
Citation: Dong, X.; Tian, Y.; Wang, F.;

Chen, C.; Wang, Y.; Ma, J. Gold-

Nanoparticle-Enhanced Radio-

Fluorogenic Hydrogel Sensor for Low

Radiation Doses in Clinical

Radiotherapy. Polymers 2022, 14, 4841.

https://doi.org/10.3390/

polym14224841

Academic Editor: Ki Hyun Bae

Received: 24 October 2022

Accepted: 8 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Gold-Nanoparticle-Enhanced Radio-Fluorogenic Hydrogel
Sensor for Low Radiation Doses in Clinical Radiotherapy
Xingyu Dong †, Yuan Tian †, Fengqing Wang, Chong Chen, Yunlong Wang * and Jun Ma *

College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China
* Correspondence: wylong@nuaa.edu.cn (Y.W.); junma@nuaa.edu.cn (J.M.)
† These authors contributed equally to this work.

Abstract: Radio-fluorogenic hydrogel dosimeters are urgently needed in radiotherapy for 3D dose
verification. However, few hydrogel sensors have been reported at low absorbed doses under 2 Gy
which meets the requirements of clinical practice. Here, we report a new type of gold-nanoparticle-
enhanced radio-fluorogenic agarose hydrogel with coumarin as the dose-responsive material. An
optimal composition of 3 wt% of agarose, 0.5 mM of gold nanoparticles, and 0.1 mM coumarin was
selected. The addition of gold nanoparticles enhanced the hydroxyl radicals generated from the
radiolysis of water, which can react with coumarin and generate fluorescent 7-hydroxy-coumarin and,
eventually, achieve low-dose verification of 0–2.4 Gy with a high linear correlation coefficient. These
findings provide an effective method for 3D dose verification, and will inspire the development of
other radio-fluorogenic sensing hydrogels as well.

Keywords: radio-fluorogenic hydrogel; gold nanoparticles; radiation dosimetry; radiotherapy

1. Introduction

Cancer mortality is showing an upward curve due to low prognosis and rapid metasta-
sis. Current clinical treatments for cancer include chemotherapy, immunotherapy, surgery,
and radiotherapy [1]. Radiation therapy is one of the most commonly used cancer treatment
methods. It uses high-energy ionizing radiation (X-ray or e-beam) to pinpoint and kill
cancer cells, and eliminate the tumor, by introducing DNA damage in tumor tissue [2].
In radiotherapy, dosage verification can effectively reduce the number of errors caused
by the planning software [3], hence decreasing the occurrence of radiation sickness. Dose
verification in clinical radiotherapy usually includes point dose verification [4–6], surface
dose verification [7,8], and three-dimensional dose verification [9]. In these methods, only
three-dimensional dose verification can accurately reflect the stereoscopic distribution of
absorbed doses in the target tissue during radiotherapy. Therefore, it has attracted increas-
ing focus over the last two decades, and is believed to be the future of dose verification.
Hydrogels possess tissue-equivalence and the potential to be changed into pre-specified 3D
shapes to meet the anatomical characteristics of the human body [10–12], thus making it the
best candidate for three-dimensional dosimetry dosimeters in clinical dosimetry verifica-
tion. In recent years, many works have been reported to prepare hydrogel dosimeters with
high sensitivity, accuracy, and spatial resolution, as well as independence of beam type,
energy, and dose rate [13]. However, challenges still exist in the application of hydrogel
dosimeters for low-dose range verifications.

