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Abstract: In order to increase the thermal stability of olefin polymerization precatalysts, new tita-
nium(IV) complexes with diolate ligands differing in the degree of steric hindrances were synthesized
from readily available precursor (±)camphor. The structures of the complexes 1–2 were established by
X-ray diffraction. Complexes 1–4 in the presence of an activator {EtnAlCl3-n + Bu2Mg} catalyzed the
synthesis of UHMWPE with an Mv up to 10 million and a productivity of up to 3300 kg/molTi·atm·h.
The obtained polymers are obviously characterized by a low density of macromolecular entanglement,
which makes it possible to use the solid-phase method for their processing. The mechanical character-
istics of the oriented UHMWPE films had a breaking strength up to 2.7 GPa and an elastic modulus
of up to 151 GPa. The precatalysts 1–4 were also active in ethylene/1-octene copolymerization. The
comonomer content was in the range of 1.4–4.6 mol%. The use of a rigid linker and an increase in the
steric load of the diolate complexes ensured the thermal stability of the catalytic system in the range
of 50–70 ◦C.

Keywords: Ti(IV) complexes; OO-ligand; thermal stability; ultra-high molecular weight polyethylene;
polyolefin elastomers

1. Introduction

The development of catalysts for the (co)polymerization of olefins based on transition
metal complexes is one of the most advanced areas of modern organometallic chem-
istry [1–4]. However, research in this field will undoubtedly continue due to the constant
need for new polymer materials. The value of new catalytic systems is determined not
only by their productivity and the properties of the resulting polymers, but also by the
technological parameters of the polymerization process, including the ability to operate in
an acceptable temperature range.

Titanium-alkoxide complexes are perhaps one of the most accessible and inexpensive
precatalysts. We know that titanium alkoxides in the presence of organoaluminum com-
pounds are capable of catalyzing the polymerization of conjugated dienes [5–7] as well
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as the oligomerization of ethylene. The best-known example is the alphabutol process,
wherein the combination of Ti(OR)4–AlEt3 is employed for the highly selective dimerization
of ethylene to 1-butene [8].

At the same time, simple titanium alkoxides and more sophisticated alkoxo–titanium
complexes have rarely been used for the polymerization of olefins. The ability to polymerize
ethylene in the presence of activators traditional for the Ziegler–Natta catalysis is possessed
by titanium–alkoxo complexes containing additional chlorine atoms or other donor atoms.
Thus, the dichlorotitanium-alkoxide complex [(HOEt)Ti(µ-OEt)OEt(Cl)2]2 (Compound I,
Chart 1), activated with MAO, catalyzes ethylene polymerization with an activity of up
to 750 kg/mol h and propylene (up to 87 kg/mol h). This precatalyst unexpectedly
displays a single-site behavior [9]. The alkoxo complexes II–III activated with MAO
or AlEt3 catalyze the formation of polyethylene along with a percentage of oligomers.
The bischelated complex III appears to be the most active [10]. A titanium(IV)–dimeric
complex IV stabilized by a benzoin derivative in the presence of MAO catalyzes ethylene
polymerization with an activity up to 300 kg/mol·atm·h as well as the copolymerization of
ethylene with norbornene The catalytic systems are characterized by a long lifetime and
the ability to produce high molecular weight linear PE and vinyl-type PNB [11]. One of
the few examples of homoleptic and heteroleptic Ti(IV)–alkoxo complexes V–VI capable
of polymerizing ethylene without the formation of oligomeric products is given in [12].
In the presence of Et3Al2Cl3, these compounds catalyzed the formation of low molecular
weight PE.
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As was shown by Y. V. Kissin et al., the addition of the organomagnesium compound,
e.g., Bu2Mg to the mixture Ti(OiPr)4–Et2AlCl results in active, cheap, and affordable
catalytic systems suitable for the polymerization of propylene [13] and the copolymerization
of ethylene with higher olefins [14].

Previously, we reported on the ability of various titanium(IV)–diolate complexes
VII-X [15–22], including those with additional heteroatoms [23–27] (Chart 1), to catalyze
the (co)polymerization of ethylene in the presence of such Al/Mg activators. This group of
postmetallocene precatalysts is poorly studied, which is most likely due to the specifics of
their activation: in the presence of trialkylaluminum derivatives, alkylaluminum chlorides,
or alkylalumoxanes (traditional activators in Ziegler–Natta catalysis), and the activity of
these systems is low or does not manifest itself at all. However, when using the Al/Mg
activators AlknAlCl3-n+Bu2Mg (proposed by Yu. V. Kissin et al. [28,29]), their productivity
in ethylene polymerization reached 4000 kg/mol·atm·h. It is important to note that, in most
cases, these catalytic systems produce disentangled UHMWPE, which can be processed
by the solid-phase method into high strength-oriented films and tapes, which are in high
demand in various industries. In addition, such catalytic systems effectively catalyze
the copolymerization of ethylene with higher olefins, and in some cases, even higher
productivity is achieved ofup to 5 tons of copolymer /mol atm·h [20].

