oxygen barrier properties, the use of corn
starch to produce biodegradable films has disadvantages, such as poor moisture resistance
and poor mechanical properties, and its application is limited [10]. To overcome these
shortcomings, mixing starch with other biopolymers to form composites has received much
attention, such as carrageenan (CA), chitosan, gelatin, xanthan gum sodium, carboxymethyl
cellulose, etc. CA mainly derived from algae and is a water-soluble polymer consisting of a
linear chain of partially vulcanized galectins, which has been widely used in food gelation,
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emulsification, and thickening [11,12]. In addition, CA also has excellent gelatinization
and high viscosity characteristics and has good film-forming properties. When blended
with starch, the mechanical properties of starch film can be improved. Sandhu et al. [13]
blended pearl rice starch and carrageenan to prepare composite film and found that the
addition of carrageenan could improve the tensile strength of the film, reduce the water
vapor transmission rate, and improve the physical properties of the film.

However, starch-carrageenan composite membrane is lacking in biological activity;
therefore, natural active agents can be introduced to improve the antioxidant and antibacte-
rial properties of composite membrane. Polyphenolic components, such as phenolic acids,
flavonoids, and anthocyanins, are usually added to starch composite film to improve the
antioxidant and antimicrobial properties of food packaging film, so as to prevent food
spoilage and prolong the shelf life [14].

Grape pomace, as a solid residue in wine making and grape juice industry, accounts
for about 20~25% of the quality of grapes used [15]. Grape pomaces are traditionally
composted or used as animal feed, but the polyphenols in the pomace are wasted. The
exploitation and utilization of grape pomes can not only optimize the environment and save
resources but also create good social economic and social benefits. It has been reported that
grape pomace extract is rich in polyphenols, such as catechin, epicatechin, gallic acid, and
proanthocyanins, which show a variety of biological activities, such as good antibacterial,
antioxidant, and anti-inflammatory activities [16–18]. Grape seed ethanol extract is added
to the film, which can effectively reduce the growth rate of bacteria and the oxidation rate
of fat and keep the product color stable when stored at low temperature [19]. M. Gomaa
et al. found that biodegradable films prepared by GA and AOE could prolong the shelf life
of Agaropsis bisporus [20]. Abdin et al. added Syzygium cumini seeds extract (SCSE) to
sodium alginate/gum arabic films (SG) to prolong the shelf life of canola oil [21].

Therefore, grape seed extract can be added to films as antioxidant material to prepare
food-active packaging and to develop a biodegradable antioxidant film. However, there
are few reports on preparing composite films by blending grape seed extract with corn
starch and CA.

Therefore, the purpose of this study is to prepare environmental-friendly and func-
tional CS/κC/GSE composite films with the different concentrations of GSE as raw mate-
rials. In addition, the effects of the different contents of GSE on the properties of CS/κC
films are also evaluated to select a good food-packaging film. It is especially important that
the characterization of CS/κC/GSE composite films investigates the effects of GSE on film
properties, including physicochemical, mechanical, microstructure structure, antioxidant,
and antibacterial activities. We hope to develop an environmentally friendly, biodegradable,
and bioactive thin film material. This is the first attempt to develop biodegradable films
using CA/glycerol/CS and GSE, which could improve the oxidative stability of food and
prolong the shelf life of food.

2. Materials and Methods
2.1. Materials

Corn starch was obtained from Heilongjiang Yufeng Corn Development Co., Ltd.
(Qiqihar, China). Grape seeds and pig lard were obtained from Qiqihar Liuyuan market,
Carrageenan (food grade, Qingdao Dehui Marine Biotechnology Co., Ltd., Qingdao, China).
Yeast Extract and Trypsin (biochemical reagent) were obtained from Beijing Aoboxing Biotech
Co., LTD. S. aureus strains (ATCC29213) and Escherichia coli (ATCC25922) were obtained from
School of Food and Biological Engineering, Qiqihar University (Qiqihar, China).
2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) were supplied by Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Other
chemical reagents (analytical grade) were obtained from Tianjin Kaitong Chemical Reagents
Co., LTD., (Tianjin, China) We declare that all experimental materials and methods are in
compliance with the relevant laws and regulations of the People’s Republic of China.
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2.2. Extraction of GSE

