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Abstract: Electrical conductivity and piezoresistivity of carbon nanotube (CNT) nanocomposites
are analyzed by nodal analysis for aligned and random CNT networks dependent on the intrinsic
CNT conductivity and tunneling barrier values. In the literature, these parameters are assigned
with significant uncertainty; often, the intrinsic resistivity is neglected. We analyze the variability
of homogenized conductivity, its sensitivity to deformation, and the validity of the assumption
of zero intrinsic resistivity. A fast algorithm for simulation of a gauge factor is proposed. The
modelling shows: (1) the uncertainty of homogenization caused by the uncertainty in CNT electrical
properties is higher than the uncertainty, caused by the nanocomposite randomness; (2) for defect-
prone nanotubes (intrinsic conductivity ~104 S/m), the influence of tunneling barrier energy on
both the homogenized conductivity and gauge factor is weak, but it becomes stronger for CNTs
with higher intrinsic conductivity; (3) the assumption of infinite intrinsic conductivity (defect-free
nanotubes) has strong influence on the homogenized conductivity.

Keywords: carbon nanotubes; electrical conductivity; intrinsic conductivity; tunneling conductivity;
piezoresistivity; gauge factor

1. Introduction

Prediction of the electrical properties of nanocomposites, in particular with carbon
nanotubes (CNTs) as a filler, includes simulations of homogenized conductivity and piezore-
sistivity (change in the homogenized conductivity with deformation of nanocomposite),
given the volume fraction and architecture of CNTs and their electrical properties. Nodal
analysis of the conductive resistor network formed by CNTs above the percolation threshold
in an insulative matrix is a well-established method for the simulation of the homogenized
electrical conductivity of CNT-filled polymers. The resistor networks model [1] was applied
to CNT nanocomposites in early 2000 [2–4]. In the next decades up to the present, these
models were further developed in numerous publications, mostly based on random genera-
tion of a CNT assembly with its subsequent transformation into a resistor network (to name
a few, [5–15]) or with alternative formulations of charge flow [16] and micromechanics-type
calculations of homogenized conductivity [17–19]. The resistor network approach was fur-
ther used as a basis for models of piezoresistive behavior for CNT nanocomposites [20–27].
Availability of such models opened a way for multi-scale simulations of CNT nanocompos-
ites [28] and the optimization of sensing simulations based on complex machine learning
algorithms [29], in line with micromechanical toughness optimization methods [30,31].

As in any simulation, the adequacy of any property prediction depends on the ad-
equacy of input data. For the conductivity of CNT nanocomposites at a given volume
fraction of the filler, the input includes (1) geometrical characteristics of CNTs (single- or
multiwalled and the wall count, outer diameter, and length distribution), (2) their waviness,
(3) geometrical characteristics of the CNT assembly (orientation distribution, and level of

Polymers 2022, 14, 4794. https://doi.org/10.3390/polym14224794 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14224794
https://doi.org/10.3390/polym14224794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-9800-2869
https://doi.org/10.3390/polym14224794
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14224794?type=check_update&version=1


Polymers 2022, 14, 4794 2 of 26

agglomeration), and finally, (4) the electrical characteristics of CNTs and their contacts.
Apart from the number of walls and the CNT diameter, all these parameters for a given ma-
terial are neither readily available from manufacturer’s datasheets, nor easily measurable,
nor, at least, fully evaluated. Therefore, input data create a very considerable uncertainty,
which should be accounted for in the results of calculations (i.e., propagation of error).

The present paper is dedicated to the electrical characteristics of CNTs and their
contacts. It analyzes the uncertainty of the choice of parameters, including the intrinsic
conductivity of CNTs themselves (up to an assumption of zero resistance of CNTs, the
so-called ballistic limit) and tunneling conductivity of their contacts, plus the uncertainty of
the following nodal analysis. This complex uncertainty has not been given proper attention
in the literature, including works cited above; the authors provide reasons for their choice
of a certain dataset but very rarely discuss possible deviations from the chosen values.
Study [32] conducted an analysis of prediction variations in a simplified model of randomly
oriented CNT networks depending on the chosen values of the intrinsic and tunneling
conductivity. Recently published research [33] presents a statistical analysis of electro-
mechanical properties of CNT nanocomposites, including conductivity and piezoresistivity,
using micromechanical modelling of parallel arrays of CNTs for a wide range of tunneling
energy barrier values and for a fixed value of the intrinsic CNT conductivity.

We will analyze (1) the range of variations for the conductivity tensor and its de-
formation sensitivity resulting from the nodal analysis and caused by the uncertainty of
parameters, namely the intrinsic and tunneling CNT conductivities, and (2) the credibility
limits for the assumption of the zero CNT intrinsic resistivity for two cases of the nanocom-
posite internal structure: isotropically oriented assembly of CNTs, resulting in an isotropic
conductivity tensor, and aligned CNTs, leading to anisotropic conductivity.

Numerical simulations in this work are accomplished using Matlab version R2020a.

2. Uncertainty in Electrical Conductivity as Input Data
2.1. Intrinsic CNT Conductivity
2.1.1. Physical Phenomena

Theoretically, the resistances of an ideal single-walled CNT (SWCNT) and a multi-
walled CNT (MWCNT) are quantum (the so-called ballistic electron transport) which do
not depend on the length of the conductive segment if this length is smaller than the mean
free path of electrons. The latter is theoretically estimated as ~1 µm for SWCNTs and tens
of micrometers for MWCNTs [34]. The typical distance b between CNT contacts along a
CNT in a random CNT assembly can be estimated as b = d/2Vf [35,36], where d is the
CNT diameter, and Vf is the volume fraction. For typical values d ~ 0.01 µm and Vf ~ 0.01,
this equation gives b ~ 0.5 µm, which is shorter than 1 µm of the free path. This suggests
that the conductivity along CNT segments between two contact points should be taken as
ballistic, and there exist experimental data supporting this statement [37–39]. However, the
reliability of these measurements has been strongly criticized. Studies [40,41] argued that
the used liquid–metal contact method gives “false positive” results for the ballistic nature of
conductance. The theory of quantum resistance assumes the absence of the CNT structural
defects. This assumption, although better justified on nano-scale than on macro-scale, still
oversimplifies the description of the reality since CNT defects are experimentally observed
and well-studied [42–44]. The presence of defects causes electron scattering and, thereby,
the degradation of their mean free path length. For example, in [44] the mean free path
length in MWCNTs was measured to be just 4.7 nm, which is a thousand times shorter
than the theoretically suggested value for the ideal defect-free case. The authors of [44]
suggested that the presence of defects cause a diffusive, Ohmic type of resistance, linearly
increasing with the increase in the length of a conducting segment.

2.1.2. Implementation in the Nodal Analysis

In the nodal analysis of CNT networks, there exist two approaches (see the references
below in this section). The first assumes the Ohmic proportionality of the resistance of a
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CNT segment to its length, taking both intrinsic and tunneling resistances into account.
The second approach assumes infinite conductivity along the CNTs, constructing a network
of only the inter-CNT contacts.

