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Abstract: This work presents a semi-analytical method for laminar steady-state channel and pipe
flows of viscoelastic fluids using the Linear Phan-Thien-Tanner (LPTT) constitutive equation, with
solvent viscosity contribution. For the semi-analytical method validation, it compares its results
and two analytical solutions: the Oldroyd-B model and the simplified LPTT model (without solvent
viscosity contribution). The results adopted different values of the dimensionless parameters, showing
their influence on the viscoelastic fluid flow. The results include the distribution of the streamwise
velocity component and the extra-stress tensor components in the wall-normal direction. In order to
investigate the proposed semi-analytical method, different solutions were obtained, both for channel
and pipe flows, considering different values of Reynolds number, solvent viscosity contribution in
the homogeneous mixture, elongational parameter, shear parameter, and Weissenberg number. The
results show that the proposed semi-analytical method can find a laminar solution using the non-
Newtonian LPTT model with solvent viscosity contribution and verify the effect of the parameters in
the resulting flow field.

Keywords: Phan-Thien-Tanner constitutive equation; semi-analytical method; solvent viscosity
contribution; pipe flow; channel flow

1. Introduction

Due to the use of viscoelastic fluids in some industries, there is interest in obtaining an
analytical solution of constitutive models that describe the behaviour of this type of fluid
flow. Several researchers have investigated the analytical solutions of many constitutive
models, such as the Oldroyd-B, Giesekus, FENE, and PTT models. Investigations of non-
Newtonian fluid flow with heat transfer is also an interesting phenomena [1,2]. Hulsen [3]
presented the analytical solution of the Leonov and Giesekus models and some properties
such as tensor restrictions and the possibility of arising instabilities due to numerical
approximation errors.

An exact solution for tube and slit flows of a FENE-P fluid was found by [4]. Yoo and
Choi [5] and Schleiniger and Weinacht [6] present solutions for pipe and channel flows of
the Giesekus model for Poiseuille flow. With the same model, Raisi et al. [7] obtained the
solution for the Couette-Poiseuille flow. Hayat et al. [8] derived the exact solution for the
Oldroyd-B model applied to five different flow problems, and Hayat et al. [9] presented
the exact solution of this same model to six different problems of unsteady flow.

More recently, Tomé et al. [10] presented a way to obtain the analytical solution for
the Giesekus model (based on [6]), with the pressure gradient being calculated numerically
and considering β = 0. Furlan et al. [11] studied an analytical solution of the Giesekus
model without restrictions on the model parameters.
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There are several studies in the literature in which the analytical solution for the LPTT
model is obtained. For the simplified LPTT model, the solutions are presented in [12–15]
and the solution for the LPTT model for purely polymeric fluid flow without simplifications
is presented in Alves et al. [16]. There is a simplification of the LPTT model equations
in the solutions referenced above: the parameter ξ = 0 in the LPTT model or the solvent
contribution is considered zero in the homogeneous mixture.

The present work shows a semi-analytical method to obtain the flow variables when
using the LPTT viscoelastic fluid model for channel and pipe flow without simplifications
and considering a solvent contribution in the homogeneous mixture. Channel flow is
referred to as the two-dimensional flow between two parallel plates. The proposed method
is valid for laminar flow.

The paper is organized as follows. Section 2 presents the governing equations and the
mathematical manipulations needed to obtain the semi-analytical method for the LPTT
fluid flow with a solvent contribution in the homogeneous mixture; the results obtained
using the method proposed are presented in Section 3. The main conclusions are presented
in Section 4.

2. Mathematical Formulation

The Phan-Thien-Tanner (PTT) constitutive equation was derived from Phan-Thien
and Tanner [17] work. The viscoelastic fluid model considered in this analysis is governed
by its dimensional form given by:

f
(
tr(T)

)
T + λ

(
∂T
∂t

+∇ · (uT)− (∇u− ξD) · T− T · (∇u− ξD)T
)
= 2ηpD, (1)

where u denotes the velocity field, t is the time, T and D are the extra-stress and deformation-
rate tensors, respectively, λ is the fluid relaxation time, ηp is the polymer viscosity, and
ξ is a positive parameter of the PTT model connected with the shear stress behaviour of
the fluid.