An essential point limiting the possibility of the industrial implementation of this
group of catalysts is their low thermal stability. As a rule, the maximum productivity of such
systems is achieved at a temperature of 30 ◦C [15–27]; an increase in the polymerization
temperature to 50–80 ◦C is accompanied by deactivation and a significant reduction in
the polymer’s molecular weight. The aim of this work is the structural modification
of the ligand environment of the metal, aimed at increasing the thermal stability of the
considered precatalysts.

2. Experimental Section

All manipulations with air-sensitive materials were performed using standard Schlenk
techniques. Argon and ethylene of a special purity grade (Linde gas) were dried by purging
through Super Clean™ Gas Filters.

Toluene and nefras were distilled over Na/benzophenone ketyl, and the water content
was periodically controlled by Karl Fischer coulometry by using a Methrom 756 KF appara-
tus. Diethylaluminum chloride, ethylaluminum sesquichloride, and di-n-butylmagnesium
(Aldrich) were used without further purification. (±)-Camphorquinone was obtained
by the method described in [30]. The preparation of the ligands L1 and L2 followed the
procedure described in [31]; their properties corresponded to the literature data.

NMR spectra were recorded on a Bruker AMX-400 instrument (Mundelein, Illinois
60060 USA). Elemental analysis (C, H, Cl) was performed by the microanalytical laboratory
at A. N. Nesmeyanov Institute of Organoelement Compounds on Carlo Erba-1106 and
Carlo Erba-1108 instruments. The content of Ti was performed by X-ray fluorescence
analysis on a VRA-30 device (Karl Zeiss, Germany).

[L1Ti(OiPr)2]2 (Complex 1). Ligand L1 (0.85 g, 5 mmol) and toluene (22 mL) were
placed into a Schlenk tube equipped with a magnetic stirrer under an argon atmosphere,
followed by the addition of Ti(OiPr)4 (1.42 g, 1.48 mL, and 5 mmol) at room temperature.
The resulting suspension was heated until all solids dissolved. The next day, the formed
crystals were collected by filtration and dried in vacuo. Yield 1.41 g (81.5%). Calculated
(%) for C32H60O8Ti2 (668.55): C, 57.5; H, 9.0; O, 19.1; and Ti, 14.3. Found (%): C, 57.2; H,
8.6; and Ti, 14.0. 1H NMR (400 MHz, CDCl3), δ: 0.82 (s, 3H), 0.85 (s, 3H), 0.98 (s, 3H), 1.07
(s, 6H), 1.18 (s, 6H), 1.44 (s, 2H), 1.67 (s, 1H), 1.96 (s, 2H), 4.03 (d, J = 20.2 Hz, 2H), and 4.32
(d, J = 23.0 Hz, 2H). 13C NMR (101 MHz, CDCl3), δ: 88.18, 84.05, 77.35, 77.03, 76.71, 67.81,
64.45, 48.91, 47.87, 46.31, 31.90, 25.36, 24.30, 24.27, 23.65, 23.39, 23.25, 20.78, 20.41, and 10.67.

[L2Ti(OiPr)2]2 (Complex 2) was obtained by a similar method. Yield 1.34 g (74.2%).
Calculated (%) for C36H68O8Ti2 (724.65): C, 59.7; H, 9.5; O, 17.7; and Ti, 13.2. Found (%):
C, 59.4; H, 9.2; and Ti, 13.0. 1H NMR (400 MHz, CDCl3), δ: 0.87 (s, 3H), 0.89 (s, 3H), 0.96
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(s, 3H), 1.09 (s, 6H), 1.12 (s, 3H), 1.20 (s, 3H), 1.23 (s, 3H), 1.65 (s, 3H), 1.94 (dd, J = 29.4,
4.9 Hz, 2H), 3.70 (s, 1H), 4.09 (m, 2H), and 4.36 (m, 2H). 13C NMR (101 MHz, CDCl3), δ:
80.39, 80.58, 77.23, 56.85, 53.20, 48.38, 30.99, 26.06, 25.62, 25.36, 24.36, 23.36, 23.23, 22.89,
21.53, 10.70, and 10.58.