GSE extraction was performed according to the method of Gao et al. [22] with some
modifications. The grape seeds were crushed with a multi-function (GX-220 multi-function
crusher, Zhejiang High-tech Industry and Trade Co., LTD.) and 70% ethanol was added to
the crushed grape seeds at a ratio of 1:20 (W:V). After extraction at room temperature for 2 h,
the extract solution was centrifuged at 6000× g, and the extraction residue was repeated the
above extraction method twice. Then, the three supernatants were combined, transferred
to a rotary evaporator (2L-ARE rotary evaporator, Shanghai Haozhuang Instrument Co.,
Ltd., Shanghai, China) and concentrated at 50 ◦C. The concentrate was lyophilized in a
vacuum freeze dryer (2.5 L-FreezePrySystem, Labconco, Kansas City, MO, USA) to obtain
GSE powder, which was stored in a refrigerator at 4 ◦C. The extraction yield of GSE in
grape seed was 9.24%.

2.3. Preparation of Films

CS/κC-GSE films were prepared by solution casting according to the method of Riaz
et al. [5] with slight modifications. Corn starch gelatinized solution was prepared by
dissolving 9 g CS in 297 g distilled water and gelatinizing it for 30 min at 90 ◦C. Then,
1.8 g κ-carrageenan was added into CS gelatinized solution with stirring for 30 min at 90 ◦C.
After that, different weights of GSE (0, 1, 3, and 5 wt% on CS basis) were added into CS/κC
film-forming solutions with stirring 30 min at 90 ◦C. Then, 1.8 g glycerol was added as a
plasticizer to the CS/κC-GSE film-forming solution and stirred for 30 min at 90 ◦C, using
hot water to complement the evaporated water. The CS/κC-GSE film-forming solution was
sonicated at 90 ◦C for 30 min to remove bubbles. A 120 mm diameter polyethylene ring was
fixed on a glass plate covered with release paper. The CS/κC-GSE film-forming solutions
(25 g) were poured onto the polyethylene ring and fixed for 15 min. The glass plates with
film-forming solutions were placed in a blast drying oven and dried at 40 ◦C for 12 h. Then,
the films were carefully removed from the glass plates. The films were placed in a dryer
at 25 ◦C with a relative humidity of 56.8% (NaBr saturated solution) and were balanced
for 72 h to determine the parameters of the films. The films were placed in a desiccator
with a relative humidity of 57.57% (NaBr saturated solution) at 25 ◦C for 72 h and then
the indexes of the film were determined. Finally, the prepared composite films containing
0, 1, 3, and 5 wt% GSE were designated CS/κC, 1% CS/κC-GSE, 3% CS/κC-GSE, and
5% CS/κC-GSE films, respectively.

2.4. Characterization of the CS/κC-GSE Films
2.4.1. Mechanical Property

The mechanical properties of composite films were determined by referring to the
method of Huang et al. [23], with minor modifications. This experiment used a texture ana-
lyzer (TA. XT plus C, Stable Micro System Co., Godalming, UK) to measure the mechanical
properties of the film. The film samples are trimmed to a 6 cm × 2 cm rectangle. The test
speed was 2 mm/s and the initial clip distance was 20 mm. The tensile strength (MPa) and
elongation at break (%) of the composite film were measured. It is averaged after three
measurements of each sample. Tensile strength (TS) and elongation at break (EB) of the
composite film are calculated as follows:

TS =
Fmax

S
(1)

EB% =
L1 − L0

L0
× 100% (2)

In the formula: TS is the tensile strength (MPa), Fmax is the maximum load at film
fracture (N), S is the cross-sectional area of the film (mm2), EB is the elongation at break
(%), L1 is the length of the film after stretching (mm), and L0 is the initial length of the
film (mm).
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2.4.2. Water Vapor Permeability (WVP)

The WVP was determined by weight and referring to the method of Roy et al. [24]
with a slight modification. The 10 g of anhydrous CaCl2 was placed in a blast air oven
and dried at 110 ◦C for 2 h and placed it in a weighing bottle (35 mm × 90 mm). The
prepared film sample was covered in the mouth of the weighing bottle, sealed, and placed
in a desiccator with distilled water at the bottom. The mass of the weighing bottle was
measured every 24 h for 8 consecutive days. Each sample was measured three times and
the results were averaged. The WVP of the film is calculated according to Equation (3):

WVP =
W

t×A
× X

∆P
(3)

In the formula: WVP, water vapor permeability (g· mm/m2·d· kPa); W, total mass
of the bottle after film sealing, (g); t, the testing time (s); A, the permeable film area (m2);
X, the film thickness (m); and ∆P, Vapor pressure difference between two sides of the film
(1583 Pa at 25 ◦C).