The function f
(
tr(T)

)
depends on the trace of extra-stress tensor T and determines

the form of the PTT model [18]:

(i) Linear: f (tr(T)) = 1 +
λε

ηp
tr(T),

(ii) Quadratic: f (tr(T)) = 1 +
λε

ηp
tr(T) +

1
2

(
λε

ηp
tr(T)

)2
,

(iii) Exponential: f (tr(T)) = exp
(

λε

ηp
tr(T)

)
.

The linear form was the original form proposed by Phan-Thien and Tanner [17], and
it was used for the PTT model in this work, also called the LPTT model. The parameter ε
in the function f (tr(T)) is related to the elongational behaviour of the fluid, precluding
an infinite elongational viscosity in a simple stretching flow as it would occur for an
upper-convected Maxwell model (UCM), in which ε = 0 [13].

It is considered a fully developed flow for two-dimensional channel and axisymmetric
pipe flow (Figure 1). The flow is considered incompressible and isothermal, without the
influences of external forces. Furthermore, it is used a compact notation [16,19] with index
j = 0 for channel flow or j = 1 for pipe flow.

In the fully developed flows analyzed here (parallel flow), the velocity and extra-
stress tensor components are function of the cross-stream coordinate (y or r), the pressure
gradient in the streamwise direction Px is constant and the continuity equation implies a
zero transverse velocity component (v = 0).
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Figure 1. Poiseuille planar channel (a), and Poiseuille pipe (b) flows.

With the adopted formulation, the x-momentum equation does not change with the
non-Newtonian constitutive model and can be integrated to give

− Px
y
2j +

β

Re
du(y)

dy
+ Txy(y) = 0. (2)

The constitutive equation for each extra-stress tensor component, giving the assump-
tion of parallel flow, can be simplified to the following set of expressions(

1 +
εReWi
(1− β)

(
Txx(y) + Tyy(y)

))
Txx(y) = 2Wi

(
1− ξ

2

)
Txy(y)

du(y)
dy

, (3)

(
1 +

εReWi
(1− β)

(
Txx(y) + Tyy(y)

))
Txy(y) =

(1− β)

Re
du(y)

dy
+

−Wi
(

ξ

2
Txx(y)

du(y)
dy

−
(

1− ξ

2

)
Tyy(y)

du(y)
dy

)
,

(4)

(
1 +

εReWi
(1− β)

(
Txx(y) + Tyy(y)

))
Tyy(y) = −WiξTxy(y)

du(y)
dy

. (5)

The system of Equations (2)–(5) is in dimensionless form where the dimensionless
parameters Re = ρUL

η0
and Wi = λU

L denote the Reynolds and Weissenberg numbers,
respectively. The Reynolds number is based in total shear viscosity η0, and η0 = ηs + ηp
where ηs and ηp represent the Newtonian solvent and polymeric viscosities, respectively,
and ρ is the fluid density, U is the velocity scale and L is the channel (or pipe) half-width.
The amount of Newtonian solvent is controlled by the dimensionless solvent viscosity
coefficient, parameter β = ηs

η0
. In Weissenberg number the λ parameter is the relaxation-

time of the fluid.
Dividing Equation (3) by Equation (5), the relation between the extra-stress tensor

components Txx(y) and Tyy(y), can be obtained:

Tyy(y) =
ξTxx(y)
−2 + ξ

. (6)

From Equation (2) it can be obtained:

du(y)
dy

= −
Re(Txy(y)− 2−jPxy)

β
. (7)

Substituting Equations (6) and (7) in Equation (3) and solving the resulting equation
for the tensor component Txx(y), it can be obtained:

Txx(y) = −
(
(−1 + β)(−2 + ξ)

4εReWi(−1 + ξ)

)(
− 1±

(
1− 23−jεRe2Txy(y)Wi2×

×
(
2jTxy(y)− Pxy

)
(−1 + ξ)

(−1 + β)β

) 1
2
)

.
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Using the hypothesis that the extra-stress tensor is zero at the channel (or pipe) centre,
one solution can be discarded, resulting thus in a single solution for the tensor Txx(y):

Txx(y) = −
(
(−1 + β)(−2 + ξ)

4εReWi(−1 + ξ)

)(
− 1 +

(
1− 23−jεRe2Txy(y)Wi2×

×
(
2jTxy(y)− Pxy

)
(−1 + ξ)

(−1 + β)β

) 1
2
)

.