L1TiCl2 2iPrOH (Complex 3). In a 100 mL flame-dried Schlenk flask, ligand L1 (0.85 g,
5 mmol) was dissolved in anhydrous toluene (20 mL). A solution of TiCl2(OiPr)2 (1.185 g,
0.05 mmol) in toluene (20 mL) was added to the resulting solution under stirring in an argon
atmosphere. The solution was stirred for 14 h at room temperature, and the precipitated
complex was filtered off, washed with hexane (5 mL), and dried in a vacuum. The yield
was 1.4 g (69%). Calculated (%) for C16H32Cl2O4Ti (407.19): C, 47.2; H, 7.9; Cl, 17.4; O, 15.7;
and Ti, 11.8. Found (%): C, 46.6; H, 7.6; Cl, 17.2; and Ti, 11.5. 1H NMR (400 MHz, CDCl3), δ:
0.88 (s, 3H), 0.92 (dd, J = 38.4, 11.9 Hz, 6H), 1.01 (s, 6H), 1.05 (s, 3H), 1.15 (s, 3H), 1.51 (s, 2H),
1.73 (d, J = 4.8 Hz, 1H), 2.04 (d, J = 5.0 Hz, 2H), 4.20 (s, 2H), and 4.39 (s, 2H). 13C NMR
(101 MHz, CDCl3), δ: 87.99, 83.87, 67.62, 64.26, 48.72, 47.68,46.12, 31.71, 25.17, 24.12, 24.09,
23.47, 23.06, 20.59, 20.22, and 10.48.

L2TiCl2 2iPrOH (Complex 4) was obtained by a similar method. Calculated (%) for
C18H36Cl2O4Ti (435.25): C, 49.7; H, 8.3; Cl, 16.3; O, 14.7; and Ti, 11.0. Found (%): C, 49.3;
H, 8.0; Cl, 16.1; and Ti, 10.6. 1H NMR (400 MHz, CDCl3), δ: 0.89 (s, 3H), 0.92 (s, 3H), 0.96
(s, 6H), 1.20 (s, 6H), 1.32 (s, 3H), 0.89 (s, 3H), 1.92 (s, 3H), 1.68 (m, 2H, CH2), 2.19 (m, 2H),
2.42 (s, 2H), 4.06 (m, 2H), and 4.78 (m, 1H).

2.1. X-ray Crystal Structure Determination

X-ray diffraction experiments were carried out at 100 K for 1 and at 240 K for 2 (below
this temperature, the crystals of 2 cracked) with a Bruker D8 Quest diffractometer, using
graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). Using Olex2 [32], the structures
were solved with the ShelXT [33] structure solution program using Intrinsic Phasing and
refined with the olex2.refine [34] refinement package using Least-Squares minimization
against F2 in anisotropic approximation for nonhydrogen atoms. Positions of hydrogen
atoms were calculated, and they were refined in isotropic approximation within the riding
model. Crystal data and structure refinement parameters for 1 and 2 are given in Table 1.
CCDC 2189447 (for 1) and 2189448 (for 2) contain the supplementary crystallographic data
for this paper.

Table 1. Ethylene polymerization by complexes 1–4 a.

Entry Com-
plex

Co
Catalyst,
[Al]/[Mg]

T
◦C

A,
kg/mol·h·atm

Mv,
106 Da

Tm,
◦C

Deg. of
Crystal

%

Bulk
Density,

g/cm3

1 1 Et2AlCl/Bu2Mg 10 2114 5.85 140 79 0.063

2 1 Et3Al2Cl3/Bu2Mg 10 2629 5.97 140 55 0.080

3 d 1 Et3Al2Cl3/Bu2Mg 10 1600 7.68 143 55 0.056

4 1 EtAlCl2/Bu2Mg 10 2971 4.26 141 76 0.084

5 c 1 Et3Al2Cl3/Bu2Mg 10 457 8.51 144 88 0.080

6 b c 1 Et3Al2Cl3/Bu2Mg 10 571 10.1 144 81 0.053

7 1 Et3Al2Cl3/Bu2Mg 30 2971 5.72 141 79 0.083

8 1 Et3Al2Cl3/Bu2Mg 50 3143 3.12 139 76 0.077

9 1 Et3Al2Cl3/Bu2Mg 70 2343 0.48 134 43 0.05

10 2 Et2AlCl/Bu2Mg 10 2874 4.01 143 59 0.071

11 2 Et3Al2Cl3/Bu2Mg 10 3069 4.8 143 55 0.092
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Table 1. Cont.