2.4.3. Analysis of Film Color and Transparency

The L* value (brightness), a* value (red/green), and b* value (yellow/blue) of the film
samples were determined by chromatic aberration meter (UPG-722 Visible spectrophotome-
ter, Beijing Uber General Technology Co., Ltd., China). Before measurement, a standard
plate calibration (L* = 103.98, a* = −5.80, and b* = 9.25) was used. Each sample was
measured three times and the results were averaged.

The film samples were sheared into a rectangle (10 mm × 45 mm). The rectangular
film was attached to the inner wall of the empty cuvette and the empty cuvette was used
as the contrast. The absorbance value of the sample was measured at 600 nm. Each sample
was measured three times and the results were averaged. The opacity was calculated
according to Equation (4):

Opacity =
A600

X
(4)

In the formula: A600 is the absorbance at 600 nm, and X is the film thickness (mm).

2.4.4. Scanning Electron Microscopy (SEM)

A scanning electron microscope (S-4300, Hitachi, Japan) was used to observe the
microstructure of the composite films surface and cross-section. The composite film was cut
into small rectangles of 4 cm × 6 cm, broken up with liquid nitrogen, and then gold-plated
by sputtering. The scanning voltage was 2.00 kV and the current was 64.0 µA. The surface
and cross-section structures of the composite films were photographed and observed.

2.4.5. Fourier Transform Infrared (FT-IR) Spectroscopy

To analyze the effect of GSE on the chemical structure of composite film, FT-IR
spectra were obtained using FT-IR/NIR spectroscopy (Spotlight 400, Perkin Elmer Co.,
Waltham, MA, USA) according to the method of Wang et al. [25]. The composite film was
placed on the ATR accessory, and the operation parameters of SEM were as follows: the test
temperature was 25 ◦C, the wave number was 4000–650 cm−1, the resolution was 4 cm−1,
and the scans were carried out 32 times.

2.4.6. X-ray Diffraction (XRD)

The crystalline characteristics of films were analyzed via XRD (SmartLab, Rigaku Co.,
Japan), according to the method described by Guo et al. [19] with some modifications. The
XRD (SmartLab, Rigaku Co., Tokyo, Japan) analysis of the films was carried out using the
method of Ilyas et al. [16] using CuKα radiation, the XRD scan ranged from 5–80◦(2θ), and
the scan rate was 2◦/min.
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2.4.7. Differential Scanning Calorimetry (DSC) Analysis

The thermal transition of components was measured using differential scanning
calorimetry. About the 4 mg of the dried film samples were sealed in an aluminum crucible.
The empty aluminum crucible acted as a blank control. Nitrogen was used as the protective
gas. The protective gas flow rate was 20 mL/min. The heat-up rate was 10 ◦C/min. The
differential scanning calorimetry analysis was performed in a temperature range of 20 ◦C
to 250 ◦C.

2.5. Assay of the Antioxidant and Antibacterial Activity of Films
2.5.1. Total Phenol Content

The total phenol content of the film was determined by the Folin–Ciocalteu method
with slight modifications [26]. The film immersion solution was obtained by immersing
125 mg of the film sample in 15 mL of distilled water for 24 h. A 0.1 mL film immersion
solution, 7 mL distilled water, and 0.5 mL folinol were added into a 50 mL conical flask
in turn and shaken gently. After standing for 8 min, 1.5 mL of 10 wt% Na2CO3 solution
and 0.9 mL of distilled water were added in turn. The composite solution was placed in a
dark room to avoid light for 2 h. The absorbance of the mixture was measured by a UV
spectrophotometer at 765 nm. A series of aqueous gallic acid solutions were prepared with
concentrations ranging from 0 to 15 µg/mL. The absorbance at 765 nm was measured as
described above. The standard curve was drawn with the concentration of aqueous gallic
acid as abscissa and its absorbance at 765 nm as ordinate. The equation y = 0.117x + 0.0171
(R2 = 0.9995) was obtained. Each sample was measured in triplicate and averaged. The total
phenolic content of the samples was expressed as milligram gallic acid (GAE) equivalents
per gram of dry matter (DW), GAEmg/DWg.