(8)

All solutions obtained for the flow components are functions of the tensor component
Txy(y). Therefore, it is necessary to obtain an analytical solution for Txy(y) to obtain
analytical solutions for these components.

Substituting all the equations obtained for the fluid flow variables (Equations (6)–(8))
in Equation (4); and solving the resulting equation for the tensor component Txy(y), a
solution for this component can be obtained for a given set of parameters Re, Wi, β, ε, ξ
and the pressure gradient Px.

Txy(y) =

(
2−2j− 1

3

(
8jPxRe4y(β− 1)3(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)3

×
(

27× 4j+1ε2β2(ξ − 1)2 + 9× 22j+1εβ(6β− 1)(ξ − 2)ξ(ξ − 1)

+(ξ − 2)2ξ2
(

9× 4jβ(3β− 1)− 2P2
x Re2Wi2y2(ξ − 2)ξ

))
Wi4

+
(
64jP2

x Re8Wi8y2(β− 1)6(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)6

×
(

27× 4j+1ε2β2(ξ − 1)2 + 9× 22j+1εβ(6β− 1)(ξ − 2)ξ(ξ − 1)

+(ξ − 2)2ξ2
(

9× 4jβ(3β− 1)− 2P2
x Re2Wi2y2(ξ − 2)ξ

))2

−43j+1Re6Wi6(β− 1)6(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)6

×
(

3× 22j+1εβ(ξ − 1) + (ξ − 2)ξ
(

P2
x Re2Wi2(ξ − 2)ξy2 + 3× 4jβ

))3) 1
2
) 1

3

)

× 1
3Re2Wi2(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)2 +

21−jPxy(β− 1)(ξ − 2)ξ
6εβ(ξ − 1) + 3(β− 1)(ξ − 2)ξ

+
(

3
√

2(β− 1)2
(

3× 22j+1εβ(ξ − 1) + (ξ − 2)ξ
(

P2
x Re2Wi2(ξ − 2)ξy2 + 3× 4jβ

)))
/(

3
(

8jPxRe4y(β− 1)3(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)3

×
(

27× 4j+1ε2β2(ξ − 1)2 + 9× 22j+1εβ(6β− 1)(ξ − 2)ξ(ξ − 1)

+(ξ − 2)2ξ2
(

9× 4jβ(3β− 1)− 2P2
x Re2Wi2y2(ξ − 2)ξ

))
Wi4

+
(
64jP2

x Re8Wi8y2(β− 1)6(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)6

×
(

27× 4j+1ε2β2(ξ − 1)2 + 9× 22j+1εβ(6β− 1)(ξ − 2)ξ(ξ − 1)

+(ξ − 2)2ξ2
(

9× 4jβ(3β− 1)− 2P2
x Re2Wi2y2(ξ − 2)ξ

))2

−43j+1Re6Wi6(β− 1)6(2εβ(ξ − 1) + (β− 1)(ξ − 2)ξ)6

×
(

3× 22j+1εβ(ξ − 1) + (ξ − 2)ξ
(

P2
x Re2Wi2(ξ − 2)ξy2 + 3× 4jβ

))3) 1
2
) 1

3

)
.

(9)

From Equation (9), it is possible to obtain the distribution of the values of the Txy com-
ponent analytically. After obtaining this solution, using Equations (6)–(8) one obtains the
distributions for the other components of the flow, but the streamwise velocity component.
This velocity component is obtained using numerical schemes by integrating Equation (7).
The above variables were written as a function of y. For axisymmetric pipe flow, it is
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necessary to replace y with r. It should be emphasised that the proposed method does not
require any iteration to obtain a solution for a given pressure gradient.

2.1. LPTT Flow Versus Newtonian Flow

To compare the results obtained with the semi-analytical method for the LPTT model
with the Newtonian solution, one must find the pressure gradient that gives the same flow
rate for both fluid flows. The flow rate is obtained by the integral of the streamwise velocity
component with respect to the wall-normal direction. The resulting flow rate should be
4/3 for channel flow and π/2 for pipe flow.

