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Abstract: Recycle and reuse of waste asphalt materials in the pavement industry has brought tremen-
dous contributions to the infrastructure sustainability and environmental preservation. The recent
literature has suggested a great potential of plasticizers to be used for rejuvenating the oxidated
paving asphalts. This study was aimed at assessing the rejuvenating effectiveness by rheological
characterizations of two typical plasticizers, dibutyl phthalate (DBP) and tributyl citrate (TBC), se-
lected based on the molecular structural differences. The underlying rejuvenating mechanisms were
approached using molecular dynamics (MD) simulation, for probing the interactions between the
plasticizers and oxidized asphaltenes and examining the outcomes in terms of deagglomeration. The
results indicated that both plasticizers were highly effective in restoring the stiffness and elasticity
properties as well as fatigue resistance of the aged asphalt. According to the simulations, the two
plasticizers were able to deagglomerate the asphaltene associations. Owing to the high polarity and
hydroxyl group, TBC appeared to be slightly more efficient in dissociating the asphaltenes, which
explained its higher effectiveness in restoring the rheological properties as compared to DBP. Both the
rheology and simulation results suggested that the plasticizers were rejuvenating instead of simply
softening the aged asphalt.

Keywords: asphalt rejuvenators; pavement sustainability; performance restoration; molecular interactions;
asphaltene deagglomeration

1. Introduction

Asphalt pavement is a resource-intensive infrastructure, due to its tremendous require-
ments for mineral aggregate as the load bearing skeleton and petroleum asphalt the binding
cement. Nowadays, this industry is faced with stricter regulations on environmental protec-
tion and resource preservation. Furthermore, the development and implementation of the
coking technologies has allowed refineries to reduce the asphalt yield, which raises the cost
of asphalt independent of the crude oil [1]. Fortunately, researchers and the industry have
developed various means to cope with this situation by reusing waste asphalt materials,
such as reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS), through
the application of rejuvenators and/or warm-mix technologies [2], for instance.

Despite the enormous environmental and economic benefits, the primary challenge
to reuse these waste asphalt materials lies in the fact that the asphalt cement has been
significantly oxidized. Incorporation of the aged asphalt has been shown to benefit the
rutting performance of asphalt pavement. However, the ductility and stress relaxation
properties tend to be negatively impacted, leading to pre-mature failures due to fatigue
or low-temperature cracking [3,4]. From the microscopic perspective, Petersen et al. [5–7]
conducted a systematic investigation into asphalt aging and proposed a dual mechanism:
the first stage characterized by a fast reaction due to the formation of sulfoxides and the
second by a slow and long-term reaction with the formation of ketones and alcohols. This
two-stage mechanism and the associated primary oxidative products were later confirmed
in a molecular simulation equipped with a reactive force field [8].
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An immediate consequence of oxidation is an increase in the heavy components,
typified by asphaltenes, at the cost of light fractions, such as saturates and aromatics [9].
Rejuvenators, derived primarily from petroleum and bio-oils, contain one or a few com-
ponents that may be classified by solubility as the SARA (saturates, aromatics, resins, and
asphaltenes) family similar with the paving asphalts [10]. Rejuvenators usually feature a
high proportion of light molecules that diffuse into the aged asphalts due to high mobility
so as to restore the compositional balance of the latter [11]. According to the NCAT catego-
rization [12], petroleum-based rejuvenators include the types of paraffinic oils, aromatic
extracts, and naphthenic oils. On the other hand, a variety of bio-oils have been evaluated in
the literature with respect to their rejuvenating effects, including those derived from seeds,
waste wood, waste cooking oil, and swine manure, to list a few [13–16]. The immediate im-
pacts and particularly the long-term effects of rejuvenators differ depending on the material
chemistry, which is in turn a function of their compositions and sources [17–19]. It has been
demonstrated that effective applications in aged asphalts were able to lower the stiffness,
increase the phase angle, and improve the resistance to fatigue and/or low-temperature
cracking [15,20,21]. At the micro- and nano-scale, the effective use of rejuvenators in some
cases seemed to be able to reverse the surface morphological changes induced by aging and
to dissociate the asphaltene agglomerations [18,19]. Additionally, it is worth mentioning
that rejuvenators do not chemically react with asphalts [13,21] and hence a reduction of
the typically used infrared indices (e.g., for carbonyl and sulfoxide groups) as reported
in some studies should be attributed to the physical diluting effect of rejuvenators. The
same reason of no chemical reactions also emphasizes that rejuvenators cannot reverse
the process of oxidation but instead they are aimed at reversing the impacts of aging on
engineering properties and performance [9].