Entry Com-
plex

Co
Catalyst,
[Al]/[Mg]

T
◦C

A,
kg/mol·h·atm

Mv,
106 Da

Tm,
◦C

Deg. of
Crystal

%

Bulk
Density,

g/cm3

12 2 Et3Al2Cl3/Bu2Mg 30 2800 4.44 143 59 0.088

13 2 Et3Al2Cl3/Bu2Mg 50 2571 3.16 145 62 0.062

14 2 Et3Al2Cl3/Bu2Mg 70 1543 1.82 144 55 0.074

15 3 Et2AlCl/Bu2Mg 10 2743 2.91 141 41 0.066

16 3 Et3Al2Cl3/Bu2Mg 10 2971 6.81 144 78 0.077

17 3 EtAlCl2/Bu2Mg 10 3257 8.48 142 86 0.084

18 4 Et2AlCl/Bu2Mg 10 2777 2.63 141 66 0.078

19 4 Et3Al2Cl3/Bu2Mg 10 2874 6.65 143 65 0.086
a Polymerizations were carried in 100 mL of toluene with 5 × 10−6 mol of precatalyst at a constant 0.7 atm of
excessive ethylene pressure for 30 min and a molar ratio of Ti/Al/Mg = 1/300/100 (except for entries 4 and 17,
where it was 1/200/100). b Preactivation of the complex within 24 h. c Polymerizations were carried out in 100 mL
of nefras. d Pre-activation of the complex within 24 h.

2.2. Polymerization Experiments

The ethylene polymerization and ethylene/α-olefine copolymerization techniques are
described in detail in [21].

2.3. Polymer Characterization Methods

DSC was performed by a differential scanning calorimeter DSC-822e (Mettler-Toledo,
Switzerland) at a heating rate of 10 ◦C/min in argon.

Viscosity average molecular weight of synthesized UHMWPE samples was calculated
with the Mark–Houwink equation [35].

The technique for manufacturing-oriented films from UHMWPE nascent reactor
powder and determining their mechanical characteristics is described in detail in [36].

Scanning electron microscopy investigations of morphologies of nascent reactor pow-
ders were carried out with a high-resolution Tescan VEGA3 SEM operated at 5 kV. As-
polymerized particles were carefully deposited on SEM stubs, and the samples were coated
with gold by a sputtering technique.

13C NMR spectra of ethylene/octene-1 copolymers (~5 wt % solutions in dichloroben-
zene) were recorded at 150 ◦C on a Bruker Avance-400 spectrometer at 101 MHz.

Gel permeation chromatographic (GPC) analysis of copolymers was carried out at
135 ◦C with a Waters GPCV-2000 chromatograph equipped with two columns (PLgel,
5 µ and Mixed-C, 3007.5 mm) and a refractometer. 1,2,4-Trichlorobenzene was used as a
solvent; the elution rate was 1 mL min−1. Molecular weights of polymers were determined
using the universal calibration dependence relative to polystyrene standards with a narrow
MW distribution: for polystyrene K = 2.88 × 10−4, α = 0.64; for PE, and K = 6.14 × 10−4,
α = 0.67.

3. Results and Discussion

Commercially available (±) camphor was used as the initial compound for the syn-
thesis of this group of ligands, the oxidation of which yielded camphoquinone (Scheme 1).
Further, the reduction of camphoquinone with sodium borohydride or its interaction with
methyl magnesium iodide yielded ligands L1-L2 (Scheme 1) differing in the steric load of
hydroxyl groups.
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Scheme 1. Synthesis of complexes 1–4.

Alkoxo–titanium(IV) complexes 1–2 were obtained by the reaction of the ligands
L1–L2 with Ti(OiPr)4 in a toluene solution. All compounds were isolated in 69–82%
yields as air-sensitive powders, which are soluble in aromatic hydrocarbons. Titanium–
dichloride complexes 3–4 were synthesized by direct interaction of the ligands L1–L2 with
one equivalent of TiCl2(OiPr)2 in toluene. The compositions and structures of complexes 1–4
were confirmed by elemental analysis and 1H and 13C NMR spectroscopies. The integration
of the NMR signals confirmed the presence of two isopropoxy groups per ligand unit in
the reaction product. The structures of the complexes 1–2 were unambiguously established
by X-ray diffraction study and are shown in Figure 1 along with the atomic numbering
scheme. Experimental data for the X-ray diffraction studies of compounds and selected
bond lengths and angles are given in Tables S1 and S2.