Initially, for a given initial pressure gradient in the streamwise direction (Px < 0), it is cal-
culated the components of the fluid flow Txy(y),

du(y)
dy , Txx(y), Tyy(y) using Equations (6)–(9)

analytically; and the velocity profile u(y) is calculated by integrating Equation (7) numeri-
cally. And, with the u(y) distribution it is possible to calculate the flow rate.

An iterative Newton-Raphson’s method is adopted to find the pressure gradient (Px)
that gives the flow rate of 4/3 for channel flow and π/2 for pipe flow. The following
subsection presents the verification of the semi-analytical method.

The semi-analytical method works in the following way:

1. Set values to the parameters (β, Wi, Re, ξ, ε);
2. Give an initial pressure gradient (Px);
3. Solve Equation (9) to find Txy;
4. Integrate Equation (7) to find u;

5. Calculate the flow rate by solving
∫ 1
−1 u(y)dy;

6. If the flow rate is not 4/3 for channel flow or π/2 for pipe flow, an iterative Newton-
Raphson’s method is adopted to give another value of pressure gradient (Px), and we
go back to step 3; otherwise, continue;

7. Solve Equation (8) to find Txx;
8. Solve Equation (6) to find Tyy.

2.2. Verification

Here the verification of the proposed method is carried out by comparing the results
obtained with the semi-analytical proposed method with two analytical solutions: the
Oldroyd-B (channel flow) and the LPTT (pipe flow) models considering a purely polymeric
fluid (β = 0) [16]. Half of the domain was adopted in the graphics since all results are
symmetric about the channel (or pipe) centre.

For the first comparison, with the analytical solution of the Oldroyd-B model, the
values of the LPTT model parameters adopted were ε = 0.0001 and ξ = 0.0001. Three cases
were considered for the channel flow (j = 0):

• Case I: Re = 2000, β = 0.125 and Wi = 1;
• Case II: Re = 5000, β = 0.5 and Wi = 6;
• Case III: Re = 8000, β = 0.875 and Wi = 14.

Figure 2 shows the streamwise velocity component u and the components of the
non-Newtonian extra-stress tensor Txx and Txy distribution in the wall-normal direction y.
It is possible to observe an excellent agreement between the results. The analytical value
of the extra-stress tensor component Tyy, in this case, is zero. The results for this compo-
nent obtained by the method proposed have values below 10−9, which was considered a
roundoff error.
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Figure 2. Wall-normal variation y of the streamwise velocity component u and the extra-stress tensor
components Txx and Txy for the cases I, II and III.

For the verification using the analytical solution of the LPTT model for purely poly-
meric fluid flow, as proposed in Alves et al. [16], the value of the parameter β = 0.0001 was
adopted in the semi-analytical method. Two cases were investigated for pipe flow (j = 1):

• Case IV: Re = 8000, ε = 0.8, ξ = 0.01 and Wi = 1;
• Case V: Re = 5000, ε = 1.2, ξ = 0.001 and Wi = 4.

Figure 3 shows the streamwise velocity component u and the components of the
extra-stress tensor Txx, Txy and Tyy variation in the radial direction r. The comparison is
carried out between the semi-analytical method results and the analytical solution proposed
by Alves et al. [16]. It is also possible to observe a good agreement between the results
obtained using the semi-analytical method for the LPTT model and the analytical solution
for the purely polymeric LPTT model [16] in a pipe flow.

The results obtained in this section show that the proposed method could give reliable
results if the fluid is modelled by Oldroyd-B (channel flow) or by a purely polymeric LPTT
model (pipe flow). All the parameters had different values; therefore, this gives confidence
that the proposed semi-analytical method provides the right results in channel or pipe
flows. In the next section, the effects of the variation of the LPTT model parameters outside
these boundaries are investigated.
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Figure 3. Radial variation r of the streamwise velocity component u and the extra-stress tensor
components Txx, Txr and Trr for the cases IV and V.