Plasticizer refers to a substance that is commonly added to polymers (e.g., plastics
and rubber) to promote the flexibility and plasticity. The mechanism is associated with the
good compatibility at the molecular level such that the plasticizer molecules are embedded
between the polymer chains, thereby breaking down the interactions among the polymer
molecules [22]. Recently, a variety of plasticizers have been introduced into the paving
asphalts as modifiers and rejuvenators [23]. A cold resistant plasticizer, dioctyl adipate, has
been shown to effectively decrease the glass transition temperature of a base asphalt and
enhance the low-temperature crack resistance at the expense of reduced high-temperature
performance [24]. Song et al. demonstrated that adding a certain amount of polyphos-
phoric acid into the asphalts modified with plasticizers (dioctyl phthalate, and trioctyl
trimelliate) improved the stiffness and elastic recovery properties without sacrificing the
low-temperature performance [25]. Jamal et al. reported that Cereclor (essentially a paraffin
with a high percentage of chlorine) physically blended well with and significantly softened
the aged asphalt [26]. Evaluation of the rejuvenated asphalt mixtures further showed that
Cereclor substantially improved the fatigue performance while maintaining a satisfactory
moisture resistance. Zhu et al. assessed the effect of a compound rejuvenator consisting of
cotton oil and dibutyl phthalate on neat and polymer modified asphalts aged in the labora-
tory [27]. The results demonstrated pronounced benefits of the rejuvenator in restoring the
stiffness and crack resistance.

It has been well documented in the literature that different recycling agents may yield
different rejuvenating effects [28]. Some additives serve only as a supplement to the solvent
phase that is lost during aging; they do not engage in effective interactions with the asphalt
molecules and have been considered as softeners [9,29]. In contrast, rejuvenators are
expected to not only compensate the lost light fractions with adequate diffusion property
but also be capable of dispersing and deagglomerating the asphaltenes by interacting with
them [30].

Despite the limited studies up to the present, the existing findings have revealed
an effective softening role of typical plasticizers and their excellent compatibility with
asphalt materials. Some of them appear to be promising candidates for recycling oxidized
asphalts but their rejuvenating effectiveness warrants further evaluation. In particular, the
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underlying mechanism has remained largely unclear at the molecular level, and whether
they would function as rejuvenators or softeners remains to be investigated. The present
study is aimed at evaluating the rejuvenating potential of two common plasticizers by
rheological characterizations and to investigate the rejuvenating mechanisms by probing
their interactions with the asphaltene molecules via molecular dynamics (MD) simulation.

2. Materials and Rheological Evaluation Methods
2.1. Materials

The asphalt binder used in this study was a 90# penetration grade petroleum asphalt,
with a penetration of 84.0 (0.1 mm) at 25 ◦C, a softening point of 49.2 ◦C, and ductility of
142 cm at 15 ◦C. Laboratory aging was conducted using the Rolling Thin-Film Oven (RTFO)
according to AASHTO T240 [31], followed by the pressurized aging vessel (PAV) at 90 ◦C
under a pressure of 2.1 MPa for 20 h according to AASHTO R28 [32]. Two plasticizers were
selected for investigation with respect to their rejuvenating potential: dibutyl phthalate
(DBP) and tributyl citrate (TBC). The dosages used were 1%, 3%, and 5% for DBP and 1%,
2%, and 3% for TBC, by weight of the aged asphalt.

DBP is a conventional phthalate ester widely used to manufacture plastics for daily
life products, such as shower curtains, raincoats, food wraps, and vinyl fabrics, to name a
few. It is acknowledged that DBP may pose potential risks to human health and its use in
consumer products has been limited by regulations, but recent scientific evidences indicated
that the risks are very low [33]. TBC is a citrate ester that provides a more environmentally
friendly alternative to phthalates in applications, such as cosmetics, toys, pharmaceutical
coatings, and food contact films. Selection of the two plasticizers was further based on
considerations regarding the molecular structural differences to be described later.

2.2. Rheological Characterization

The effects of the plasticizers in restoring the rheology of the aged asphalt were
investigated using the frequency sweep and linear amplitude sweep (LAS) tests in an
Anton Paar MCR302 dynamic shear rheometer. Given the low test variability typically
observed, two replicates were prepared for each test condition.