Existing research has mainly concentrated on dosimeters based on radiation oxida-
tion/reduction of metal ions, such as Fricke, or ferrous–benzoic–xylenol (FBX) hydrogel
dosimeters [14–22]. At present, Fricke gel dosimeters are greatly hampered by their diffu-
sivity and lack of detection capability for low doses in clinical applications [16,23]. A gel
dosimeter using a reduction of HAuCl4 has been reported by Inamdar et al., and enables
dose measurement in the range of 0–2 Gy as well as dose visualization [18,21]. However,
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these hydrogel dosimeters cannot be preserved for an extended period of time. Another
popular product is the radiochromic hydrogel dosimeter. These dosimeters have the ad-
vantages of simple operation, no need for developing, as well as direct dose visualization;
however, these sensing gels have poor tissue-equivalence [24,25]. Radiation polymerization
hydrogel sensors need to be scanned by CT to visualize the absorbed doses, which is a
complicated and expensive procedure [26,27]. In recent years, fluorescent hydrogel sensing
materials have been proposed [28] which have the benefits of long-term storage stability,
good tissue equivalency, and simplified, low-cost visualization in comparison to previously
mentioned sensing hydrogels. Coumarin (COU) has an ability to respond to radiation
exposure, as it can be converted into fluorescent 7-hydroxy-coumarin (7-HCOU) by the
hydroxyl radical (·OH) caused by water radiolysis [29–31]. Due to its high solubility in
aqueous solution, simple chemical composition, and suitable excitation/emission spectra,
it has been seen as one of the potential sensing reagents for radiation dose verification. For
instance, coumarin 3-carboxylic acid solutions have been employed as liquid radiation sen-
sors [32,33], demonstrating good dose-response and long-term stability. Peter A. Sandwell
et al. developed a hydrogel sensor with gelatin as the matrix and coumarin 3-carboxylic
acid as the fluorescent response material, and investigated its radiation diametric charac-
teristics [34]. However, with a responsive range from 20–50 Gy, the sensitivity of these
hydrogels was not sufficient for the measurement of low dosages (0–2 Gy) which is the
range required by clinical fractionated radiotherapy.

Gold nanoparticles (GNPs) have been used to enhance radiation damage to cancer
cells [35–37]; this enhancement is considered to be caused by the increased yield of ·OH
in the radiolysis of water [38–40]. Thus, the addition of GNPs can increase the yield of 7-
HCOU and increase fluoresce intensity after exposure to radiation. As previously reported
in the literature [17], agarose is a functional polysaccharide, and the incorporation of GNPs
in agarose gels facilitated the templating of GNPs. As a common biomedical gel material,
agarose has the benefits of biocompatibility and ease of preparation, meeting the clinical
requirements of non-toxicity and convenience. At the same time, agarose, as a single hydro-
gel, does not react with COU, which is the dose-responsive material in our hydrogel sensor.
Meanwhile, the mechanical properties of this hydrogel are easily adjustable. Therefore, we
chose agarose hydrogel as the substrate material for this hydrogel sensor.

Here we report for the first time a highly sensitive GNP fluorescent hydrogel sensor for
low-radiation-dose measurements, which was created by combining GNPs with coumarin
as a responsive material and agarose as a substrate. This high-sensitivity hydrogel sensor
is proven to emit enhanced fluorescence after being irradiated, and can work as a more-
sensitive radiation dosimeter that can satisfy the measurement of dose-response up to
2 Gy. With the advantages of high sensitivity, accurate measurement, and biocompatibility,
this radiation-sensing hydrogel can greatly benefit three-dimensional dose verification in
clinical fractionated radiotherapy.

2. Materials and Methods
2.1. Materials

Coumarin (98%, AR) was purchased from Macklin Technology Co., Ltd., Shanghai,
China, agarose (gel strength 1%) was purchased from Labgic Technology Co., Ltd., Hefei,
China, HAuCl4·4H2O (AR) was purchased from Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China, Sodium citrate (99%, AR) was purchased from Sigma-Aldrich Co., Ltd.,
Japan, Commercial GNPs (0.1 mg/mL) in sizes of 30 nm, 50 nm, and 70 nm were purchased
from Beijing Zhongkeleiming Daojin Technology Co., Ltd., Beijing, China, and 96-well solid
white polystyrene assay plates (Costar 3915) were purchased from Corning Inc. Shanghai,
China, MilliQ water was used as solvent for all experiments conducted.
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2.2. Methods
2.2.1. Preparation of GNP Solution

A 199 mL volume of tetrachloroauric acid (0.25 mM in MilliQ water) was added
into a round-bottom flask and stirred at 100 ◦C for 15 min. After that, 1 mL of sodium
citrate solution (500 mM in MilliQ water) was quickly added to the round-bottom flask
and continued to react at 100 ◦C for 30 min, and eventually, a wine-red GNP solution was
obtained [41]. The size of the GNPs in the synthesized GNP solution was determined to be
about 20 nm by DLS (dynamic light scattering), TEM (transmission electron microscopy),
and UV absorption peak positions of GNPs (Figure S1, Supporting Information).