3. Results

The present section presents the results obtained using the semi-analytical method.
To explore the range and efficiency of the proposed method in this work, some values
of the dimensionless parameters (Re, Wi, β, ε, and ξ) were investigated for channel and
pipe flows.

The section was divided into four subsections. The first one is dedicated to verifying
the influence of the ε parameter. The second one shows some results to verify the influence
of the ξ parameter in the fluid flow. The third subsection explores the behaviour of the
extra-stress tensor Txy component under certain parameter combinations; and the last
subsection shows where the Valid Solution Regions for the proposed method.

3.1. Parameter ε

The influence of the ε parameter on the fluid flow components is analyzed here. This
parameter is related to the elongational behaviour of the fluid. In the first results, presented
in Figure 4, the parameters adopted for a channel flow were: Re = 5000, β = 0.25, ξ = 0.1
and Wi = 7. Five values for the ε parameter were used: ε = 0.5, 0.75, 1.0, 1.25 and 1.5. It is
presented the wall-normal variation ( 0 ≤ y ≤ 1 ) of the streamwise velocity component u
and the components of the extra-stress tensor Txx, Txy and Tyy. The value of the maximum
streamwise velocity component at the middle of the channel increases with ε. The opposite
occurs for the extra-stress tensor components; the maximum absolute values of the tensors
decrease as the ε value increases, except for the values of the extra-stress tensor component
Txy when the coordinate approaches the wall. For this tensor component, it is possible to
observe an interesting behaviour for the fluid flow with ε = 0.5 and 0.75; its maximum
value is not at the wall as expected.
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Figure 4. ε influence on the wall-normal variation y of the streamwise velocity component u and the
extra-stress tensor components Txx, Txy and Tyy. Dimensionless parameters: Re = 5000, β = 0.25,
ξ = 0.1 and Wi = 7.

Figure 5 shows the influence of the ε parameter for pipe flow (j = 1), adopting the fol-
lowing parameters: Re = 6000, β = 0.75, ξ = 0.2 and Wi = 4. The same variation adopted
in the last comparisons, on the ε parameter, was adopted here (ε = 0.5, 0.75, 1.0, 1.25
and 1.5). It can be observed that the maximum streamwise velocity component u at the
pipe center is less pronounced when the Newtonian contribution is higher (β = 0.75). The
maximum streamwise velocity component u value also increases with the value of ε. The
same behavior of the previous comparison for the extra-stress tensor was observed here,
as the value of ε increases, the value of the extra-stress tensor components decreases (in
absolute value). For the extra-stress tensor component Txr, the maximum value is not at
the wall, and it can be noted for ε = 0.5, 0.75, 1.0 and 1.25. It also can be noticed that as
the Newtonian contribution (solvent contribution-β→ 1) increases, the magnitude of the
non-Newtonian tensor components value decreases, thus making the influence of these
components on the velocity profile less important.

The influence of the ε parameter, for pipe flow (j = 1), adopting low values for the
Reynolds (Re) and the Weissenberg numbers (Wi) is shown in Figure 6. The results show
radial variation r of the streamwise velocity component u and the components of the
extra-stress tensor Txx, Txr and Trr. The adopted parameters were: Re = 1, β = 0.2, ξ = 0.1,
and Wi = 0.6. The values for the ε parameter were (ε = 0.1, 0.2, 0.3, 0.4 and 0.5). It can be
observed that the maximum streamwise velocity decreases as the parameter ε increases.
This behavior is also observed on maximum values of the extra-stress tensor components
(in absolute values). Figure 6 shows an opposite behavior for the maximum streamwise
velocity component that the ones observed in the last two cases (Figures 4 and 5).
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Figure 5. ε influence on the radial variation r of the streamwise velocity component u and the
extra-stress tensor components Txx, Txr and Trr. Dimensionless parameters: Re = 6000, β = 0.75,
ξ = 0.2 and Wi = 4.
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3.2. Parameter ξ