The frequency sweep was conducted from 0.1 to 100 rad/s at a series of temperatures
ranging from 55 to 0 ◦C. The strain was controlled at 0.1% for the material deformation
within the linear viscoelastic region. Two sets of parallel-plate geometry were utilized: a
diameter of 8 mm with a gap of 2 mm for temperatures below 35 ◦C and a diameter of
25 mm with a gap of 1 mm for above. The test data were processed to construct master
curves of the shear modulus and phase angle to inspect the impacts of the plasticizers on
linear viscoelastic characteristics.

The LAS test was performed at an intermediate temperature of 20 ◦C and a fixed
frequency of 10 Hz, using the diameter of 8 mm with a gap setup of 2 mm. The strain
amplitude increased linearly from 0.1% to 30% over three different cycle numbers: 3000,
6000, and 9000. The data were analyzed using the viscoelastic continuum damage (VECD)
model for evaluating the effects of the plasticizers on fatigue performance [3,34].

2.2.1. Linear Viscoelastic Properties

The frequency sweep test data at different temperatures were shifted to establish a
master curve for the shear modulus at a reference temperature. The Christensen–Andersen
(CA) model was then used to fit the curve [35]:

|G∗| = Gg[1 + (ωc/ωr)
(log 2)/R]

−R/ log 2
(1)

where |G*| denotes the dynamic shear modulus, i.e., magnitude of the complex shear
modulus G*; Gg is glassy modulus; R is rheological index; ωc is crossover angular frequency;
and ωr is the reduced angular frequency that is related to the physical angular frequency
by ωr = ωaT, where aT is the time-temperature shift factor.
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Additionally, based on the master curves for |G*| and phase angle, the Glover-Rowe
(G-R) parameter can be determined. It was shown to be closely related with the ductility of
asphalt measured at 15 ◦C and 1 cm/min [36,37], and has been widely used as a convenient
indicator in assessing the crack resistance of (rejuvenated) asphalts [19,38]. This parameter
is defined as

G-R =
|G∗| cos2 δ

sin δ
(2)

where δ is phase angle, and note that both |G*| and δ are evaluated at 15 ◦C and 0.005 rad/s.

2.2.2. Fatigue Performance

The LAS test data were processed to provide damage characteristic relationship,
Equation (3), failure criterion, Equation (4), and the predictive equation for fatigue life,
Equation (7). For better understanding the model development and significance, refer to
the work by Cao and Wang [3,34]. The following briefly lists the key relationships that
constitute the model framework.

The damage characteristic relationship is expressed as

C = 1− aSb (3)

where C is the normalized dynamic shear modulus measuring the material integrity, S is
an internal variable indicating the damage intensity, and a and b are regression constants.

The failure criterion reads
WR

sum = λ·SEµ (4)

with

WR
sum =

∫ N f

0

1
2

DMR·Ci(γi·|G∗LVE|)
2dN (5)

SE =

N f

∑
i=1

γi

|G∗LVE|
2 (6)

where WR
sum is accumulated pseudo-strain energy; SE stands for straining effort; DMR

denotes dynamic modulus ratio representing the sample-to-sample variability; γi is strain
amplitude of the i-th test cycle; |G*

LVE| is the linear viscoelastic shear modulus corre-
sponding to the LAS test condition (temperature and frequency); Nf is the number of cycles
to failure identified at the peak of C2 × N × (1 − C) where N is the LAS cycle number; and
λ and µ are regression constants.

The fatigue life predictive equation for a given strain level γ0 is written as

λ
(

N f

)µ−1
− 1

2
γ

2−µ
0 |G∗LVE|

2−2µ
[

1− aMb 1
1 + b/k

(
N f

)b/k
]
= 0 (7)

with the intermediate variables defined as

M ≡
[

ab
2
(γ0·|G∗LVE|)

2
]α/k

(kQ)1/k (8)

and {
Q ≡

∫ 2π/ωr
0 sin2α(ωrξ)dξ

k ≡ 1 + α− bα
(9)

where α is damage evolution rate identified from the |G*| master curve, and ξ is re-
duced time.