With the first approach, conductance GCNT of a CNT segment of length lseg is calculated as:

GCNT = gintr
A

lseg
(1)

where A is the CNT cross-sectional area, and gintr is the volumetric conductivity of the CNT.
The area is most often taken as the full area of the cross section, A = πd2/4, where d is the
outer CNT diameter. This definition is also often used when processing experimental data.
In several experimental and modelling works, the presence of the internal hole is accounted
for in calculations of the area A. Using the empirical link between the CNT diameter and
the number of walls Nw = (d[nm]−1) [45], the difference between the tubular and the full
cross-section area can be estimated; it is in the range 10–20% for 5 < d < 35 nm. In the
following, the full area of the cross section will be used; hence, gintr has the meaning of the
effective volumetric conductivity; if a literature source relied on the tubular cross section,
the data were re-calculated.

Figure 1a shows the results of measurements of gintr reported by [46] (measurement on
single SWCNTs), [47,48] (single MWCNTs), and [44,49,50] (MWCNTs, aligned assembly).
Even in the same series of experiments, the difference in gintr can be as large as 50 times.
There exists a weak negative correlation between gintr and the CNT diameter (experimental
data in Figure 1a); one can speculate that this is the result of a higher defect content in
larger diameter CNTs. The CNT manufacturers do not provide data on CNT conductivity
in their datasheets; an exception is MWCNTs NC7000, where the value, shown in Figure 1a
(“internal test method” is referenced) is given in [51].
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The reality is even more complex. Any individual CNT will have conductivity affected by chi-
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Figure 1. Uncertainty in electrical conductivity input data: (a) experimental data on intrinsic CNT
conductivity, SWCNT (open symbols [46]), and MWCNT (filled symbols [44,47–51]); round points:
experiments with single CNTs; squares: experiments with aligned CNTs; diamond: manufacturer’s
datasheet; crosses: input data used in various modelling works; (b) tunneling conductance of a contact
between two CNTs in function of the distance between them; results for SWCNTs and MWCNTs are
calculated with Equations (2)–(4).

The popular choices of gintr for analyses of CNT networks are round values 103 S/m [33],
104 S/m [3,4,6–9,22], and 106 S/m [10,15]. In these sources, no detailed arguments were
given for the choice of this parameter, apart from a reference to the general range of it
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(through three decimal orders of magnitude). Studies of the influence of this choice have
not been conducted, apart from the work [32], where the range 103–106 S/m is explored.

The reality is even more complex. Any individual CNT will have conductivity affected
by chirality and defects, creating a distribution of gintr. All of these distributions are
unquantified, to the best of authors’ knowledge.

As mentioned above, in a number of modelling studies [12,24,26,27,52–55], the conduc-
tance of CNT segments in a network was taken to be infinite, with the network conductance
defined by the contacts (tunneling currents). The differences in homogenized conductivity
calculated with this assumption and with finite conductivity of CNTs were not assessed in
detail.

Based on the review in this subsection, we will investigate differences in the nodal
analysis of a CNT network for the levels of the effective CNT conductivity between 104 S/m
and 106 S/m. The level of 108 S/m will be taken as very high, producing almost the same
results as an assumption of infinite conductivity.

2.2. Tunneling Conductance of CNT Contacts
2.2.1. Simmons’ Formula

The contact conductance between CNTs is governed by the fluctuation-induced tun-
neling electron transport [56] and depends on the probability of electrons to overcome the
electric potential barrier between CNTs. The tunneling conductance can be described with
Simmons’ formula [57], which for low voltage on a contact is [58]:

Gtunn = G0
τ

s
d2

32
exp(−τs) (2)

where s is the distance between the CNT surfaces, s ≥ smin, d is the CNT outer diameter,
G0 = 2e2/h = 7.722·10−5 S (e = 1.602·10−19 C is electron’s charge, h = 6.626·10−34 J·s is
Plank’s constant), and

τ =
4π
√

2m∆E
h

(3)

where m = 9.109·10−31 kg is the electron’s mass, and ∆E is the potential barrier.
Application of the low voltage variant of Simmons’ formula is justified by the fact

that the dependence of tunneling conductivity on contact voltage is felt only if the voltage
applied to the nanocomposite is extremely high, of the order of 1 V/µm and higher [59].

The value of smin is usually taken as 0.34 nm (van der Waals distance). It can be argued
that adhesion between two nanotubes can decrease their minimal separation; for SWCNTs,
the minimal distance caused by the adhesion was estimated as 0.25 nm [60].

The potential barrier ∆E is shown by [58] to have different values for the contact
distances below and above the “polymer cutoff distance”, assumed to be 0.6 nm for
polyethylene (PE) [58]. The same value, 0.6 nm, was used in [6,7,11,13] for epoxy as well
and, in the absence of better estimations, is employed in the present calculations also.
The difference between the potential barrier values below and above the polymer cutoff
distance is attributed in [58] to a result of atomistic modelling. For a wider gap between the
CNTs, the PE molecule penetrates into the gap, causing the decrease in the barrier height
due to the resonance between tails of CNT wave functions and frontier orbitals in the PE
molecule and leading to that for a charge that is easier (more probable) to transfer over the
polymer-filled gap than over a vacuum gap. The values of ∆E are calculated in [58] for PE
as ∆E1 (s < 0.6 nm) = 4.5 eV and ∆E2 (s > 0.6 nm) = 3.0 eV. Other authors provide values for
∆E1 down to 0.5–2.5 eV [61] and up to 5 eV [62].
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2.2.2. Number of Conductive Channels

Equation (2) is based on the approximation of an equivalent parallel-plate capacitor of
area d2 and separation s. An alternative formulation given by [63] and further used, for
example, in [6,7,11,13], is:

Gtunn = G0M exp(−τs) (4)

where M is the number of channels for tunneling. M = 2 for SWCNTs and M = 400–500 for
MWCNTs [64]. Value M = 450 is generally employed in calculations [6,7,11,13]. Equalizing
coefficients in Equations (2) and (4) at s = 0.34 nm and ∆E = 1–5 eV, the equivalent values
of M for a SWCNT with d = 1.6 nm can be computed to be in the range 2–5, and for an
MWCNT with d = 15 nm to be in the range 200–500. Therefore, Equation (2) provides the
results close to the simplified Equation (4) but explicitly accounting for the dependency
of coefficient M on the inter-CNT distance and CNT diameter. In the present calculations,
Equation (2) will be used.

For numerical experiments in the present work, we will investigate the differences in
homogenized conductivity and deformation sensitivity of nanocomposites, which originate
from the difference in assumed ∆E1 values, in the interval 1–5 eV. In addition, it will be
assumed that ∆E2 = ∆E1/1.5, and the polymer cutoff distance is 0.6 nm (Figure 1b).

3. Geometrical and Electrical Models
3.1. Geometrical Model
3.1.1. Variants of CNT Geometry

Two geometrical arrangements of a wavy CNT assembly are considered here: (1)
isotropically randomly oriented, uniformly spatially dispersed SWCNTs (designated “R-
SW” below) and (2) aligned MWCNT assembly (A-MW), with parameters given in Table 1.
Both types of nanocomposites were previously experimentally studied by the present
authors [65–69].

Table 1. Parameters of the modelled CNT nanocomposites.