To verify the influence of the ξ parameter on the LPTT model, it was generated
different fluid flows by varying its value. This parameter is connected with the shear
stress behavior of the non-Newtonian fluid. Figure 7 shows the wall-normal variation
y of the streamwise velocity component u and the components of the extra-stress tensor
Txx, Txy and Tyy for a channel flow (j = 0). The dimensionless parameters adopted were:
Re = 2000, β = 0.125, ε = 0.5 and Wi = 1. Five different values for ξ were investigated:
0.01, 0.05, 0.1, 0.15 and 0.2. It can be observed that the maximum absolute values of u,
Txx and Txy decrease as the parameter ξ increases. The opposite occurs with the maximum
absolute value of extra-stress tensor component Tyy, it increases with ξ parameter.
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Figure 7. ξ influence on the wall-normal variation y of the streamwise velocity component u and the
extra-stress tensor components Txx, Txy and Tyy. Dimensionless parameters: Re = 2000, β = 0.125,
ε = 0.5 and Wi = 1.

Figure 8 shows the wall-normal variation y of the streamwise velocity component u
and the components of the extra-stress tensor Txx, Txy and Tyy, for a channel flow (j = 0).
The dimensionless numbers adopted were: Re = 3000, β = 0.25, ε = 0.75 and Wi = 2.
The same variation adopted in the last comparisons, on the ξ parameter, was adopted
here (ξ = 0.01, 0.05, 0.1, 0.15 and 0.2). The streamwise velocity component u and the
extra-stress tensors components Txx, Txy and Tyy shows the same behavior observed in the
last case, for u, Txx and Txy their maximum absolute values decreases as the parameter ξ
increase and the opposite occurs for Tyy component as the parameter ξ increase.
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Figure 8. ξ influence on the wall-normal variation y of the streamwise velocity component u and the
extra-stress tensor components Txx, Txy and Tyy. Dimensionless parameters: Re = 3000, β = 0.25,
ε = 0.75 and Wi = 2.

Using the dimensionless parameters: Re = 10,000, β = 0.5, ε = 1.0, Wi = 5 and
j = 0 (channel flow), the wall-normal variation y of the streamwise velocity component
u and the components of the extra-stress tensor Txx, Txy and Tyy are shown in Figure 9.
The same variation adopted in the last comparisons, on the ξ parameter, was adopted
here (ξ = 0.01, 0.05, 0.1, 0.15 and 0.2). In these results the same behavior of the one
observed for the last two case was achieved, the absolute maximum value of the extra-
stress tensor component Tyy increases with the parameter ξ. The opposite occurs with the
other variables.
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Figure 9. ξ influence on the wall-normal variation y of the streamwise velocity component u and the
extra-stress tensor components Txx, Txy and Tyy. Dimensionless parameters: Re = 10,000, β = 0.5,
ε = 1 and Wi = 5.

Figure 10 shows the influence of the ξ parameter, for pipe flow (j = 1), as low values
of Reynolds number (Re) and the Weissenberg number (Wi) are adopted. The considered
parameters are: Re = 1, β = 0.7, ε = 0.01 and Wi = 0.4. The ξ parameter values used
here are (ξ = 0.01, 0.05, 0.1, 0.15 and 0.2). The observed behavior of the variables are the
same of the last case. However, in the present case one can observe that the magnitude of
the extra-stress tensor components increases substantially when low Reynolds number is
adopted.
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From Figures 7–10, it is possible to observe the behavior of the variables when the ξ
parameter change it value. As the parameter ξ increases, it is possible to observe that the
maximum streamwise velocity component value decreases. The same behaviour can be
noted on the maximum absolute value of the extra-stress tensor components Txx and Txy (or
Txr for pipe flows) close/or at the wall. For the extra-stress tensor component Tyy (or Trr),
the opposite behavior is observed, its maximum value increases with the dimensionless
parameter ξ. This behaviour can be noted even for low values of Reynolds number, as
Figure 10 shows.

It is worth mentioning that to obtain the fluid flow solution is necessary to check if
the Equation (9) has a real solution. The solution for this variable needs the calculation of
a square root, a cubic root, and a quotients product. The extra-stress tensor component
Txy value is a function of the fluid flow parameters, and, for some combinations of them,
the resulting value can be complex. When this happens, all the fluid flow variables are
complex; therefore, this result is not the sought one.