The complexes 1 and 2 crystallize in the triclinic space group P-1 with a half of the
complex species being symmetry-independent; the appropriate symmetry element, the
inversion center, is located in the geometric center of a Ti2O2 cycle. Each titanium(IV) ion
coordinates two isopropoxy groups and two camphorquinone ligands that act both as a
bridging ligand and a chelate ligand (Table 1). The resulting coordination polyhedron is a
distorted square pyramid, as gauged by continuous symmetry measurements [37]. They
measure how close the shape of the polyhedron is to a reference shape, such as an ideal
square pyramid (SPY-5). The lower the value of an appropriate symmetry measurement,
the better the fit is to a chosen polyhedron (Table S2).



Polymers 2022, 14, 4735 7 of 14Polymers 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

  
(a) (b) 

Figure 1. General view of the compounds 1 (a) and 2 (b) in representation of atoms via thermal 

ellipsoids at 30% probability level. Both molecules occupy the special positions, the inversion cen-

ters, as obtained by X-ray diffraction at 100 and 240 K. Hydrogen atoms are omitted for clarity. In 

both crystals, the complex occupies a special position, the inversion center, so only labels of sym-

metry-independent heteroatoms are given. 

The complexes 1 and 2 crystallize in the triclinic space group P-1 with a half of the 

complex species being symmetry-independent; the appropriate symmetry element, the 

inversion center, is located in the geometric center of a Ti2O2 cycle. Each titanium(IV) ion 

coordinates two isopropoxy groups and two camphorquinone ligands that act both as a 

bridging ligand and a chelate ligand (Table 1). The resulting coordination polyhedron is 

a distorted square pyramid, as gauged by continuous symmetry measurements [37]. They 

measure how close the shape of the polyhedron is to a reference shape, such as an ideal 

square pyramid (SPY-5). The lower the value of an appropriate symmetry measurement, 

the better the fit is to a chosen polyhedron (Table S2). 

The catalytic activity of new titanium–diolate complexes 1–4 was studied in ethylene 

polymerization (Table 1). To activate precatalysts, binary activators {Et2AlCl or Et3Al2Cl3 

+Bu2Mg} at a molar ratio of Al/Mg = 3/1 [28,29], were used. For the activator {Et-

AlCl2+Bu2Mg}, a molar ratio of Al/Mg = 2/1 was used since according to [21], it is precisely 

this ratio of the activator components that makes it possible to achieve the maximum 

productivity of diolate–titanium complexes. 
For complex 1, the effect of the nature of the organoaluminum compound (EtAlCl2, 

Et2AlCl, and Et3Al2Cl3) contained in the Al/Mg activator on the productivity of catalytic 

systems and the properties of the resulting polymer were studied (entries 1, 2, and 4; Table 

1). The maximum activity was shown by the system containing EtAlCl2—a compound 

exhibiting the maximum Lewis acidity. 

For the dichloride complex 3, this pattern changes slightly: in a row Et2AlCl, 

Et3Al2Cl3 and EtAlCl2 there is a consistent increase in both the productivity of the system 

and the molecular weight of polymers (entries 15–17, Table 1). 

Comparing the effect of the nature of the organoaluminum component of the activa-

tor on the properties of the resulting polymer, it can be noted that for dichloride complexes 

3–4, the replacement of Et2AlCl by Et3Al2Cl3 led to a very significant increase in molecular 

weight (by 2.3–2.6 times (entries 15 vs. 16 and 18 vs. 19, Table 1). In the case of alkoxide 

complexes 1–2, this effect also manifested itself, but to a much lesser extent (no more than 

1.2 times, entries 1 vs. 2 and 10 vs. 11); a similar trend was seen previously [21,26]. 

Preactivation (holding the precatalyst with a small amount of activator in a Schlenk 

tube for 24 h) led to a significant drop in activity, from 2629 to 1600 kg/mol·h·atm, with a 

simultaneous significant increase in the molecular weight of the polymer (from 5.9 up to 

7.7 × 106 Da). The replacement of the aromatic solvent toluene with the aliphatic one nefras 

Figure 1. General view of the compounds 1 (a) and 2 (b) in representation of atoms via thermal
ellipsoids at 30% probability level. Both molecules occupy the special positions, the inversion centers,
as obtained by X-ray diffraction at 100 and 240 K. Hydrogen atoms are omitted for clarity. In both
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independent heteroatoms are given.