Parameter R-SW A-MW

Data source [65] [66,68]

CNT outer diameter, nm 1.6 8.0

CNT length

Distribution type Weibull constant

Mean length, µm 2.0 20

Weibull modulus 3.0 n/a

Weibull scale, µm 2.24 n/a

CNT orientation

Distribution type uniform aligned

CNT shape

Maximal curvature, 1/µm 5 5

Maximal torsion, 1/µm 5 5

Volume fraction variants 0.5%; 1% 2.5%; 7%

3.1.2. The Algorithm

The algorithm generating the geometrical model is described in [70,71] and is illus-
trated in Figure 2. It uses random choice of the direction of a generated CNT path segment,
as is widely used in the literature, for example, in [72,73], but with certain constraints, as
described below. Figure 2a shows a scheme of the nth segment of a CNT with length lseg,
and orientation defined by the azimuthal angle ϕn and polar angle θn. To generate the
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aligned assembly, the angles ϕn and θn are defined in relation to the global Cartesian coor-
dinate system of the assembly with axis z corresponding to the direction of forest growth.
For generation of a random assembly, the angles are defined in the local coordinate system
with axis z corresponding to the direction of the previous segment, where the first segment
was oriented according to the uniform orientation distribution. The angles ϕn and θn are
random values. They are first calculated as ϕn = rand(0,2π), cosθn = randN(1, cos(σθ)),
where rand(a,b) is a random generator of the uniform distribution on [a,b], randN(a, σ) is a
random generator of the normal distribution with mean a and standard deviation σ, and σθ

is a characteristic polar angle deviation, which is calculated based on the length of the CNT
segment and the maximal curvature. The randomness of segment orientation is restricted
by the following conditions:

(1) Maximal path curvature and torsion are limited: κ ≤ κmax; τ ≤ τmax. This type
of control was introduced recently in [71] that demonstrated, apart from adequate
representation of CNT shapes, that these conditions suppress the segment length
dependence of the homogenized conductivity. If for generated ϕn and θn the curvature
and torsion do not satisfy these conditions, ϕn and θn are generated again;

(2) Correlated random angles: the sequences of ϕn and θn pairs are auto-correlated along
the CNT path, with the assumed correlation length of 100 nm (see [70]).
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Figure 2. Geometrical model: (a) parameters of a CNT segment; central paths of CNTs in (b) RVE
for R-SW, VF = 1%; (c) RVE for A-MW; VF = 7%, 3D view (left) and view from the end of the
Z-axis (right).

For the random assembly, the origins of CNT paths are distributed uniformly in
the model volume, and initial orientations are distributed isotropically. For the aligned
assembly, CNTs’ origins are placed randomly and uniformly on a plane, using a Poisson
random process.

For both cases, geometric periodicity is assumed; the model is confined within a
representative volume element (RVE). If a CNT crosses an RVE face, then it is continued
from the opposite face until the full length of the CNT is reached. The number of CNTs
in the model is defined based on the prescribed volume fraction (VF). Figure 2a,b show
random instances of (a) R-SW and (b) A-MW RVEs.

3.2. Electrical Model: Homogenized Conductivity

Once an RVE is created, the geometrical network of a CNT assembly is analyzed for
contacts between CNTs and then transformed into a set of nodes, connected by electrical
resistances/conductances, which are assigned to the tunneling contacts according to Equa-
tions (2)–(3) and to the CNT sections between the contacts according to Equation (1). The
electrical boundary conditions are periodical. The homogenized conductivity tensor is then
calculated using the homogenization theory outlined in Appendix A. The identification of
contacts and nodal analysis are described in more detail in Appendix B.
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3.3. Electrical Model: Piezoresistive Response
3.3.1. Principles of the Model

At deformation, distances s of the tunneling contacts, Equation (2), are changing,
causing the change in the tunneling part of conductivity. When modelled, care should
be taken to apply correct values of potential barriers. As discussed in Section 2.2, in the
undeformed state, the potential barrier ∆E1 is applied at distances shorter than the polymer
cutoff distance 0.6 nm, while at larger distances the value of the potential barrier is switched
to ∆E2. The reason behind this is that at distances between two CNTs larger than 0.6 nm,
polymeric chains begin to penetrate into this gap, while at shorter distances it is prevented
by van der Waals’ forces. When we apply deformation, the distances between CNTs change.
However, since we consider only elastic polymers with no or little plasticity, we assume
that no polymer interpenetrates the opening gaps, and the values of the potential barriers
must be evaluated with the reference to the undeformed configuration. The following rules
are followed:

(Rule 1): If at deformation the gap between two CNTs is opening and exceeds the
polymer cutoff distance, the potential barrier still remains ∆E1.

On the contrary, when the gap is not opening, but closing, we expect van der Waals’
forces to push the polymer out of this gap, thereby changing the potential barrier. Hence:

(Rule 2): If at deformation the gap between two CNTs is closing and becomes shorter
than the polymer cutoff distance, the potential barrier switches to ∆E1.

Finally, due to the lack of matrix plasticity, if CNTs are separated by a large distance,
by default filled with polymer, no conformational changes, no matter how close moving
one CNT to another, can form new contact points. Therefore, the third rule is:

(Rule 3): Pairs of contact points, at which tunneling is happening, stay unchanged
at deformation, and in the deformed configuration, no search for new contact points is
performed.

In the present algorithm, no contacts between CNTs are severed or moved along
CNTs; only distances between CNTs change. In addition, no new contacts are created.
Therefore, our modelling approach would be inapplicable to changes in the system of
contacts in a dry filament assembly (e.g., buckypaper in case of CNT filaments or non-
woven fibrous material without bonding). On the contrary, in our research, we are dealing
with impregnated composite with quite limited applied strain range, where the presence of
solid matrix prevents free creation of new contacts.

3.3.2. Calculation of Gauge Factor

The piezoresistive gauge factor (GF) for uniaxial tension deformation ε in direction i is
defined as

GF =
1
ε

gii − g′ii(ε)
gii

(5)

where gii and g′ii(ε) are ii diagonal components of the homogenized conductivity tensors
before and after the deformation.

The range of GF values found in the literature is very wide. Review [74] and later
publications, e.g., [65,75], provide the following data. For non-aligned CNT distributions,
with weight percentage of CNT below 2%, the most often observed values are in the range
1–7. Some authors give GFs up to 20–30 [76,77]. For aligned CNTs, the range of GFs for
deformation in the direction of the CNT alignment is 0.04–10.

The simplest approach to model the deformational sensitivity is to consider dilatational
deformational state in tension, assuming that all distances s of the tunneling contacts,
Equation (2), change proportionally to the applied deformation (iso-strain) as s’ = s(1 + ε).
In this case, the result can be estimated without the necessity of numerical simulations.
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Indeed, since all distances are increased proportionally and the values of potential berries
are unchanged (rule 1), all tunneling conductances at contacts will drop proportionally to

exp(−τs(1 + ε))

exp(−τs)
s

s(1 + ε)
=

exp(−τsε)

1 + ε
(6)

Hypothesizing that the main contribution to the tunneling part of conductivity comes
from distances shorter than the polymer cutoff distance (which will be proved later by
Figure 3b), we can assume the value of τ in Equation (6) as being determined by ∆E1 = 4.5
eV, i.e., τ ~ 22 nm−1. For distances s between 0.34 and 0.6 nm and with ε = 0.01, we expect
Equation (6) to be in the range from 0.87–0.93 with the GF of the tunneling part to be in the
range from 7 to 13. This is the total GF in case of infinite intrinsic conductivity. For non-zero
intrinsic resistivity, the GF will be lower. These values correspond to the experimental
observations.
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distances along CNTs between the contacts for R-SW (c) and A-MW (d) cases; mean values are shown
in the legends.