The semi-analytical results presented here agree with the boundary conditions and
solution intervals presented by Alves et al. [16]. In terms of solution ranges, the parameter
ε can admit values within the open range (0, 2). For the ξ parameter, its values can be
varied within the open range

(
0, 1

2

)
. It is worth mentioning that, even if there is a solution

for some values of these parameters beyond the above limits, many of these values do not
present physical properties [20] and, therefore, they are not within the scope of this study.

3.3. Txy Behaviour

From the results presented in Section 3.1, we observe an unusual behaviour for the
extra-stress tensor component Txy, as seen in Figures 4 and 5. It was observed that the
maximum value of the extra-stress tensor component Txy does not occur at the wall with
some parameter combinations. Before the semi-analytical solution was obtained, the
research group used a high-order numerical simulation to obtain the laminar solution for
the LPTT model in a straight channel. The solutions with both methods were compared
and agreed with each other. Therefore, the behaviour of the extra-stress tensor Txy was
double-checked. The behaviour observed here is really from the viscoelastic model and
therefore is necessary to investigate which parameters influence it.

It was observed that the Reynolds number and total viscosity (either with more
solvent or polymer viscosity in the mixture) do not affect the behaviour of this extra-stress
component. The Txy component was affected by the parameters ε, ξ, and the Weissenberg
number. An investigation was carried out using different values for these parameters and
observing how the Txy component is affected.

For the simulations performed, the Reynolds number (Re = 1000) and β (β = 0.5)
were kept. Figure 11 shows the variation of the ε parameter considering ξ = 0.1 and
Wi = 8. The values for the parameter ε considered were: 0.25, 0.50, 0.75, 1.0, 1.25 and
1.5. Figure 11 shows that as the value of ε decreases, the maximum value of the tensor
Txy moves towards the channel centre. This shows that a greater opposition to stretching
(higher elongational viscosity) influences the maximum value for the component Txy to
move away from the wall.
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Figure 11. ε influence on the wall-normal variation y of the extra-stress tensor component Txy.
Dimensionless parameters: Re = 1000, β = 0.5, ξ = 0.1 and Wi = 8.

Figure 12 presents the variation in the ξ parameter values considering ε = 0.25 and
Wi = 10. The values for the parameter ξ considered were: 0.01, 0.05, 0.1, 0.15, and 0.2. From
Figure 12 it is possible to observe that as the value of ξ increases, the value of the tensor
component Txy at the wall decreases. As the value of ξ increases, the maximum value of the
tensor Txy moves towards the channel centre. This shows that the normal stress differences
combined with high elongational viscosity exhibit a strong influence on this behaviour.
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Figure 12. ξ influence on the wall-normal variation y of the extra-stress tensor component Txy.
Dimensionless parameters: Re = 1000, β = 0.5, ε = 0.25 and Wi = 10.

For our last investigation, presented in Figure 13, we performed the variation for the
Weissenberg number, considering ε = 0.25 and ξ = 0.2. The values for the parameter Wi
considered were: 3.0, 4.0, 5.0, 6.0, and 7.0. It is possible to observe, from Figure 13, that
as the Weissenberg number increases, the maximum value of the tensor component Txy
moves towards the channel centre.
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Figure 13. Wi influence on the wall-normal variation y of the extra-stress tensor component Txy.
Dimensionless parameters: Re = 1000, β = 0.5, ε = 0.25 and ξ = 0.2.

From the analysis carried out, it was possible to verify the influence of these parameters
on the behaviour of the extra-stress tensor Txy component. Parameter values that emphasize
this behaviour were chosen for the simulations. These values comprehend low values for
ε, ξ close to 0.2, and Weissenberg numbers higher than 1. This behaviour arises from the
combination of high elongational viscosity and a high relationship between normal stress
differences and high elasticity. The physical combination of these properties causes the
maximum value of the extra-stress tensor Txy component to move towards the channel
centre. The strong interaction between fluid molecules allied with high elongational
viscosity and high elasticity can explain this physical behaviour.

It is worth mentioning that this behaviour happens both for the channel and the pipe,
although the simulations showed here were performed only for channels.