2.2.2. Preparation of Hydrogel Sensor

First, COU was dissolved in MilliQ water to obtain the final concentration of 25 mM
and heated until a clear transparent solution was obtained at 95–100 ◦C. Agarose, COU
solution (25 mM), and GNP solution (0.25 mM) were dissolved in 10 mL of water and filled
in a 25 mL volumetric flask; the final content of agarose, COU, and GNP in the solution
were 3 wt%, 0.5 mM, and 0.1 mM, respectively. Then, the mixed solution was heated
to 95 ◦C and stirred in a water bath for 15 min to obtain a transparent ruby color. Finally,
the hot mixed liquid was added to the 96-well black cell plate to form the sensing hydrogel.

2.2.3. Dose-Response of Hydrogel Sensor

Prepared sensing hydrogels were irradiated with X-ray tubes at dose rates of 0.7 Gy/min;
radiation doses were 0.7 Gy, 1 Gy, 1.3 Gy, 1.7 Gy, 2 Gy, and 2.4 Gy, and three parallel samples
were characterized at each dose. Subsequently, the fluorescence intensity of the radiated
hydrogels were analyzed by a multimode plate reader. In the fluorescence intensity analysis,
the excitation wavelength and emission wavelength were set as 340 nm and 460 nm, with a
gain value of 100. The complete process is shown in Figure 1A.
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Figure 1. Dose-response and principles of hydrogel sensors. (A) Flow diagram of the preparation
and irradiation process of a hydrogel sensor. (B) Schematic representation of the reaction of ·OH
with COU to form 7-HCOU. (C) Fluorescence intensity of COU solution (0.1 mM) being irradiated
for different doses. (D) Fluorescence intensity of mixed gel of COU (0.1 mM) and agarose (3 wt%)
being irradiated for different doses. (E) Schematic diagram of the pathway of ·OH production and
7-HCOU in a hydrogel sensor containing GNPs. (F) Top and front view of the hydrogel sensor.
(G) Fluorescence intensity with different excitation wavelengths of the hydrogel sensor containing
GNPs. (H) Fluorescence intensity of agarose (3 wt%) hydrogel sensor containing GNPs (0.5 mM) and
COU (0.1 mM).
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2.2.4. Devices and Measurements

All irradiation experiments were performed by energy irradiation of the samples
using an X-ray tube with a voltage of 45 kV and a current of 0.4 mA (Dalian Tynman
Technology Co., LTD, Dalian, China; TXR1010Ip50-50-A03). The dose rate of the ray tube
was 0.7 Gy/min. In order to completely expose the sample to irradiation, a hydrogel
sensor with a diameter of 8 mm was placed in the irradiation field of a 2.8 cm X-ray tube.
The fluorescence intensity of irradiated samples was recorded using a multifunctional
microplate reader (Tecan (Swiss) Trading Co., Ltd., Männedorf, Switzerland; INFINITE
200 PRO). Dynamic light scattering (DLS) of gold nanoparticles was obtained with a
nanoparticle size and zeta potential analyzer (Malvern, Worcestershire, UK, Malvern
Zetasizer Nano ZS9). TEM images of gold nanoparticles were measured by transmission
electron microscopy (Thermo Fisher Scientific, WalthamUSA, FEI Talos F200X G2). UV-vis
spectra of gold nanoparticles were measured using a UV-vis spectrophotometer (Shanghai
Mapada Instrument Co., Ltd., Shanghai, China; ULH 1906005). The tensile experiments of
agarose hydrogels were performed on an electronic universal testing machine (Shanghai
Hesheng Instrument Technology Co., Ltd., Shanghai, China; HS-3000A).