However, assuming a proportional increase in all tunneling distances, one assumes
homogeneous deformation of a nanocomposite despite orders of magnitude difference
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in stiffness between CNTs and polymer. Therefore, for accurate analysis, conformational
changes of CNTs must be considered. To avoid 3D finite-element simulations (see, e.g., [22]),
we propose a simplified procedure, which calculates the change of the tunneling contact
distances under the following assumptions:

1. Average deformation is transferred unchanged to sub-micrometer scale deformation
elements around the contact points of CNTs;

2. Length of a CNT does not change during the deformation.

The details of the applied deformation algorithm are given in Appendix C. The reader
is referred to [78] for details of validation of the piezoresistivity model against finite
elements calculations.

After new tunneling distances are calculated, the corresponding tunneling conduc-
tances are re-assigned.

4. Results and Discussion
4.1. Random RVE Instances
4.1.1. RVE Sets and Orientation Distribution

Using the algorithm described in Section 3, the RVE sets are generated for R-SW and
A-MW input data: 33 RVE instances of R-SW and 100 of A-MW. Examples of the RVEs are
shown in Figure 2b,c. Potential differences are applied to all pairs on the opposite RVE faces
in a sequence. After homogenized conductivity is calculated, this produces 99 independent
values for principal conductivity tensor components for isotropic R-SW (33 RVE instances
times 3 directions of the potential difference application), 100 and 200 independent values
for Z-conductivity and X/Y-conductivity, respectively, for transversely isotropic A-MW,
with Z being the direction of the CNT alignment.

The orientation tensors a for two particular RVE realizations, shown in Figure 2b,c,
calculated based on averaging orientations of CNT segments, are

R-SW : a =

 0.346 −0.005 −0.014
−0.005 0.318 −0.004
−0.014 −0.004 0.336



A-MW : a =

 0.037 −0.0003 −0.013
−0.0003 0.037 −0.0008
−0.013 −0.0008 0.926

 (7)

The tensor for R-SW corresponds to the isotropic orientation, and for A-MW, the
orientation is concentrated near the z-axis, with the average angle of deviation estimated as
acos(

√
a33) = 15.7◦. These orientations are characteristic for all calculated RVE instances,

with diagonal tensor components for R-SW deviating from 1/3 not more than by 0.02 and
the average deviation angle for A-MW lying in the range 14–16◦.

4.1.2. Distribution of CNT Contacts

The conductivity of an RVE depends on contact distances between CNTs, which, in
turn, define the tunneling resistances of contacts and the conductivity of CNT segments
between the contacts. These characteristics are shown in Figure 3.

Figure 3a shows the number of CNT contacts nc per 1 µm3 in the random RVEs as a
function of CNT volume fraction VF (an additional value VF = 2% is added to the calculated
variants of R-SW for comparison). The simulated values are compared in Figure 3a with a
theoretical formula from [35,36]:

nc =
16
π2 I

VF2

d3
CNT

k, where k =
dCNT + 0.0014 µm

dCNT
(8)

Here, dCNT is the CNT diameter, and I is an integral depending on the orientation
distribution function; for isotropic distribution (R-SW), I = π/4, and for the distribution
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defined by the orientation tensor from Equation (7) for A-MW, I = 0.23, calculated using
the formulae given in [35] for aligned wavy fibers. The correction coefficient k accounts
for the fact that a contact is counted in the present simulations if the distance between
CNT surfaces is in the range shorter than 1.4 nm, whilst in the theory, this contact distance
is supposed to be zero. Comparison of the simulated values (dots in Figure 3a) with the
theoretical trends shown by dashed lines, shows good correlation between the two. This
allows us to conclude that the procedure for generation of CNT paths is consistent with
general rules of geometry of random filament assemblies.

The scatter in the number of contacts for different random RVE realizations is minor
(below ±10%) in all cases apart from the case of A-MW at low VF = 0.025; in the case of
A-MW, the contact probability is defined by a combination of waviness-induced deviation
of the CNT path from the straight vertical average line and a distance between these lines
of adjacent CNTs, which is comparable to waviness deviations for low VF.

Each CNT contact is characterized by a contact distance between CNT surfaces, s.
When the contacts are calculated, the distances dcentr between the CNT centerlines (paths)
are determined. A contact defines a pair of points on the centerlines such that distance
dcentr between them is smaller than the contact threshold of dCNT + 1.4 nm. The reader is
referred to [71] for details of the contact calculations. Then, the distance between the CNT
surfaces is calculated as

s = max(smin, dcentr − dCNT) (9)

where smin is the minimal van der Waals distance between two CNTs (see Section 2.2). The
majority of the contacts have dcentr < dCNT + smin, hence s = smin. The relative number of
contacts with s > smin increases with s because of the increase of cylindrical volume with
radius (dCNT + s, dCNT + s + ∆s), where ∆s is the width of the histogram bin.

4.1.3. Distribution of the Tunneling Conductances

Typical distributions of tunneling conductances of contacts are shown in Figure 3b for
R-SW and A-MW cases. The overwhelming majority of contacts, 70–90%, are characterized
by the maximal conductance, corresponding to the distance smin. The frequency of the
histogram bins increases with the decrease in conductance value, corresponding to the
increase of the relative number of contacts with higher s. The overall larger tunneling
conductance in the MW case in comparison with SW corresponds to Equation (2) and
curves shown in Figure 1b.

The tunneling resistance is compared with the mean resistance of CNT sections be-
tween the contacts (a distance between the contacts along a CNT). The distribution of
lengths of these sections is shown in Figure 3c,d. Clearly, the mean values 60–90 nm for
R-SW and 180–250 nm for A-MW are much larger than the characteristic defect-free length
4.7 nm [44]. Hence, CNT sections between two tunneling connections cannot be treated as
defectless with the ballistic electron transport.

The mean inter-contact CNT resistance Rmean
CNT is calculated inverting Equation (1) with

lseg = bmean, where bmean is the mean distance between two contacts along a CNT. The results
of these calculations are plotted in Figure 4 (solid lines) as a dependency Rmean

CNT ∼ (gintr)
−1

for R-SW and A-MW cases, respectively. The levels for the tunneling resistance R0.34
tunn,

which is an inversion of the tunneling conductance given by Equations (2) and (3), are
plotted on the same graphs for the range of ∆E1 = 1–5 eV and the minimal distance between
the CNT surfaces of 0.34 nm (which corresponds to the overwhelming portion of the
contacts, see Figure 3b). Depending on the gintr value, the relation between two resistances
can be different. For gintr ~ 104 S/m, Rmean

CNT > R0.34
tunn, and the CNT, intrinsic resistance

defines the homogenized resistivity/conductivity. On the other end of the studied range,
for gintr ~ 108 S/m, we have Rmean

CNT � R0.34
tunn, and the tunneling resistance is the defining

factor. In the middle of the gintr range, both resistances are comparable.
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Figure 4. Comparison between the resistance of a typical CNT segment between two contacts for
two values of VF (solid lines) and the tunneling resistance in the contact for s = 0.34 nm for two values
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4.2. Plan of Numerical Experiments

To investigate the influence of the electrical conductivity input data on the homoge-
nized RVE conductivity and deformation sensitivity, these parameters were calculated for
random RVE instances, according to the plan of numerical experiments shown in Table 2.
This plan investigates uncertainty of calculated performance characteristics of nanocompos-
ites depending on (1) the uncertainty of setting the intrinsic conductivity of CNTs coupled
with variation of the potential barrier for tunneling conductivity and (2) the uncertainty
of the minimal (van der Waals) distance between CNTs (affected or not affected by CNT
compression). The reference point of the plan is taken as

gintr = 104 S/m; ∆E1 = 3 eV; smin = 0.34 nm

which is the set of parameters most used in the modelling publications.