The catalytic activity of new titanium–diolate complexes 1–4 was studied in ethy-
lene polymerization (Table 1). To activate precatalysts, binary activators {Et2AlCl or
Et3Al2Cl3+Bu2Mg} at a molar ratio of Al/Mg = 3/1 [28,29], were used. For the activa-
tor {EtAlCl2 +Bu2Mg}, a molar ratio of Al/Mg = 2/1 was used since according to [21], it
is precisely this ratio of the activator components that makes it possible to achieve the
maximum productivity of diolate–titanium complexes.

For complex 1, the effect of the nature of the organoaluminum compound (EtAlCl2,
Et2AlCl, and Et3Al2Cl3) contained in the Al/Mg activator on the productivity of catalytic
systems and the properties of the resulting polymer were studied (entries 1, 2, and 4;
Table 1). The maximum activity was shown by the system containing EtAlCl2—a compound
exhibiting the maximum Lewis acidity.

For the dichloride complex 3, this pattern changes slightly: in a row Et2AlCl, Et3Al2Cl3
and EtAlCl2 there is a consistent increase in both the productivity of the system and the
molecular weight of polymers (entries 15–17, Table 1).

Comparing the effect of the nature of the organoaluminum component of the activator
on the properties of the resulting polymer, it can be noted that for dichloride complexes
3–4, the replacement of Et2AlCl by Et3Al2Cl3 led to a very significant increase in molecular
weight (by 2.3–2.6 times (entries 15 vs. 16 and 18 vs. 19, Table 1). In the case of alkoxide
complexes 1–2, this effect also manifested itself, but to a much lesser extent (no more than
1.2 times, entries 1 vs. 2 and 10 vs. 11); a similar trend was seen previously [21,26].

Preactivation (holding the precatalyst with a small amount of activator in a Schlenk
tube for 24 h) led to a significant drop in activity, from 2629 to 1600 kg/mol·h·atm, with a
simultaneous significant increase in the molecular weight of the polymer (from 5.9 up to
7.7 × 106 Da). The replacement of the aromatic solvent toluene with the aliphatic one nefras
was accompanied by a very significant decrease in activity (from 2629 to 460 kg/mol·h·atm
and an equally noticeable increase in Mv from 5.9 to 8.5 × 106, and the use of preactivation
technique in aliphatic solvent made it possible to increase this value to 10.1 × 106 Da
(entries 5 and 6, Table 1).

For the alkoxo complexes 1 and 2, the influence of the polymerization temperature
on the activity and on the molecular weights of the resulting polyethylene was studied
(Figure 2). It was established that both complexes exhibited a sufficiently high thermal
stability: for complex 1 with an increase in the polymerization temperature from 10 to
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50 ◦C, the activity increased by 20%. At a temperature of 70 ◦C, the activity remained quite
high at 2300 kg/molTi·atm·h.
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Complex 2 with the sterically more hindered ligands behaved somewhat differently:
the maximum activity (3100 kg/molTi·atm·h.) appeared at 10 ◦C, and with an increase in
the polymerization temperature, the activity consistently decreased to 1500 kg/molTi·atm·h.
at 70 ◦C.

With an increase in the polymerization temperature, the processes of polymer chain
termination were accelerated, which is reflected in a significant decrease in the molecular
weights of the polymer. However, the polymers obtained at 50 ◦C and even 70 ◦C (for
complex 2) were ultra-high molecular weight polyethylenes. Thus, the process temperature
allowed us to control the molecular weight of the resulting polymers.

The morphology and molecular weight are important characteristics of UHMWPE
nascent reactor powder, which determine the efficiency of its processing into high modulus-
and high strength-oriented materials. To examine the morphologies of these powders,
scanning electron microscope (SEM) observations were performed (Figure 3). At a low
magnification (Figure 3, top), the UHMWPE powder particles do not have a spherical shape,
typical for the polymer obtained on classical Ti/Mg catalysts. The irregular shape and
porous structure of the powder particles determine the low bulk density (0.05–0.088 g/cm3)
of the obtained samples.

At high magnifications (Figure 3, bottom), the UHMWPE powder particles have a
broccoli-like shape and differ in the number of fibrils connecting the globules.