3. Result and Discussion
3.1. Dose-Response and Principle of Hydrogel Sensor

Radiation induced Fluoresce can be applied in radiotherapy to verify the absorbed
dose of tissues that are exposed to radiation. Currently, it is known that water molecules
produce ·OH when exposed to radiation, and COU can absorb the ·OH produced by the
radiolysis of water to yield 7-HCOU with fluorescent effects [29] (Figure 1B). Consequently,
a liquid sensor containing COU as the responsive material was created by dissolving
COU in ultrapure water, and it was found to have an excellent dose-response in the
low-dosage range (0–2.4 Gy) of fractionated radiation doses. (Figure 1C). As radiation
therapy techniques continue to advance, however, liquid sensors as tools for point dose
verification no longer match the accuracy and precision criteria of radiation therapy for
three-dimensional absorbed dose and dose gradient measurements. At the same time,
the composition of hydrogels is very similar to that of human tissue, which makes them
particularly suitable as human tissue equivalents for the development of radiotherapy
treatment plans. Therefore, one effective technique is to combine liquid sensors and
hydrogels to form a hydrogel fluorometric dosimeter. However, this hydrogel sensor failed
to realize linear response to low absorbed doses applied in the fractionated radiotherapy
dose range (0–2.4 Gy) (Figure 1D).

The situation was improved after GNPs were introduced into the COU fluorometric
hydrogel, for the reason that GNPs could increase the production of hydroxyl groups
during irradiation. The mechanism and pathways that cause hydroxyl enhancement and
fluorescence intensity are illustrated in Figure 1E [40]. In the first route, high-energy
photons in the X-ray can directly interact with water, resulting in the radiolysis of water
and the generation of ·OH; the GNPs can also participate in the process of radiolysis. When
the X-rays interact with the GNPs in the primary phase, GNPs can absorb radiation energy
to generate scattering electrons as well as Auger electrons at the same time, and the surface
plasmon resonance (SPR) effect can further increase the radiation energy deposition on the
GNPs. Then, the energy deposited is transmitted to the water, thus breaking the chemical
bonds in the water molecules and producing ·OH. The last and most important route is
known to occur in the structured water layer at the water–solid interface. As water is
structured at the surface of GNPs, there is an additional hydrogen bond formed in the
direction of dissociation, pulling along the H-OH bond and lengthening and weakening
the intramolecular bond. As these bonds could already be strained, the energy injection
could break them more easily. When X-rays interact with water, the energy produced by a
series of excitations diffuses into the structured water layer, leading to the breakdown of
the structured water and the production of more ·OH. Therefore, low-dose verification can
be achieved by adding GNPs in this COU-based hydrogel.
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The top and front views of the sensing hydrogel are shown in Figure 1F. The sensing
hydrogel measures the absorbed dose by the intensity of its fluorescence, which is affected
by the excitation and emission wavelengths in the measurement. The emission wavelength
of 7H-COU is known to be 460 nm, at which wavelength the fluorescence spectrum of the
hydrogel sensor was measured. The fluorescence intensity was measured with an excitation
wavelength of 340 nm (maximum excitation wavelength) and an emission wavelength
of 460 nm (Figure 1G). The fluorescence intensity of the hydrogel sensor shows a linear
relationship with its absorbed dose, ranging from 0 to 2.4 Gy with a linear correlation
coefficient (r value) of 0.99308 (Figure 1H). The hydrogel sensor is therefore capable of dose
verification in clinical fractionated radiotherapy.

3.2. Effect of GNP Concentration

We first evaluated the effect of GNPs on the dose-response of hydrogel sensors by
adding different concentration of GNPs into the agarose, where 0 mM, 0.025 mM, 0.05 mM,
0.1 mM, and 0.15 mM of GNPs were added into a mixed hydrogel of COU and agarose,
respectively. In the dose hydrogel without the addition of GNPs, there were very large
error bars in the fluorescence-absorbed dose-response, and no obvious linear relationship
between absorbed dose and fluorescence intensity was observed over a dose range of
0–2.4 Gy (Figure 2A). After the addition of GNPs to a mixed hydrogel of COU and agarose,
the fluorescence intensity increased with increasing dose over the dose range of 0–2.4 Gy,
with significantly smaller error bars. In Figure 2A–E, the linear relationship between dose
and fluorescence intensity of the hydrogel sensor is shown for different concentrations of
GNPs. It can be seen that the linear relationship between dose and fluorescence intensity
of the hydrogel sensor gradually increases as the concentration of GNPs added increases
(Figure 2F). When the concentration of GNPs in the hydrogel sensor reached 0.1 mM,
the linear relationship between dose and fluorescence intensity had reached a dosimetric
standard, after which the r value did not increase significantly by continuing to increase
the GNP concentration. (Figure 2E,F). This is due to the fact that when the concentration of
GNPs reaches 0.1 mM, the hydroxyl-enhancing effect at this dose is close to its maximum
and the 7-HCOU produced by radiation reaches a plateau. As a result, it is recommended
that the concentration of GNPs not be less than 0.1 mM in order to achieve optimal results.