Table 2. Plan of numerical experiments, values in bold correspond to the reference point.

Parameter Variation Type Intrinsic CNT
Conductivity, S/M

Potential Barrier
∆E1, eV

Minimal CNT
Distance, Nm

Varying intrinsic CNT
conductivity and potential

barrier for tunneling
conductivity

103 104 105 106

107 108

∞

1
3
5

0.34

Varying minimal CNT
distance 104 3 0.25

4.3. Uncertainty in Homogenized Conductivity
4.3.1. Conductivity at the Reference Point of the Plan for Numeric Experiments

Table 3 and Figures 5 and 6 present the results of calculation of conductivity tensor for
R-SW and A-MW configurations at the reference point of the plan for numerical experi-
ments. Conductivity tensor G =

[
Gij
]

(for its definition see Appendix A) is represented by
the following group of values:
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Table 3. Homogenized conductivity tensor components at the reference point of the numerical plan:
gintr = 104 S/m, ∆E1 = 3 eV, and smin = 0.34 nm.

Type VF Diagonal Components, S/M
Off-Diagonal Components, S/M

Signed Values Absolute Values

R-SW
0.5% 12.7 ± 0.33 (2.5%) −0.007 ± 0.290 0.217 ± 0.195 (87%)

1% 28.6 ± 0.55 (1.9%) 0.030 ± 0.422 0.334 ± 0.258 (77%)

A-MW

along CNTs across CNTs

2.5% 217 ± 1.44 (0.66%) 3.03 ± 0.23 (7.5%) −0.0015 ± 1.20 0.816 ± 0.874
(107%)

7.0% 630 ± 0.86 (0.13%) 13.8 ± 0.32 (2.3%) −0.140 ± 2.11 1.47± 1.52 (103%)

Notes: ± means standard deviation; the value in brackets gives coefficient of variation (not given for signed
values of the non-diagonal components as their mean is close to zero).
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Figure 5. Conductivity tensor components for R-SW, histograms of the distributions: diagonal
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the numerical plan: gintr = 104 S/m; ∆E1 = 3 eV; smin = 0.34 nm; sampling size ≥ 99 for all cases.
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for all cases.
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R-SW: This configuration is isotropic. Hence, all 3 diagonal components (G11, G22,
G33) in all 33 random realizations of the RVE form a single sampling of 99 values; the same
is valid for all 3 off-diagonal components (G12, G13, G23), which form a single sampling also
with 99 values.

A-MW: This configuration is transversely isotropic. In all 100 random RVE realizations,
conductivity along CNTs, G33, forms a sampling with size 100, conductivity across CNTs
(G11, G22) forms a sampling with size 200, and for off-diagonal components (G12, G13, G23)
a sampling with size 300 is formed.

The results of calculations present the expected dependency G(VF): with the CNT
volume fraction above the percolation thresholds, both for R-SW and A-MW configurations,
there is an increase of the homogenized conductivity with the increase of VF, but inside
the same decimal order of magnitude of the conductivity values. This observation is
typical post-percolation behavior well above the percolation threshold. The homogenized
conductivity of A-MW in the CNT direction and across it differs by about 60 times.

The conductivity values, calculated using the reference point of the numerical plan
(gintr = 104 S/m; ∆E1 = 3 eV; smin = 0.34 nm), are within one order of magnitude difference
with the experimentally measured values for the R-SW system [65] and the A-MW sys-
tem [69]. The comparison with the experiment will be discussed more in detail after the
variability of modelling with variation of the input is investigated.

The scatter of the modelled conductivity values, shown in Table 3 and Figure 5, is
caused by random RVE geometry variations. For the diagonal components, the coefficient
of variation is just a few percent. This stability of the homogenized conductivity for volume
fractions well above the percolation thresholds for both systems corresponds to a stability
of the number of contacts, which is seen in Figure 3a. The general tendency can be observed:
the denser the percolation network, the lower the scatter.

4.3.2. Dependency of the Homogenized Conductivity on the CNT Intrinsic Conductivity

Figure 7 shows results of simulations of the homogenized conductivity G (namely,
different components of its tensor) for varying CNT intrinsic conductivity gintr. The other
two variables of the numerical plan are kept constant at the reference values: ∆E1 = 3 eV,
smin = 0.34 nm.
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Figure 7. The homogenized conductivity as a function of the assumed intrinsic conductivity of
CNTs, at two levels of the CNT volume fraction: (a) R-SW, diagonal components of the conductivity
tensor; (b) A-MW, along CNTs; (c) A-MW, across CNTs. The dashed lines show homogenized
conductivity calculated assuming infinite conductivity of CNTs. The points show conductivity values,
corresponding to different RVE random realizations (sampling size ≥ 99 for all cases). ∆E1 = 3 eV,
smin = 0.34 nm, the lines show mean values. The horizontal boxes show the homogenized conductivity
range measured for R-SW [65] and A-MW [69] experimentally. The colors of the lines, points, and
boxes correspond to CNT volume fractions, as shown on the graphs.
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Figure 7 also shows a range of experimentally measured conductivity for R-SW and
A-MW systems, reported by [65,69]. These ranges correspond to the results of the nodal
analysis if the following values of gintr are assumed:

R-SW: gintr = (1–2)·103 S/m

A-MW: gintr = (0.7–2)·104 S/m

Varying the intrinsic conductivity by one decimal order of magnitude leads to a
change in the homogenized conductivity also by one order of magnitude in all modelled
configurations (isotropic R-SW, A-MW along and across the bundle). For the intrinsic
conductivity range 103–106 S/m, the dependency G(gintr) is linear in log–log coordinates of
Figure 7 and is described by a power law

G ∝ (gintr)
p

where power p equals 0.833 ± 0.005 for diagonal components of R-SW, and 0.982 ± 0.007
(along CNTs), 0.827 ± 0.005 (across CNTs) for A-MW (least square fit). It is noteworthy
that all three values are below unity (the difference is much higher than the scatter range)
which can be expected from 3D percolation below the upper critical dimension. If gintr
reaches high values of 107–108 S/m, the growth of the dependency G(gintr) is slowed with
the values of G bounded by a maximum corresponding to the infinite intrinsic conductivity
of CNTs (ballistic electron transport), shown by dashed lines in Figure 7a–c.

The strong influence of gintr on the homogenized conductivity, evidenced by Figure 7,
means that accurate choice of gintr plays a paramount role in the qualitative success
of modelling.

As shown in Section 2.1 (see Figure 1a), the experimentally measured values of intrinsic
conductivity differ up to two orders of magnitude in different experiments. Experiments
with single CNTs reported conductivities around 106 S/m for MWCNTs and near 108 S/m
for SWCNTs. Experiments with CNT bundles lead to lower values around 104 S/m.

In numerical modelling (crosses in Figure 1a), in several cases, for example, [10,14,15],
the value of 106 S/m was assumed. At the same time, [10] stated that this value, based on
CNT manufacturer’s datasheet (Nanocyl point in Figure 1a), leads to a gross overestimation
of the calculated conductivity in comparison with experimental data. Authors in [14,15]
gave a reference to [47] (see Figure 1a) as a foundation for the choice gintr = 106 S/m for
their modelling of carbon fibers/CNT hybrid composites. However, when comparing
their calculations with experimental data on nanocomposites [79], with a good correspon-
dence, [14,15] used a lower value gintr = 105 S/m.