2.5.2. DPPH Free Radical Scavenging Activity of Films

Ten milligrams of the film sample were mixed with DPPH methanol solution (1.5 mL,
0.2 mM). The mixture was placed into a dark chamber for the reaction. Light was avoided
for 0.5 h at room temperature. After that, DPPH methanol solution was used as a blank
control and the absorbance of the mixture was determined at 517 nm (UV). Each sample
was measured three times and the results were averaged. To calculate the DPPH-free
radical scavenging rate, the following is used:

kDPPH =
AC −AS

AC
× 100% (5)

In the formula: kDPPH is the DPPH-free radical scavenging ability at 517 nm, Ac is the
absorbance of the blank control at 517 nm, and As is the absorbance of the film samples
at 517 nm.

2.5.3. ABTS Free Radical Scavenging Activity of Films

The ABTS radical scavenging ability of the films was measured using the method
of Riaz et al. [27] with a slight modification. A total of 10 g of the film sample was
mixed with ABTS radical working solution and kept away from light for 6 min at room
temperature. The absorbance of the mixture was measured at 734 nm with an ultraviolet
spectrophotometer. An acetic acid buffer solution instead of film sample solution was used
as a blank control. Each sample was measured three times and the results were averaged.
The calculation formula of the ABTS-free radical scavenging rate is as follows:

kABTS =
AC −AS

AC
× 100% (6)

In the formula: kABTS is the ABTS free radical scavenging ability at 734 nm, Ac is the
absorbance of the blank control at 734 nm, and AS is the absorbance of the film samples
at 734 nm.
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2.5.4. Antimicrobial Activity

The antimicrobial activity of the composite films is determined by disk diffusion
experiments. The expanded E. coli and Staphylococcus aureus were diluted 10-fold with
sterile saline, respectively, as the initial bacterial solution. The composite films samples
were cut into many circular sheets of 10mm, and the sheets were placed in a culture medium
containing 0.1 mL of bacteria. The medium was inverted in a 37 ± 1 ◦C incubator and
fostered for 24 h. The diameter of the inhibition zones was measured by a sliding caliper,
and the size of the inhibition zone reflected the bacteriostatic effect of the composite films.

2.5.5. Determination of Peroxide Value

An amount of 5 g solid lard was wrapped in the film, and the film was heat-sealed and
placed in a blast-drying oven at 60 ◦C to accelerate oxidation. The samples were sampled
at every 24 h interval and measured continuously for 7 d. The POV value was determined
according to the method of Gao et al. [22]. Each sample was measured three times, and the
results were averaged.

2.6. Statistical Analysis

All experiments were performed in triplicate independently and the results are
expressed as the mean ± standard deviation (SD). Duncan’s test in the software SPSS
25 system was used for significance analysis. Origin 8.0 software was used for drawing. If
p < 0.05, the difference was considered statistically significant.

3. Results and Discussion
3.1. Physical Properties of the CS/κC-GSE Films
3.1.1. Mechanical Properties

The mechanical properties of composite films are expressed by tensile strength (TS)
and elongation at the break (EB). The effects of the different concentrations of GSE on the
mechanical properties of the film are shown in Table 1. The CS/κC film had the highest TS,
reaching 9.07 MPa. Conversely, the CS/κC film had the lowest EB of only 22.37%. The EB
of GSE composite membrane is higher than that of CS/κC membrane, and EB increases
with the increase of GSE concentration. On the contrary, TS decreased with the increase of
GSE concentration. The addition of GSE increased the intermolecular forces controlling
the film [3]. The interaction of GSE and CA loosens the spatial structure of starch and thus
gives CS/κC-GSE membrane good mechanical properties [27]. The decrease of TS may
be because the interaction between starch and polymer molecules was weakened by the
addition of GSE [28]. The increase of EB and decrease of TS suggested an enhancing degree
of the plasticization of the polymers [29]. Similar studies also confirmed that the addition
of plant extracts could improve the mechanical properties of starch-based films [30–33].
Bof et al. [34] developed starch–chitosan-based films incorporated with lemon essential oil
(LEO) and grapefruit seed extract (GSE). They found that the addition of GSE increased the
EB value of the films because of the interaction between GSE and the polymer matrix. It has
been reported that the addition of GSE and ZEO essential oil (ZEO) to the chitosan film can
improve the mechanical properties of the chitosan film. However, with the increase of ZEO
concentration in the chitosan film, the EB decreased significantly, which may be due to the
increase of the pore size of the film to create a possible breaking point [35]. Similarly, Söğüt
et al. [28] recently found that the addition of GSE to gelatin films resulted in a significant
reduction in TS. They attributed the phenomenon to polyphenolic compounds that impair
protein interactions.
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Table 1. Physical properties of CS/κC-GSE films with a different concentration of GSE.