However, as the concentration of GNPs increased, the fluorescence intensity of the
hydrogel sensor detected first increased and then gradually decreased (Figure 2G). The
enhanced fluorescence of the hydrogel sensor is due to the production of more hydroxyl
groups in the presence of GNPs, and therefore, more 7-HCOU which can emit fluorescence.
After that, the fluorescence intensity gradually decreased as the concentration of GNPs
continued to increase due to the increased concentration of GNPs significantly decreasing
the transparency of the hydrogel. The reduced transparency of the gel resulted in the
scattering of light, which led to a decrease in the fluorescence intensity detected. At the
same time, GNPs have a fluorescence-quenching effect on fluorescence [42], and as the
concentration of GNPs increases, its fluorescence-quenching effect is enhanced, leading
to a decrease in fluorescence intensity. When the concentration of GNP reaches 0.1 mM,
there is already a good dose-response between 0–2.4 Gy. Therefore, a GNP concentration of
0.1 mM is an optimal concentration for low-dose verification.

3.3. Effect of Coumarin Concentration

The coumarin hydroxyl-capture method is known to be a common method for the
quantitative determination of hydroxyl content [29,43,44]. It is mainly based on the in-
teraction between COU and hydroxyl groups to form 7-HCOU with a fluorescent effect,
which allows the fluorescence intensity of 7-HCOU to be measured to quantify the con-
tent of hydroxyl groups. Therefore, COU was used as a dose-responsive material for this
hydrogel sensor, based on the fact that COU produces different levels of 7-HCOU under
different radiation effects. Figure 3A–F show the linear relationship between absorbed dose
and fluorescence intensity at different concentrations of COU. It was observed that as the
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concentration of COU in this hydrogel sensor increased, the slope of the linear relation-
ship between dose and fluorescence intensity gradually increased, indicating that higher
concentration of COU can capture a higher portion of ·OH before their consumption or
recombination. In other words, the dose-response of this sensor is gradually enhanced with
increasing COU concentration (Figure 3G). Furthermore, at first, the fluorescence intensity
of this hydrogel sensor increased with an increasing COU concentration. However, this
improvement failed to continue after the COU concentration increased to be larger than
0.5 mM (Figure 3H). It is shown that continuing to increase the concentration of COU
beyond a concentration of 0.5 mM does not additionally increase the amount of 7-HCOU
produced. Therefore, a COU concentration of 0.5 mM is optimal.
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Figure 2. Effect of GNP concentration on the fluorescence intensity and dose-response of the hydrogel
sensor. (A–E) The relationship between dose and fluorescence intensity of the hydrogel sensors with
0 mM, 0.025 mM, 0.05 mM, 0.15 mM, and 0.1 mM of GNPs. (F) The effect of GNP concentration
on their linear fitting coefficients. (G) Effect of GNP concentration on fluorescence intensity at an
irradiation dose of 2.4 Gy. In (A–G) the concentration of COU in the sensor is 0.5 mM and the mass
fraction of agarose is 3 wt%.
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Figure 3. Effect of COU concentration on the fluorescence intensity and dose-response of hydrogel
sensors. (A–F) The relationship between dose and fluorescence intensity with 0.2 mM, 0.3 mM,
0.4 mM, 0.5 mM, 0.6 mM, and 0.7 mM of COU. (G) The effect of COU concentration on the slopes of
their linear fitting. (H) The effect of COU concentration on the fluorescence intensity of the hydrogel
sensor. The concentration of GNPs was 0.1 mM and the mass fraction of agarose was 2 wt%.