Extremely high values, in the order of gintr = 108 S/m, measured by [46] for single
SWCNTs (see Figure 1a), when put in the nodal analysis for an R-SW system (Figure 7a),
led to the homogenized conductivity up to 103–104 S/m, VF = 0.5–1.0%. This is two to
three orders of magnitude higher than values measured in [65,80–82].

Apparently, there is a contradiction between the results for intrinsic conductivity of
CNTs obtained with experiments on single particles and with the correlations between
experimentally measured conductivities of nanocomposites and their numerical counter-
parts. CNT aggregation and rope/bundle formation [83], absent in numerical studies, can
cause the discrepancy between the predicted and experimentally measured conductivity of
a nanocomposite, leading to the underestimation of the intrinsic conductivity. Therefore,
we may hypothesize that in case of a detailed RVE modelling, with both agglomeration
and bundling phenomena, values of the order of 106 S/m for MWCNTs and 108 S/m for
SWCNTs may need to be implemented. However, implementation of these values in the
modelling of as if perfectly dispersed and distributed particles (which corresponds to the
present study) will certainly lead to the overestimation of the resulting conductivity.

Finally, for ordinary CNT production, the use of infinite conductivity looks like an
oversimplification in spite of the considerable spread of this assumption [12,24,26,27,52–55].
Infinite CNT conductivity leads to the homogenized values several orders of magnitude



Polymers 2022, 14, 4794 15 of 26

higher in comparison with calculations implementing gintr = 104 S/m. However, the
justification of the infinite intrinsic CNT conductivity can be argued by special conditions
of CNT manufacturing, providing defect-free structure.

4.3.3. Dependency of the Homogenized Conductivity on the Tunneling Resistance
Parameters and Minimal Inter-CNT Distance

Figure 8a–c show dependency of the homogenized conductivity G(∆E1) on the poten-
tial barrier value ∆E1 of the tunneling conductance, Equations (2) and (3), for R-SW and
A-MW cases at two levels of CNT volume fraction VF, and for three levels of the intrinsic
CNT conductivity gintr, at smin = 0.34 nm. Behavior G(∆E1) for different VFs is very similar:
the homogenized conductivity decreases with the increase of ∆E1, the trend defined by the
decrease of the tunneling conductance with increase of ∆E1, see Figure 1b.
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Figure 8. The homogenized conductivity as function (a–c) of the assumed potential barrier ∆E1 for
the tunneling conductivity, with smin = 0.34 nm, and (d–f) of the minimal distance between CNTs, with
∆E1 = 3 eV, at three levels of the CNT intrinsic conductivity gintr and two levels of the CNT volume
fraction: (a,d) R-SW, diagonal components of the conductivity tensor; (b,e) A-MW, along CNTs;
(c,f) A-MW, across CNTs. The points show conductivity values corresponding to different RVE
random realizations (sampling size ≥ 99 for all cases); the lines show mean values. The horizontal
boxes show the homogenized conductivity range measured for R-SW [65] and A-MW [69] experi-
mentally. The colors of the lines, points, and boxes correspond to CNT volume fractions, as shown on
the graphs.

The slope of G(∆E1) depends on gintr. For gintr = 104 S/m, there is almost no depen-
dency of G on ∆E1: it equals ~10% change in the range ∆E1 = 1–3 eV. The CNT segment
resistance is higher than the tunneling resistance in this case (see Figure 3c,d), and the latter
(defined by ∆E1) only weakly influences the homogenized conductivity.

For gintr = 106 S/m, the dependency G(∆E1) becomes more pronounced. In the range
∆E1 = 1–3 eV, the homogenized conductivity changes by about five times for R-SW and
A-MW across CNTs; in these two cases, the number of contacts on a percolating path is
considerable. For gintr = 106 S/m, the CNT segment resistance and the tunneling resistance
are in the same range and affect the homogenized conductivity collectively. For A-MW
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along CNTs, the change of G(∆E1) over ∆E1 = 1–3 eV is minor, about 20%. This is explained
by the fact that in the longitudinal direction of the bundle, there are only 2–3 contacts
on the percolating path between two RVE sides, and the conductivity is defined by gintr,
not tunneling.

The maximal slope of G(∆E1) is reached at extremely high gintr = 108 S/m, which is
almost equivalent to the infinite CNT conductivity assumption (see Figure 7). For this case,
the CNT segment resistance is much lower than the tunneling resistance, Figure 4. The
resistance of a percolating path is defined by resistances of tunneling contacts included
in the path and hence strongly depends on ∆E1. G(∆E1) changes over ∆E1 = 1–3 eV by
10 (A-MW) to 50 (R-SW) times.

Figure 8d–f show dependency of the homogenized conductivity G(∆E1) on the minimal
inter-CNT distance smin, for R-SW and A-MW cases at two levels of the CNT volume
fraction VF and for three levels of the intrinsic CNT conductivity gintr, at ∆E1 = 3 eV; smin
has two levels: smin = 0.34 nm, which is van der Waals distance, and 0.25 nm, given by [60]
as a result of CNT lateral compression. Change in smin is equivalent to change of

√
∆E1 (see

Equations (2) and (3)); hence, there is no surprise that the curves in Figure 8d–f show the
behavior very similar to Figure 8a–c. Varying the minimal inter-CNT distance is felt only in
the case of very high gintr.

A practical conclusion can be drawn from our modeling observations. If non-infinite
intrinsic CNT conductivity is assumed, with a value from the range 104–106 S/m, then the
choice of ∆E1 value (in the range 1–5 eV) does not significantly affect the homogenized
conductivity. In contrast, if there are reasons to assume infinite (very high) intrinsic CNT
conductivity (defectless CNTs), then the choice of ∆E1 affects the calculated homogenized
conductivity strongly. The similar conclusions were reached in studies of conductivity
of CNT films [84] and for random CNT assemblies with Vf < 2% in [32], but further
experimental observations are desired since it contradicts experimental evidence and
theoretical arguments on the generally prevailing role of the tunneling conductivity [12,85].

The relative influence of the intrinsic conductivity and tunneling barrier parameters
plays an important role when temperature dependence of nanocomposites conductivity is
being discussed. Both random and aligned nanocomposites exhibit negative temperature
coefficients of resistance (TCR), with resistivity decreasing by 5–15% when temperature
increases from room temperature to 400–500 K [84–88]; the same behavior was noted in
nanoplatelet networks [89,90]. This decrease in resistivity is governed by temperature
dependence of both factors defining the homogenized conductivity: the tunneling resis-
tance [85,90,91] and the intrinsic conductivity [34,91], combined with the thermal expansion.
Further experimental evidence and a model of such processes are yet to be discovered.

4.4. Uncertainty of Deformation Sensitivity
4.4.1. Deformation Sensitivity at the Reference Point of the Numerical Plan

Table 4 and Figure 9 present the results of calculation of the gauge factors GF for R-SW
and A-MW configurations at the reference point of the plan for numerical experiments,
with uniaxial tension strain ε = 0.01. For A-MW, two cases are considered: deformation
along and across aligned CNTs. In all cases, the direction of applied voltage coincides
with the direction of the applied deformation (piezoresistivity response is calculated in the
direction of the deformation).