The processing of the obtained UHMWPE reactor powders into high modulus-oriented
films was carried out by preparing monolithic samples under pressure and shear defor-
mation at an elevated temperature below the polymer melting point with a subsequent
uniaxial drawing [36]. Mechanical tests were carried out for the samples oriented to the
prefracture state, which varied for different samples (Table 2, Figure 4).
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Figure 4. Stress–elongation curves for UHMWPE -orientated tapes. (a) entries 1,2,4,10,11, and 16;
(b) entries 2,3,7, and 8 and Tables 1 and 2.
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Table 2. Mechanical properties of UHMWPE-oriented film tapes a.

Entry Catalytic System Tensile Strength, σ,
GPa

Average Tensile
Modulus, E,

GPa

1 1/Et2AlCl+Bu2Mg 2.3–2.7 147–151

2 1/Et3Al2Cl3+Bu2Mg 2.2–2.6 138–149

3 b 1/Et3Al2Cl3+Bu2Mg 1.7–2.4 114–137

4 1/EtAlCl2+Bu2Mg 1.5–2.6 119–137

7 c 1/Et3Al2Cl3+Bu2Mg 2.1–2.3 123–141

8 d 1/Et3Al2Cl3+Bu2Mg 1.7–2.2 111–135

10 2/EtAlCl2+Bu2Mg 2.1–2.7 128–136

11 2/Et3Al2Cl3+Bu2Mg 2.4–2.6 132–142

12 c 2/Et3Al2Cl3+Bu2Mg 1.8–2.5 112–149

13 d 2/Et3Al2Cl3+Bu2Mg 2.0–2.4 120–135

14 e 2/Et3Al2Cl3+Bu2Mg 1.6–2.0 108–123

15 3/EtAlCl2+Bu2Mg 1.9–2.4 116–129

16 3/Et3Al2Cl3+Bu2Mg 1.6–2.7 124–146

18 4/EtAlCl2+Bu2Mg 1.8–2.4 116–122

19 4/Et3Al2Cl3+Bu2Mg 2.0–2.5 132–139
a Numbering corresponds to Table 1. b Preactivation of the complex within 24 h. c Polymerization was carried
out at a temperature of 30 ◦C. d Polymerization was carried out at a temperature of 50 ◦C. e Polymerization was
carried out at a temperature of 70 ◦C.

The UHMWPE nascent reactor powders obtained on bis-isopropoxo-titanium precata-
lysts 1 and 2 (entries 1,2,10, and 11) were processed into oriented films with approximately
the same mechanical characteristics (Figure 4a). The nature of the organoaluminum com-
pound (OAC) included in the Al/Mg activator did not significantly affect these parameters.
The results obtained slightly exceeded those previously published for titanium complexes
with diol ligands [17,18,21,25–27]; however, the reason may be not only the structure of the
precatalysts, but also the polymerization temperature (in the cited works, polymerization
was carried out at 30 ◦C). For comparison, the modulus value for commercially available
gel-spun UHMWPE fiber, produced by the gel-spinning process, is 113 GPa [38]. The
replacement of toluene with an aliphatic solvent nefras was reflected in the morphology of
the UHMWPE reactor powder, namely, in an increase in the number of fibrils (Figure 3b,c),
while the degree of crystallinity of these two samples of UHMWPE was determined by
DSC and was the same at 55%. The presence of fibrillated elements prevented a uniform
distribution of stress in the sample during orientation drawing and, as a result, led to a
deterioration in the strength characteristics of film tapes (entries 2 and 3, Table 2). For
oriented films from polymers obtained on titanium dichloride complexes 3 and 4, the
maximum values of the average tensile modulus were recorded when using an activator
with Et3Al2Cl3.

An important condition for obtaining disentangled UHMWPE is to carry out the
polymerization process at low temperatures, which allow to control the rates of polymer
chain growth and its crystallization [39]. The fact that many samples obtained at elevated
temperatures nevertheless turned out to be suitable for solid-phase processing (Figure 4b,
curves 7 and 8) seems very promising to us.

The productivity of systems 1 and 2/Et3Al2Cl3+Bu2Mg in the ethylene /1-octene
copolymerization was noticeably lower than for the homopolymerization of ethylene; i.e.,
in this case, no positive effect of the comonomer was observed. The molecular weights of
the copolymers (1.1–8.9 × 105 Da) were also significantly lower than for the polyethylene
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samples (4.8 × 105–1.01 × 107 Da) (we can compare these data only at a qualitative level,
since different methods of their determination were used).

The percentage of comonomer incorporation was low (1.4–4.6 mol% for precatalyst 1),
and it was obvious that an increase in the steric load at the metal center made it difficult for
the bulk comonomer, 1-octene, to approach the reaction center. For complex 2, this trend
was more pronounced.