The Nf versus γ0 data pairs are then plotted in the double-logarithmic space to yield
the so-called failure envelope, which provides a direct measure and convenient comparison
of the fatigue resistance for asphalt binders.
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3. Molecular Dynamics Simulation Approach

Compared to other components in the asphalt system, asphaltenes are known to have
a higher tendency to self-associate forming nano- and even macro-agglomerates. MD
simulations have been performed to visualize the self-interactions among the asphaltenes
and examine the dissociating potential of various rejuvenators in a solvent environment
provided by heptane and/or toluene [39,40]. The asphaltene-thiophene proposed by
Li and Greenfield based on Mullins’ work was selected as the model molecule for the
asphaltenes [41,42]. Since ketones and sulfoxides are the major oxidation products formed
at the benzyl carbons and alkyl/aryl sulfides, respectively, the virgin structure was modified
accordingly to represent the oxidized counterpart, as shown in Figure 1a.
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Figure 1. Molecular structures of (a) the asphaltene and (b,c) plasticizers used in simulation.

The molecular structures of the two plasticizers, Figure 1b,c, feature the presence of
polar ester groups that would help to promote their compatibility and interaction with
asphalt molecules [43]. TBC contains three ester groups and an additional hydroxyl group
that may form hydrogen bonds with oxidized asphalts. In contrast, DBP has only two
ester groups and thus a much lower polarity, with an electric dipole moment of 0.91 Debye
(compared to 2.73 Debye for TBC). Nevertheless, the presence of the benzene ring in DBP
is expected to cause aromatic-aromatic interactions (π-stacking) with the polyaromatic
structures abundant in asphaltenes [40]. Despite the environmental concerns related to
the use of DBP, this phthalate ester was included mainly for the purpose of elucidating
how the structural differences in the two plasticizers would impact their interactions
with the asphaltenes. The finding is expected to assist in the selection and development
of rejuvenators.

The simulation was carried out using the Gromacs package (version 2021.2) [44] in
conjunction with the general Amber force field (GAFF) [45] that has been shown to provide
reasonable predictions for some physical properties of asphalts [46]. As the reference sys-
tem, a total of 16 oxidized asphaltene molecules and 500 heptane molecules were randomly
placed in a cubic box with a dimension of 7.0 × 7.0 × 7.0 nm3. In the rejuvenated systems,
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another 16 DBP or TBC molecules were added into the reference system. These initial
systems were then subjected to a four-step process to reach equilibration, as illustrated in
Figure 2:

Step 1: Energy minimization, using the steepest descent algorithm with the maximum
number of steps set to 50,000;

Step 2: Annealing, following a triangular temperature profile covering the range from 300
to 800 K. The ending temperature was set at 500 K, the same temperature used for
the subsequent dynamics run. The canonical NVT ensemble (constant value for
the number of particles, volume, and temperature) was used for this stage;

Step 3: Dynamics run, for a period of 600 ps under 500 K using the NVT ensemble;
Step 4: Dynamics run, for a period of 2 ns to equilibrate the system under the room tem-

perature and atmospheric pressure using the NPT ensemble (constant value for the
number of particles, pressure, and temperature). The densities of all the molecular
systems evaluated were found to stabilize within 600 ps.
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Figure 2. The four-step process used to equilibrate the molecular systems.

Subsequent to the equilibration, a further NVT ensemble (298.15 K) was applied to
each system for 20 ns to generate the steady-state data, for analyses using the mean squared
displacement, radial distribution function, aggregation number, and order parameter.
For all simulation stages, the velocity rescaling algorithm was adopted for temperature
coupling, and the Berendsen barostat was employed for the NPT ensemble. The short-range
cut-off distances for both the electrostatic and van der Walls interactions were set at 2.0 nm.
For the long-range electrostatic interactions, the particle-particle-particle-mesh algorithm
was applied.

4. Results and Discussions

This section presents the results from the rheological characterization and MD simula-
tion. Discussions are provided regarding the rejuvenating potential of the two plasticizers
and also with respect to how the structural differences of the plasticizer molecules would
influence their interactions with the asphaltenes.