The calculated gauge factor values with parameters at the reference point are within
the range of the experimentally observed GFs [65,74,75], as illustrated in Figure 9d. In
contrast to dilatational loading (6), dependencies GF(VF) appear. The calculated trend
GF(VF) is decreasing both for R-SW and A-MW (deformation along CNTs), which also
corresponds to the literature data [65,76].
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Table 4. Gauge factors, Equation (5), for unidirectional tension deformation 0.01 in Z-direction, the
reference point of the numerical plan: gintr = 104 S/m, ∆E1 = 3 eV, smin = 0.34 nm.

Type VF Gauge Factor GF

R-SW
0.5% 8.18 ± 0.57 (7.0%)

1% 4.07 ± 0.21 (2.5%)

A-MW, along CNTs
2.5% 7.32 ± 1.34 (18.3%)

7.0% 2.91 ± 0.27 (9.3%)

A-MW, across CNTs
2.5% 4.89 ± 0.62 (12.6%)

7.0% 5.69 ± 0.28 (4.9%)
Note: ±means standard deviation; the value in brackets gives coefficient of variation.
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For A-MW deformation across CNTs, we observe anomalous behavior when the in-
crease in VF does not lead to significant change in GF (the distributions of GFs overlap
for VFs 2.5% and 7%). Calculations show that in this case, contrary to R-SW and A-MW
deformed along CNTs, the relative change of the tunneling distances ds = (s’ − s)/s is dis-
tributed in a narrow range, ds < 1 (s’ is the tunneling distance after the deformation, s is the
distance in the undeformed configuration). This is not far from a dilatational deformation,
described by Equation (6), for which the change of conductivity is independent of VF. For
all other cases (R-SW and A-MW along CNTs), the distributions of ds are much wider, with
ds up to 100.

The calculated GF values show low scatter, with the coefficient of variation of a
few percent, similar to the homogenized conductivity values (Table 3 and Figure 5). An
exception is A-MW, Vf = 2.5% case, where the GF distribution for both cases along/across
CNTs is wide. It is probably a result of a comparatively low number of inter-CNT contacts
in this case (see Figure 3a); hence, there is a possibility for large variations of a percolating
network. However, the general tendency is clear: the denser the percolation network
is, and, thereby, the farther we are from the percolation threshold as a point of a phase
transition, the less fluctuating behavior we observe. This tendency is related to systems
with phase transitions: the closer the critical point (percolation threshold in this case) is,
the more fluctuating behavior of a system becomes [92]. The decrease of the coefficient
of variation for the gauge factor with the increase of the CNT volume fraction was also
predicted in [33] for the aligned CNT case.

4.4.2. Dependency of Gauge Factors on Intrinsic CNT Conductivity and
Tunneling Resistance

Figures 10 and 11 show dependency of the gauge factors GF on the assumed pa-
rameters: the intrinsic conductivity of CNTs and potential barrier ∆E1 for the tunneling
conductivity. GF grows both with the increase of gintr and with the increase of ∆E1. The
dependency on the intrinsic CNT conductivity (Figure 10) can be explained by the fact
that with the increase in gintr the homogenized resistivity is more strongly determined by
the tunneling resistances, sensitive to deformation and, thereby, providing higher GFs.
The second dependency, on the value of the potential barrier (Figure 11), is explained by
the fact that tunneling resistances, determining the piezoresistive GF, increase exponen-
tially with the increase in the square root of ∆E1. The higher ∆E1, the steeper the slope
of this dependence is, providing higher GFs. In contrast to the dependency G(gintr,∆E1),
at low gintr = 104 S/m the change of ∆E1 in the range 1–5 eV changes GF by a factor 2–5
both for R-SW and A-MW, along and across CNTs. For G(104 S/m, ∆E1), this factor was
1.1–1.2 (Figure 8).
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Figure 10. The gauge factors as a function of the assumed intrinsic conductivity of the CNTs, at
two levels of the CNT volume fraction: (a) R-SW; (b) A-MW, along CNTs; (c) A-MW across CNTs.
The points show conductivity values corresponding to different RVE random realizations; the lines
show mean values; ∆E1 = 3 eV; smin = 0.34 nm.
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Figure 11. The gauge factors as functions of the assumed potential barrier ∆E1 for the tunneling
conductivity, smin = 0.34 nm, at three levels of the CNT intrinsic conductivity gintr and two levels of the
CNT volume fraction: (a) R-SW; (b,c) A-MW: along CNTs (b) and across CNTs (c). The points show
conductivity values, corresponding to different RVE random realizations; the lines show mean values.

It is interesting to note that GF values for R-SW and A-MW across CNTs are quite
close one to another (within ~25% difference), even in spite of the difference in VF.

Influence of the uncertainty of the input parameters on GF, calculated with the nodal
analysis of CNT networks, can be characterized as follows:

- For the same ∆E1, a change of GF is approximately proportional to a change of
log(gintr);

- For the same gintr, a change of GF is approximately proportional to a change of ∆E1.

5. Conclusions

We have conducted numerical experiments to quantify the uncertainty of the nodal
analysis results for modelling of homogenized electrical conductivity tensor and defor-
mation gauge factor for two types of CNT-based nanocomposites: randomly dispersed
SWCNTs and aligned MWCNTs in a polymer matrix. The uncertainty is caused by the
uncertain choice of the input parameters for analysis: the intrinsic conductivity of CNTs
gintr and potential barrier ∆E1 for the tunneling resistance. The volume fraction (VF) of
CNTs was chosen above the percolation threshold for all cases (0.5% and 1% for R-SW; 2.5%
and 7% for A-MW).

The results of numerical experiments can be summarized as follows:

1. The scatter of the homogenized conductivity and gauge factor, caused by the random-
ness of a CNT assembly, is limited to few percent of coefficient of variation (CV) and
is much smaller that the variations which may be caused by the difference in assumed
values of the input parameters.

2. The influence of the assumed intrinsic conductivity on the homogenized conductivity
and gauge factor is strong. For the intrinsic conductivity range 103–106 S/m, the
dependency G(gintr) is nearly linear (to the power-law dependence with the exponent
being close but below unity). For higher gintr values, its growth is asymptotically lim-
ited by the conductivity corresponding to the case of infinite intrinsic conductivity of
CNTs. The assumption of infinite CNT intrinsic conductivity may bring unrealistically
high simulated values for the homogenized conductivity.

3. The choice of the CNT intrinsic conductivity ~104 S/m brings the simulated homoge-
nized conductivity and gauge factor within one order of magnitude closeness to the
experimentally measured values; a better choice asks for tuning of this parameter.

4. The influence of the assumed potential barrier ∆E1 of the tunneling resistance on
the homogenized conductivity is relatively weak for gintr ~ 104–106 S/m (limited to
tens of percent variation for ∆E1 in the range 1–5 eV). The influence of ∆E1 becomes
stronger if there are reasons to assume higher CNT intrinsic conductivity values.



Polymers 2022, 14, 4794 20 of 26

5. The influence of both gintr and ∆E1 on the simulated gauge factor is strong, about one
order of magnitude span for the studied range of the input parameters.