Films Sample Tensile Strength
(MPa)

Elongation at Break
(%)

WVP
(g·mm/m2·d kPa)

CS/κC film 9.07 ± 0.45 a 22.37 ± 0.98 c 1.08 ± 0.04 c

1% CS/κC-GSE film 5.34 ± 0.31 b 25.94 ± 0.97 bc 1.25 ± 0.02 bc

3% CS/κC-GSE film 4.27 ± 0.41 bc 29.92 ± 1.94 b 1.38 ± 0.04 b

5% CS/κC-GSE film 3.50 ± 0.27 c 36.87 ± 2.08 a 1.58 ± 0.03 a

a–c Values are given as mean ± standard deviation. Different letters in the same line indicate significantly different
(p < 0.05).

3.1.2. Water Vapor Permeability (WVP)

Food packaging film should have the function of preventing moisture and packaged
food from transferring to each other [36]. WVP is one of the best determinants of delaying
water movement between the film and the surrounding environment to prolong the shelf
life of food [20]. The WVP was an essential measure of the quality of food packaging.
WVP is affected by polymer properties [37]. The WVP of the CS/κC-GSE film is shown in
Table 1. The WVP of the CS/κC film was 1.08 g·mm/m2·d· kPa. The WVP of CS/κC film
mixed with GSE is higher than that of the CS/κC film and increases with the increase of
GSE concentration. Similar studies also confirmed that the addition of plant extracts could
increase the WVP value of starch-based films [30,38]. They found that the presence of GSE
may produce less crystalline film, leading to an increase in WVP. Söğüt et al. [39] found that
the films containing GSE had high WVP values, indicating that plasticization may have oc-
curred. Promsorn [40] also indicated increased WVP due to a higher degree of plasticization
in starch-based films, which increased free volume and molecular mobility. Similar results
were found by Wu et al. [41], who added GSE to TEMPO-oxidized nanocellulose (TNC)
films and found an increase in the WVP of the films. They found that the film absorbs
water from the air because of the loss of film structure caused by the addition of GSE. Basch
et al. [30] found that the presence of Nisin (Nis) and Nis/potassium sorbate (KS) resulted
in a significant increase in this parameter in all studied films, which they suggested could
be responsible for the biological destructor matrix produced by antibiotics. In contrast,
experiments by Tavares et al. [42] showed that the addition of carboxymethyl cellulose
(CMC) polymer to cornstarch film decreased the WVP value because the formation of CMC
and starch blends improved the water resistance of CMC to some extent.

3.1.3. Color, Opacity, and Light Transmittance of the Film

As a food packaging film, the appearance and optical performance are critical indica-
tors for measuring the quality of the film [43]. As shown in Table 2, the GSE was mixed in
the CS/κC film to significantly change the color of the film. The color of CS/κC film was
colorless and transparent. When GSE was added to the CS/κC film, a*, b*, and opacity
increased significantly, which meant that the CS/κC film gradually turned yellow. In
contrast, the L* of the film slowly decreased. The above results show that the amount
of GSE added has a significant influence on the color and light transmittance of the film
(p < 0.05). This may be due to the color of the GSE itself, leading to a significant change in
the color of the film. Similarly, Söğüt et al. [28] found that GSE incorporation into chitosan
(CH) films reduced the brightness of CH films due to phenolic interactions. Bof et al. [34]
found that the darkening of GSE films was due to the effect of promoting light scattering.
Moradi et al. [35] reported a decrease in the brightness of the films with the addition of
polyphora essential oil and GSE, which they attributed to the lack of interaction between
the polymers.



Polymers 2022, 14, 4857 8 of 16

Table 2. Color, optical properties, and opacity of CS/κC-GSE films with different concentrations of GSE.

Film Sample L* a* b* Opaqueness s/% Picture

CS/κC film 90.24 ± 0.33 a −1.22 ± 0.04 d −0.18 ± 0.08 d 1.06 ± 0.13 d
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the accumulation of particles during drying. 