4.1. Rheological Performance
4.1.1. Linear Viscoelastic Characteristics

Figure 3 provides the frequency sweep test results at a reference temperature of 20 ◦C
for the aged asphalt with different percentages of the plasticizers. The results for the virgin
binder were also included for comparison. Both DBP and TBC demonstrated effective
rejuvenating effects as they consistently lowered the stiffness, while restoring the phase
angle with increase in the dosage. Use of 5% DBP was seen to over soften the aged asphalt,
as indicated by the resulting modulus master curve lying under that of the virgin across
the full range of reduced frequency in Figure 3a.
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It is interesting to note that as compared to the virgin, the two plasticizers with a
blending dosage of 3% were able to bring the stiffness of the aged asphalt down to a
similar level in the low reduced frequency range (corresponding to high temperature),
while providing similar or slightly lower phase angles. Meanwhile, in the high reduced
frequency range (corresponding to low temperature), the rejuvenated stiffness was lower
than that of the virgin but the phase angles were similar or slightly higher. In general, at
high temperatures a higher stiffness associated with a lower phase angle (meaning a higher
elasticity) is desired for resisting permanent/plastic deformation. At low temperatures a
lower stiffness with a higher phase angle (suggesting a higher capability of stress relaxation)
is preferred for resisting cracking. On the basis of these concepts, with an appropriate
blending dosage into the aged asphalt, the two plasticizers appeared to be able to restore the
low-temperature performance without sacrificing the high-temperature rutting resistance as
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compared to the virgin. It is worth mentioning that both DBP and TBC are low-temperature
resistant plasticizers and have been exploited to improve the low-temperature flexibility of
polymer materials in the industry [47]. Additionally, for the asphalt evaluated in this study,
the laboratory aging treatment and use of the plasticizers did not have significant impacts
on the time-temperature shift factors.

Figure 4 presents the G-R parameters for the asphalt binders. As a lower G-R value
corresponds to a higher ductility that is desired for crack resistance, the two plasticizers
demonstrated pronounced benefits in improving the cracking performance of the aged
asphalt. Incorporation of 5% DBP was able to render the aged binder even more crack
resistant than the virgin. On the other hand, a comparison between the two plasticizers at
the same dosages of 1% and 3% suggested that TBC was more efficient in reducing G-R.
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Figure 4. The G-R parameter results.

4.1.2. Fatigue Performance

The LAS test results were processed to first obtain the damage characteristic relation-
ships, as shown in Figure 5. The C(S) function essentially prescribes the path along which
a linear viscoelastic material follows, in the sense that the material loses the structural in-
tegrity as a result of damage evolution in the form of microcracking [2]. In general, the C(S)
curves are positioned from top to bottom in the decreasing order of material stiffness (at the
intact state) due to its involvement in the calculation of S [3]. For this reason, the position
arrangement of the C(S) curves cannot be simply used to evaluate the fatigue performance.
Rather, the relationships need to be further utilized to perform fatigue simulations using
Equation (7).
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Figure 5. The damage characteristic relationships for evaluating the effects of (a) DBP, and (b) TBC.

Figure 6 presents the obtained failure envelopes (relationships between the predicted
fatigue life and the strain amplitude) for the asphalt binders. Use of both plasticizers
substantially enhanced the fatigue resistance by shifting the envelopes upward, which is
consistent with the observations based on the G-R parameter. Incorporation of 1% DBP and
TBC into the aged asphalt yielded similar fatigue lives at the strain level of 2%, comparable
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to that of the virgin binder. Use of 3% and beyond led to better performance than the
virgin for all the strain conditions in the case of both plasticizers. A close inspection further
indicates that TBC again demonstrated a slightly higher efficiency in restoring the fatigue
performance at the same dosages compared to DBP.
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A synthesis of the previous observations based on the master curves of modulus and
phase angle, the G-R parameter as well as the fatigue performance suggests that in order
to determine the optimum dosages, 3% appeared to be a proper starting point for both
plasticizers. This incorporation percentage is much lower than those typically required for
conventional rejuvenators but would increase with the severity of aging [19]. The rejuvenat-
ing effectiveness and the optimum dosages of the plasticizers should be further ascertained
in a systematic experimental program that may involve performance evaluations related
to rutting, low-temperature cracking, fatigue, moisture susceptibility, and perhaps even
the long-term performance of the rejuvenated asphalts [29,48]. Depending on the findings,
additional additives, such as anti-stripping and anti-oxidant agents, may be considered
whenever necessary [49,50].

4.2. MD Simulation Results

The rheological performance of the two plasticizers in terms of restoring the stiffness,
phase angle, and crack resistance of the aged asphalt seemed to suggest that they were
indeed rejuvenating instead of simply softening the asphalt [9,29]. In order to further
corroborate this hypothesis, the MD simulation was necessitated to visualize the molecular
interactions between the rejuvenators and the oxidized asphaltenes.