Strong dependencies of the homogenization results on the input parameters stress
the necessity to evaluate a possible range of particular simulation results on the parameter
choice. The findings may affect methods for optimization of nanocomposites morphology,
highlighting the need to use fuzzy target functions.
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Appendix A. Homogenization of Anisotropic Conductivity

A periodic RVE is a volume a1 × a2 × a3, with vectors of periodicity (translational
symmetry) ak = akek (no summation). To calculate the effective anisotropic conductivity of
the medium, the RVE is placed in an average electric field E. The potential difference on
face k of the volume will be

(∆U)k = E·ak (A1)

Ohm’s law in anisotropic medium can be written as

j = gE (A2)

where j is current density vector, [j] = A/m2, E is electrical field vector, [E] = V/m, and g
is conductivity tensor, [g] = S/m. To find all components of the conductivity tensor, three
cases of electrical field are considered, n = 1,2,3:

En
k = E0δn

k (A3)

where E0 is the scale of field, [E0] = V/m, and δn
k is Kronecker’s delta.

For these cases
(∆U)n

k = E0δnkak (no summation) (A4)

If In
k are currents through face k of the volume for case n, then the current density

vector components are jnk =
In
k

Ak
, where Ak is the area of face k.

Then jnk = gklEn
l = E0gklδ

n
l = E0gkn = E0gnk and

gnk =
1

E0
jn
k =

1
E0

In
k

Ak
(A5)

Currents In
k are calculated using nodal analysis.
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Appendix B. Nodal Analysis

For calculation of the homogenized conductivity of an RVE (see the synopsis of the
homogenization process in Appendix A), the geometric network of a CNT assembly is
transformed into a set of nodes connected with electrical resistances/conductances as
illustrated in Figure A1. First, all contact points between the CNTs are found: two CNTs
are in contact if their surfaces are closer than 1.4 nm. Then, a set of nodes of the electric
circuit is defined. The set includes boundary nodes, which correspond to intersections of
CNTs with the RVE faces (nodes 1 and 2 in Figure A1a); external voltage is applied to these
nodes. The set also includes internal node pairs: each inter-CNT contact creates two nods,
one on one CNT in contact, another on another CNT (node pairs 3,4 and 5,6 in Figure A1a).
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Figure A1. Nodal analysis: (a) node pairs at contacts between CNTs, and 4, 5, and 6, boundary nodes,
1 and 2, and currents with the applied voltage; (b) the structure of the matrix of Kirchhoff’s Equations
(corresponds to the A-MW case shown in Figure 2c).

After the nodes are defined, a linear system of equations (“Kirchhoff’s Equations”) for
nodal analysis is created, following [93]. The unknowns in these equations are currents in
boundary nodes Ib, b = 1, . . . ,Nb/2, where Nb is the number of boundary nodes on all pairs
of faces, Ub for b = 1, . . . ,Nb are electrical potentials at the boundary, and Ui, i = 1, . . . ,Ni
are electric potentials at the internal nodes. The unknowns are organized in vector
X = [. . . Ib . . . . . . Ub . . . . . . Ui . . .]T . For the case shown in Figure A1b, Nb = 3590 and
Ni = 14,891 − 5385 = 9506.

The following equations form Kirchhoff’s system:

1. Nb equations for sum of currents at boundary nodes. For the nodes shown in
Figure A1a,

I + GCNT
13 (U3 −U1) = 0

−I + GCNT
25 (U5 −U2) = 0

(A6)

where GCNT
pq is intrinsic conductance of a CNT section between nodes p and q, calcu-

lated with Equation (1). The currents in these two equations are equal because of the
periodicity of boundary conditions.

2. Nb/2 equations expressing periodic boundary conditions of the applied electrical field.
For the nodes shown in Figure A1a

U2 −U1 = U = (∆U)n
k (A7)

where (∆U)n
k is the potential difference for the applied voltage, Equation (A4).
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3. Ni equations for the sum of currents at internal nodes. For the nodes shown in
Figure A1a,

GCNT
13 (U1 −U3) + GCNT

53 (U5 −U3) + Gtunn
43 (U4 −U3) = 0 (A8)

where Gtunn
pq is tunneling conductance of a CNT between nodes p and q, calculated

with Equation (2).

In total, there are Ni + 3Nb/2 equations for the same number of unknowns. The
structure of the matrix K of Kirchhoff’s linear system KX = RHS is shown in Figure A1b.
The system is large, and matrix K is represented as a sparse matrix in Matlab. Matrix K
is singular, but Matlab function mldivide, or X = K\RHS, in most cases solves the system
successfully. If it fails (returning some of the X components as NaN), the potential of one of
the boundary nodes can be put to zero; after this, the operation X = K\RHS returns correct
values.

After Kirchhoff’s system is solved, the full current In
k (see Equation (A5)) can be

calculated as the sum of currents at the boundary nodes on face k, and the homogenized
conductivity components gnk are calculated with Equation (A5).

A similar procedure is used for the case when the intrinsic conductivity of CNTs is
assumed to be infinite. In this case, each CNT is treated as a node of the nodal analysis,
which has an unknown potential; these nodes are connected with tunneling conductances.
The sum of currents in Kirchhoff’s Equations in this case is the sum of currents in the
connectors plus boundary currents in case the CNT in question crosses the RVE boundary.

Appendix C. Change of Tunneling Contact Distances

Consider uniaxial tension of a nanocomposite, with applied deformation ε. In an R-SW
case, the direction of the tension is irrelevant as the material is isotropic, and the Z-direction
is chosen. In an A-MW case, the modelling is performed for tension along and across
the CNT Z-direction. Value 0.3 is assumed for Poisson’s ratio of the nanocomposite [94].
Calculations of the distances of tunneling CNT contacts proceed as follows (see schematics
in Figure A2, the case of uniaxial deformation in Z direction is chosen):

1. Contact C between two CNTs comprises two contact points C1 and C2 on the centre-
lines of these CNTs.

2. The change of a tunnelling distance in contact C between two CNTs is defined by
deformation of a “deformation element” (Figure A2a), which comprises sections (P11,
P12) and (P21, P22) of the CNTs with length one-half of the inter-contact CNT lengths
between subsequent contacts on both sides from contact C on each of the CNTs.

3. The deformation element is approximated by two straight lines (Figure A2b), with
contact points belonging to these lines, lengths of the lines equal to the lengths of CNT
sections ||P11, P12|| and ||P21, P22||. The orientation of the lines is the same as of

vectors
→

P11, P12 and
→

P21, P22. The positions of contact points on the lines are the same
as on CNT sections in terms of distance from contact points to the ends of sections.

4. Average deformation state of all deformation elements is the same and is defined by
the applied deformation:

ε11 = −νε, ε22 = −νε, ε33 = ε (A9)

This is the assumption based on the fact that CNT lengths are much longer than the
size of deformation elements resulting in transfer of global deformation value to local
strain state. Moreover, we rely on ensemble averaging hiding rare cases deviating from
the average. Losing the accuracy of 3D finite element simulations by replacing them with
schematic representation, we gain computational effectiveness. The reader is referred to [78]
for details of validation of the piezoresistivity model against finite elements calculations.

5. Conformal deformation of CNTs in the deformation element has two components:
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a. Displacements of the centres of gravity (CG) of the CNT sections in the element
according to deformation Equation (A9), the section length is not changed, see
Figure A2b, and

b. Rotation of the CNT sections around the displaced centres of gravity (CG’); the
rotation increases the Z-distance between the ends of each CNT section by a
factor (1 + ε) and preserves the section length, see Figure A2c

6. The new tunnelling distance is the distance defined by the new positions of contact
points C”1 and C”2, which result from the conformal deformation of the CNTs.
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