1% CS/κC-GSE film 85.74 ± 0.50 b 1.70 ± 0.20 c 3.64 ± 0.22 c 2.25 ± 0.43 c
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3.2. Scanning Electron Microscopy (SEM)

SEM was used to analyze the film’s microstructure, whose surface smoothness and
pores could be determined by SEM [44]. Figure 1 is the analysis of the CS/κC films
and the CS/κC-GSE films by SEM. The microstructure of CS/κC film was continuous,
smooth, and homogeneous without any pores, cracks, or irregular phenomenon. Since
carrageenan and glycerol are mixed well in the starch film, CS/κC film has a smoother
slope [25]. The GSE was mixed into CS/κC film, and some speckles and irregular shapes
appeared on the surface of the film. When the addition amount of GSE was 3%, the
cross-section of the composite film was stratified. When the amount of GSE was 5%, the
stratification phenomenon was more obvious, which may be due to the agglomeration
of proanthocyanidins in GSE. No significant surface aggregation of the film at a low
concentration of GSE. The irregular shape progressively appears in the film, the surface
is gradually rough, and a small number of insoluble particles can be observed. This may
be because when the amount of GSE added is too much, the solubility in the system
becomes worse, leading to the appearance of insoluble particles. Cross-section images also
show rough and non-homogeneous structures when adding GSE. This non-homogeneity
reflected immiscibility between of the film components [45,46]. Such results are similar
to those found by Rubilar et al. [38]. They studied and found that it may be due to
the hydrophilicity of the GSE. Meanwhile, they found that GSE was evenly mixed with
carvacrol in the cross-section. Chen et al. [30] observed the presence of particles observed
after the addition of ethanolic extract of thyme (TH) to potassium sorbate film (KS) is
caused by the accumulation of particles during drying.
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3.3. Fourier Transform Infrared (FTIR) Spectroscopy

FT-IR spectral analysis can research the interaction between the functional groups
and intermolecular interactions in the films [47]. Figure 2 represents the FT-IR spectra
of the film. The CS/κC film showed more obvious absorption peaks at 3304, 2926, 1645,
1150, and 1014 cm−1. Among them, there is a broad absorption peak at 3200–3400 cm−1,
related to the stretching vibration of the O-H [41]. Meanwhile, the peak value of GSE film
was higher than that of CS/κC film, indicating that the content of hydroxyl group also
increased with the increase of GSE concentration [48]. There seems to be a slight shifting
of the O-H stretching bands towards lower wavenumbers, which suggested hydrogen
bonding between hydroxyl groups of polymer components and additives (GSE) [45]. A
peak of 2926 cm−1 observed in the CS/κC film can be attributed to the asymmetric tensile
vibration of the CH2 bond, and similar bands were also observed in the GSE films [49]. The
absorption peak at 1645cm−1 occurs because the asymmetric and symmetric expansion
vibrations occur at C=O. The bands at 1440 and 1060 cm−1 are characteristic of the C-H
deformation of the aromatic ring [50]. The band vibration of C-H and CH2 deformation was
observed between 1200 and 1500 cm−1 [10]. The absorption peak is gradually apparent at
1150–1014 cm−1, which may be caused by bending the vibrations out of the C-H plane of the
aromatics [51]. The absorption peak of 928 cm−1 is generated by bending vibrations outside
the plane of the alkene [52]. When GSE was mixed into the composite film, the vibration
absorption peak of -OH in the composite film was slightly red shifted to the high wave
segment, indicating that GSE affected the intermolecular force of starch. This is similar
to that found by Wu et al. [41], suggesting that there was a hydrogen bonding interaction
among TNC, GSE, and AgNPs. As can be seen from FTIR, GSE can form hydrogen bonds
with relevant functional groups in the composite film, reducing free hydrogen and forming
hydrophilic bonds. Therefore, the mechanical properties and water isolation properties can
be improved to a certain extent.
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3.4. X-ray Diffraction (XRD)