3.4. Semi-Analytical Method Limits

Numerical simulations with different parameter values were performed to observe
which ones allow the existence of the solution. It was verified that the Reynolds number
does not influence the existence of a solution as long as Re > 0. However, the other non-
dimensional parameters showed an influence. To understand which type of influence and
which combinations of values are necessary to obtain a valid solution, different simulations
were performed, varying the parameters ε, ξ and β (Figure 14), and ε, ξ and the Weissenberg
number (Wi) (Figure 15).

Adopting fixed values for Re and Wi and varying the values of the other parameters
was obtained the Figure 14. The parameters interval adopted was 0 ≤ ε ≤ 2, 0 ≤ ξ ≤ 0.5
and 0.1 ≤ β ≤ 0.9. Figure 14 presents the Valid Solution Region (VSR) where it is possible
to obtain the solution of the flow for different values of β. The line pointed out as β = 0.1
shows the limits of a combination (ε, ξ) values where the solution is valid (VSR). The VSR
increases with β. For smaller values of β (higher polymer viscosity in the mixture), the
values of ε and ξ cannot be as large as, for example, the value of β being 0.9.
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Figure 14. Valid solution region for different β values with ε and ξ - Re = 1000 and Wi = 3.0.

To obtain Figure 15, values for Re and β were kept constant. For the parameter ε,
it was considered the interval (0, 0.75). For the ξ variation, it was maintained the same
variation performed for the Figure 14, and for the Weissenberg number, the values: 1, 2, 3, 5
and 10 were considered. Figure 15 presents the regions for the limitation of obtaining the
solutions. It can be observed that, for Wi = 1, it is possible to obtain solutions for small
values of the parameter ε, even for values of ξ greater than 0.2. On the other hand, as the
value of Wi increases, it is possible to observe that the solution becomes more sensitive for
smaller values of both ε and ξ. All solutions exist for parameter ε > 0.75.
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Figure 15. Valid solution region for different Wi values with ε and ξ - Re = 2000 and β = 0.5.

In general, the solution presented in this paper has limitations when considering
low values for β. This limitation is due to the impossibility, in these cases, of considering
a higher elongational viscosity for the LPTT model (low values of ε) and also a more
significant influence of the differences in normal stresses (higher values for the parameter ξ).
Therefore, in order to obtain solutions considering high elongational viscosity and also a
more significant influence of normal stress differences, it is necessary that the values for the
parameter β are higher than 0.3, as can be observed in Figure 14.

It is worth mentioning that the valid solution region considering channel flow was
also verified for pipe flow, and the results remain the same.

4. Conclusions

This paper presents a semi-analytical method for the laminar steady channel and
pipe flows of the LPTT fluid, with elongational and shear parameter variations. For the
verification of the proposed semi-analytical method, its results were compared with the
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Oldroyd-B model analytical solution, and the solution presented by Alves et al. [16] for
the LPTT model without solvent viscosity (β→ 0). The verification results obtained by the
semi-analytical method proposed in this work showed a good agreement compared to both
analytical solutions used as references.

The results presented explored the effect of the parameters ε and ξ on the velocity
profile and the non-Newtonian extra-stress tensor components. From the analysis, it was
possible to verify that the parameter ε reduces the impact of the tensor components on the
velocity profile when it is increased for a high Reynolds number.

The parameter ξ has the opposite effect on the maximum value of the streamwise
velocity component. As the value of this parameter increases, the velocity profile in the
middle of the channel (or pipe) decreases. On the other hand, the extra-stress tensor
components Txx and Txy (or Txr for pipe flows) decrease (in absolute value) as parameter ξ
increases. For the extra-stress tensor component Tyy (or Trr), its absolute value increases
with the parameter ξ. The solution for the simplified LPTT model, with ξ = 0, for this
tensor component is zero.

Another interesting behaviour was observed for the extra-stress tensor component
Txy (or Txr for pipe flows). Its maximum value moves towards the channel centre with a
specific combination of the parameters ε, ξ, and the Weissenberg number. It was observed
that the combination of high elongational viscosity, the high relationship between normal
stress differences, and high elasticity could be responsible for this behaviour.

It was explored for which values of the parameters are present in the flow, it is possible
to obtain the solution. In other words, the limitations of the presented solution were
explored.
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