3.4. Effect of Agarose Mass Fraction

It is known that agarose melts into a liquid at high temperatures (>90 ◦C), adopts
a random coil structure, and then cools to form a hydrogel at room temperature. The
hydrogel forms a helical bundle by hydrogen bonding [45]. Hydrogel sensors with agarose
mass fractions of 1 wt%, 2 wt%, and 3 wt% were prepared to explore the effect of agarose
mass fraction on the dose-response of such hydrogel sensors. The fluorescence intensity
of the hydrogel sensor that was not irradiated gradually increased with the mass fraction
of agarose added (Figure 4A). This indicates the presence of a fluorescence background
for this hydrogel sensor. However, this fluorescence background did not have an effect
on the dose-response of the sensor. Meanwhile, when the mass fraction of agarose was
1 wt% and 2 wt%, the slope of the hydrogel sensor was relatively low, and the mechanical
properties (Figure S2A, Supporting Information) could not even support the molding of
hydrogel; when the mass fraction of agarose was 4 wt%, the brittleness of the agarose hy-
drogel increased, obviously, and it was easy to break (Figure S2B, Supporting Information);
meanwhile, when the mass fraction of agarose was 3 wt%, there was a good dose-response
between absorbed dose and fluorescence intensity (Figure 4B). Therefore, 3 wt% agarose
was chosen as the basis for the hydrogel sensor.
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on fluorescence intensity and fitting slopes. The concentration of GNPs was 0.1 mM, and that of COU
was 0.5 mM.

3.5. Effect of GNP Size

It is well known that the radiation enhancement of GNPs strongly depends on the size
and concentration of nanoparticles as well as radiation energy [46]. Therefore, the effect of
size of GNPs on dose-response should be considered. GNPs with sizes of 30 nm, 50 nm,
and 70 nm were purchased and used as sensitizers in the mixed hydrogel of coumarin
and agarose. As shown in Figure 5, the dose-response of GNPs with different sizes was
observed. It was found that the slope of the dose–response curve of the hydrogel sensor
was the largest when the GNP size was 30 nm, indicating that the dose-response of the
sensor was slightly improved when the GNPs size get smaller.

3.6. Radiation Sensitivity of Hydrogel Sensors

The sensitivity of the hydrogel sensor was observed by the limit of detection (LOD). It
is known that the limit of detection is calculated by the following equation [47]:

LOD = 3 σB/b

where σB is the standard deviation of the fluorescence intensity to the unirradiated sample,
and b is the slope of the dose–response curve. Calculations revealed that the LOD in the
hydrogel sensor without the addition of gold nanoparticles was 1.5 Gy, which can meet the
requirements of highly sensitive dose verifications. With the addition of gold nanoparticles,
the LOD of hydrogel dosimeters was significantly decreased, which is listed in Table 1.
In the best case, the LOD can reach 0.3 Gy, which is in the forefront, comparing to other
previously reported hydrogel sensors [13].
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Table 1. Limit of detection of the hydrogel sensor.

GNP Concentration
(mM) Beam Linear Range (Gy) LOD

0 X-ray 0–2.4 1.5
0.025 X-ray 0–2.4 1.3
0.05 X-ray 0–2.4 0.8
0.1 X-ray 0–2.4 0.3
0.15 X-ray 0–2.4 0.4

4. Conclusions

In the current work, we prepared a hydrogel sensor with GNPs and COU as low-
radiation dose-responsive materials using a very simple synthetic method, where the
addition of GNPs plays a critical role in refining the linear correlation of its response. The
hydrogel provides a method for dose-determination by measuring the fluorescence intensity
of the generated 7-HCOU. The best dose-response was obtained in the hydrogel sensor with
a concentration of 0.5 mM COU, 3 wt% agarose, and 0.1 mM GNPs, and obtained a detect-
dose range of 0–2.4 Gy. All of these indicate the suitability of this approach in detecting
radiation doses delivered during an individual fraction (typically 2 Gy) in fractionated
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radiotherapy. In conclusion, we believe that the GNP-enhanced radio-fluorogenic hydrogel
dosimeter has great potential and provides a new route for clinical three-dimensional
dose verification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14224841/s1, Figure S1: Relevant characterisation of the
synthesised GNPs; Figure S2: Effect of mass fraction of agarose hydrogels on gel properties.
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