The properties and structure of the composite film are closely related to the crystallinity.
Crystallinity is an important parameter of composite film properties, which is usually
closely related to the stability of the material [53]. The film XRD images are shown in
Figure 3. The broad peaks of the CS/κC films near 2θ = 20.00◦ without obvious absorption
peaks indicate that the CS/κC films are non-crystallized [22]. Three similar reflection peaks
appeared at 19.06◦,19.70◦, and 20.30◦. In contrast, a more pronounced diffraction peak
appeared at 2θ = 19.78◦ in the addition of 1% GSE films. The new diffraction peaks become
sharp and the intensity of the CS/κC-GSE films increases with the increase of GSE content.
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This indicates that GSE can improve the crystallinity of CS/κC film. Further confirmed is
the good binding of GSE to the CS/κC film, but no other diffraction peaks of GSE were
found [42]. It is worth noting that all of the composite films show an amorphous pattern
similar to the CS/κC film at 2θ ≥ 25.00◦. The diffraction peak intensity of the CS/κC-GSE
films was significantly higher than that of the CS/κC films. The crystalline properties of the
CS/κC films are affected by the content and composition of polyphenols in the extracts [54].
Similarly, Gao et al. [22] found a similar effect with the addition of black soy bark ethanol
extract to corn starch. They suggest that the crystalline properties of polyphenol-rich
CS-based films are influenced by the content and composition of polyphenols in the extract.
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3.5. Differential Scanning Calorimetry (DSC) Analysis

The differential scanning calorimetric analysis of CS/κC-GSE film was carried out.
Glass transition temperature (Tg) is an effective indicator of compatibility between poly-
mers [55]. Tg shows an endothermic shift. The peak is a phase transition of the first order.
The Tg curve CS/κC film has a large and broad absorption peak at 132.32 ◦C (Figure 4).
With the addition of GSE, the broad absorption peak gradually becomes the significant
absorption peak. The higher the GSE concentration, the more obvious the peak value and
the lower the corresponding temperature. This is due to the interaction of the GSE with the
polymer, which reduces the Tg peak and enhances the flexibility of the molecule [56]. The
Tg content of 5% GSE films was higher than the Tg content of CS/κC films. It shows that
the addition of GSE enhances the wear resistance and low temperature resistance of the
film and also enhances the flexibility of the molecular chain [57,58]. The Tg curves of all
the films showed a peak value, indicating that the films had a good compatibility. Aslaner
et al. [55] found that the addition of GSE had a strong interaction in the polymer matrix.
Similar results were obtained by Niazi et al. [56]. They found that Tg was reduced in the
prepared citric acid plasticized thermoplastic starch (TPS) films because the plasticizer
broke the hydrogen bonds between the starch molecules. Similar results were observed
in the study by Wang et al. [59]. The decrease in Tg may be due to the impairment of the
starch chain interaction by GSE and the increase of starch chain flexibility.

3.6. Biological Activity of the CS/κC-GSE Films

The higher the content of TPC in the film, the stronger the anti-oxidation ability of the
film, which can effectively delay food spoilage [60]. The content of TPC of the CS/κC-GSE
films is shown in Figure 5. The TPC of the CS/κC-GSE films was significantly higher than
that of the CS/κC film, and the higher the concentration of GSE, the higher the TPC content.
Similar studies have also confirmed that the addition of plant extracts can increase the TPC
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value of starch-based films [56,61]. Similar results were also found by Maroufi et al. [61]
who added green tea extract to fish gelatin-based films and found that the plant extract
effectively increased the TPC content of the films.
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films. a, b Values are given as mean ± standard deviation. Different letters in the same line indicate
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Free radical scavenging ability is also an important indicator for measuring the quality
of active packaging films [22]. Figure 6 shows that the CS/κC film of ABTS and DPPH
free radical scavenging rate were the lowest. When GSE was added to the CS/κC film,
the scavenging rates of the DPPH and ABTS radicals of the CS/κC film increased with
the increase of GSE concentration. Similarly, some studies have found that adding natural
extracts into the film can enhance the free radical scavenging rate of the film [24,27]. Roy
et al. [24] found that the addition of Alizarin and grapefruit seed extract to chitosan films
had similar results. They found that the main scavenging effect is the presence of phenyl
groups in alizarin and the presence of anthocyanin substances in the GSE. Similar findings
were also reported by Söğüt et al. [27]. They found that the GSE could inhibit the oxidation
of chicken breasts.
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Figure 6. Scavenging activities of the CS/κC complex films on DPPH and ABTS radicals. a–c Values
are given as mean ± standard deviation. Different letters in the same line indicate significantly
different (p < 0.05).