The ethylene/1-octene copolymerization process even more clearly demonstrated
the increased thermal stability of complexes 1–2: with an increase in the polymerization
temperature from 10 to 50 ◦C, a noticeable increase in productivity was observed, which
remains quite acceptable even at a temperature of 70 ◦C (Figure 5, Table 3). To our surprise,
with increasing temperature, the molecular weight of the copolymers increased significantly,
reaching a maximum at 50 ◦C.
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Table 3. Ethylene/octene-1 copolymerization a.

Entry Comp-
lex

T,
◦C

A,
kg/mol·h·atm

Composition
(mol %) Tm

(◦C)
χ,

(%)
Mw,

105 Da
Mw/Mn

E O

1 1 10 971 98.6 1.4 138.2 70.4 1.08 5.37

2 1 30 1771 97.8 2.2 137.5 42.1 1.02 5.53

3 1 50 2057 95.4 4.6 127.7 38.2 8.91 4.23

4 1 70 1429 96.7 3.3 127.5 36.5 6.23 4.88

5 2 10 1863 98.5 1.5 137.1 80.2 3.59 7.98

6 2 30 2309 98.3 1.7 139.7 70.0 4.11 6.31

7 2 50 2575 98.6 1.4 134.2 62.8 8.72 7.69

8 2 70 1343 98.8 1.2 136.1 56.4 1.94 9.36
a Copolymerization was carried out in 100 mL of toluene with 5 × 10−6 mol of precatalyst at a constant excessive
ethylene pressure of 1.7 atm for 30 min; the activator was 1.5 Et3Al2Cl3+Bu2Mg, and the amount of 1-octene was
10 mL.

4. Conclusions

In summary, new titanium(IV) complexes with OO2−-type diolate ligands in the
presence of a binary cocatalysts {3Et2AlCl + Bu2Mg} or {1.5Et3Al2Cl3 + Bu2Mg} exhibited
moderate to high activities toward ethylene polymerization (460–3260 kg/mol·h·atm). The
Mv of the obtained polymer samples reached 10 million Da.
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Compared to previously obtained titanium complexes with flexible aliphatic diolate
ligands [15–22], complexes 1–4 with a rigid camphane framework were characterized by
increased thermal stability. Complex 2 with an increased steric load at hydroxyl groups
was able to produce UHMWPE even at a temperature of 70 ◦C. This UHMWPE sample was
processed into an oriented film with a tensile strength of 1.6–2.0 GPa and an average tensile
modulus of 108–123 GPa. Films obtained on the same precatalysts at a temperature of 10 ◦C
were characterized by higher values of breaking strength up to 2.7 GPa and modulus up to
151 GPa.

Thus, directed changes in the ligand structure, namely the use of a rigid framework
and an increase in the steric load of hydroxyl groups, seem to be a promising direction in
the development of thermally stable precatalysts for the polymerization of olefins.

Supplementary Materials: The following supporting information can be downloaded at: https://
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corresponding to ethylene/1-octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg, 10 ◦C (entry
1, Table 3); Figure S18: DSC curves corresponding to ethylene/1-octene copolymer produced on
1/Et3Al2Cl3+Bu2Mg, 30 ◦C (entry 2, Table 3); Figure S19: DSC curves corresponding to ethylene/1-
octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg, 50 ◦C (entry 3, Table 3); Figure S20: DSC curves
corresponding to ethylene/1-octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg, 70 ◦C (entry 4,
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S22: GPC curves corresponding to ethylene/1-octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg,
10 ◦C (entry 1, Table 3); Figure S23: GPC curves corresponding to ethylene/1-octene copolymer
produced on 1/Et3Al2Cl3+Bu2Mg, 30 ◦C (entry 2, Table 3); Figure S24: GPC curves corresponding
to ethylene/1-octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg, 50 ◦C (entry 3, Table 3); Figure
S25: GPC curves corresponding to ethylene/1-octene copolymer produced on 1/Et3Al2Cl3+Bu2Mg,
70 ◦C (entry 4, Table 3); Figure S26: GPC curves corresponding to ethylene/1-octene copolymer
produced on 2/Et3Al2Cl3+Bu2Mg, 10 ◦C (entry 5, Table 3); Figure S27: GPC curves corresponding to
ethylene/1-octene copolymer produced on 2/Et3Al2Cl3+Bu2Mg, 30 ◦C (entry 6, Table 3); Figure S28:
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