POV refers to measuring the concentration of hydrogen peroxide formed during the
initial phase of lipid oxidation [22]. The higher the POV value, the higher the oxygen
transmittance. Figure 7 shows the change of POV over 7 days of film storage. The POV of
each index was proportional to the heating time. The POV of coated lard was significantly
lower than that of uncoated lard, indicating that the composite film had an inhibitory effect
on lard oxidation. With the increase of GSE concentration, the inhibitory effect of GSE
was enhanced. This may be due to the microstructure and compactness of the composite
film added with GSE were affected. This blocks the passage of some oxygen and slows
down the oxidation rate of lard [62]. However, the POV of 5% CS/κC-GSE film on the
7th day was higher than that of the CS/κC film. The main reason for this difference was
that the surface roughness of the composite film was caused by GSE, which affected the
compactability and barrier properties of the composite film [31]. Similar conclusions were
reached by Rubilar et al. [38], they concluded that adding carvacrol and GSE to the film
could effectively increase the barrier performance of the film to oxygen.
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The antimicrobial properties of thin films are crucial for food packaging films. Today,
to judge the antimicrobial activity of film, we usually evaluate the antibacterial activity of
film samples by observing the size of the inhibitory region of food-derived bacteria [20,63].
In this experiment, E. coli and S. aureus were selected to determine the antibacterial activity
of the film. Table 3 shows the analysis of the antibacterial properties of the CS/κC films
and CS/κC-GSE films. The CS/κC film had a small inhibitory effect on S. aureus and E. coli
because of the effect of CA in the CS/κC film [64]. The antibacterial effect of GSE added to
CS/κC film on E. coli and S. aureus gradually increased, and the antibacterial effect was
positively correlated with the concentration of GSE. CS/κC-GSE significantly inhibited
foodborne bacterial growth during antimicrobial analysis because of the large number
of polyphenols present in the GSE. Polyphenols can not only increase the permeability
of cell film and cause the inhibition of energy metabolism but also interfere with the
growth and reproduction of microorganisms. So as to inhibit the growth of microorganisms
and improve the antibacterial performance of CS/κC composite film [65]. Similarly, Lim
et al. [66] found that the packaging films of GSE can also better delay the growth of L.
monocytogenes in soft cheese. Bof et al. [34] found that in the case of GSE, it was effective
against Gram+ and Gram− only when it was applied directly to the paper disks.

Table 3. Antibacterial activity of CS/κC and CS/κC-GSE films against E. coli and S. aureus.

Extract Concentration
Diameter of the Bacteriostatic Circle (mm)

Escherichia coli Staphylococcus aureus

CS/κC film 7.06 ± 0.03 d 7.02 ± 0.05 d

1% CS/κC-GSE film 9.62 ± 0.12 c 10.04 ± 0.10 c

3% CS/κC-GSE film 10.96 ± 0.28 b 11.02 ± 0.22 b

5% CS/κC-GSE film 12.78 ± 0.42 a 13.52 ± 0.66 a

a–d Values are given as mean ± standard deviation. Different lowercase letters in the same column indicate
significantly different (p < 0.05).

4. Conclusions

The CS/κC-GSE composite film was prepared by mixing biodegradable materials
such as GSE, κC and CS. Hydrogen bonds were formed between starch and GSE, which sig-
nificantly increased the elongation at break and WVP of starch film. There was higher total
phenolic content in CS/κC-GSE films compared to CS/κC films, whereas 5% CS/κC-GSE
film was the most effective on DPPH and ABTS. POV experiments showed that the oxida-
tion rate of oil was slowed down by the addition of GSE, and the antioxidant capacity of 5%
CS/κC-GSE film was significantly increased. The antibacterial activity of CS/κC-GSE film
against E. coli and S. aureus was higher than that of CS/κC film, and the antioxidant barrier
of the film was significantly increased by 5% GSE film. In conclusion, the CS/κC-GSE
film prepared in this study is non-toxic, biodegradable, and has good antioxidant and
antimicrobial properties. Therefore, the CS/κC-GSE film is not only a safe and environ-
mentally friendly active packaging material but can also be used as an active packaging
film to extend the shelf life of foods. In this study, CS/κC-GSE film active packaging is
only reflected in the good antioxidant properties. In the future, we will apply the film in
different meat products to provide a theoretical basis for the preservation of meat products
in the future.
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