4.2.1. Mean Squared Displacement

The mean squared displacement (MSD) provides a time-dependent measure of the
spatial extent that is “explored” by the asphaltene molecules due to diffusion, defined as

MSD(t) =
1
N

N

∑
i=1
|ri(t)− ri(0)|2 (10)

where N is the total number of particles to be averaged, and ri(0) and ri(t) denote the
position vectors of the i-th particle at time 0 and t, respectively.

Figure 7 provides the time histories of MSD for the aged asphaltenes with and without
the plasticizers equilibrated at the normal condition of 298.15 K and atmospheric pressure.
Introduction of DBP promoted the mobility of the aged molecules, as evidenced by the
longer distances travelled at a given time, especially at times beyond 5 ns. On the contrary,
TBC appeared to slow down the diffusion of the aged asphaltenes, which can be ascribed
to its higher polarity than DBP. The higher molecular polarity of TBC due to the presence of
three ester groups were expected to result in stronger interactions with the asphaltenes [43].
Further, the hydroxyl group provided additional contributions by forming hydrogen
bonds between TBC and asphaltenes and also among the TBC molecules themselves (as
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per the typical distance and angle criteria of 3.5 Å and 30◦, respectively), as shown in
Figure 8. These combined factors created spatial hindrance in the random movement of the
asphaltenes at the room temperature condition. No hydrogen bonding was noted between
DBP and asphaltenes due to the absence of hydrogen donors.
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Figure 8. Snapshot of the simulation box consisting of aged asphaltenes, TBC, and heptane
(not shown).

Since diffusion is a physical property that is highly promoted by temperature rise, it
was of interest to examine and compare the diffusion behaviors at higher temperatures. For
this purpose, each molecular system was equilibrated at higher temperatures of 373.15 K
and 423.15 K, by revising accordingly the coupling temperature in the NPT ensemble
of the four-step process, as shown earlier in Figure 2. Similarly, the MSD histories were
obtained using the data produced from the subsequent NVT ensemble, and the slope was
employed to determine the diffusion coefficient by a factor of 1/6 according to the Einstein
relation [51]. Figure 9 illustrates the dependence of the diffusion coefficient of asphaltenes
on temperature and also the Arrhenius fits [52]

D = D0e−
Ea
RT (11)

where D denotes the diffusion coefficient, Ea is activation energy, R is the universal gas
constant (8.314 J/mol/K), T is temperature, and D0 the diffusion pre-factor.
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Figure 9. The temperature dependence of the diffusion coefficient and the Arrhenius fits.

In general, the Arrhenius relationship reasonably described the temperature-dependent
diffusion of asphaltenes in all the molecular systems. The addition of DBP increased consis-
tently the mobility of asphaltenes at all temperatures. It is interesting to note that despite
the slowest diffusion at 298.15 K, use of TBC led to the highest D-values at higher tempera-
tures. It is indicated that the temperature increase allowed the asphaltenes to overcome
and escape from the energy barrier created by their strong interactions with TBC.

4.2.2. Radial Distribution Function

The radial distribution function (RDF), g(r) is defined as the ratio of the local number
density of particles at a distance r away from a reference particle, ρ(r), to the average (bulk)
number density of particles in the system, ρ [53]

g(r) =
ρ(r)

ρ
(12)

The RDF itself is not a probability distribution, but it provides the most probable
distances between the asphaltene pairs with and without the interference of plasticizer
molecules. In general, g(r) is calculated as an average over a thermodynamic ensemble.
Integration of g(r) on spherical shells over the radius r gives the coordination number N(r),
or the number of neighboring particles

N(r) =
∫ r

0
ρg(r)4πr2dr (13)

Figure 10 gives the RDF and coordination number results for the three molecular
systems. For all the cases, two closely separated peaks were identified within the distance
range below 6 Å, representing the (offset) parallel stacking configuration of the asphaltenes,
as shown in Figure 11. Specifically, use of TBC slightly shifted the first peak toward the
lower distance by approximately 0.4 Å, and DBP shifted the second peak toward the longer
distance roughly by 1.0 Å. Both plasticizers were able to reduce the RDF peaks at the
ranges within 6 Å as well as between 8 and 10 Å, as also reflected in the coordination
number curves. On average, the plasticizers dispersed and dissociated the asphaltenes by
decreasing the number of surrounding asphaltenes with respect to a reference.
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Figure 11. Configurations of the asphaltene agglomerates for different ranges of COM distances.

It was worth mentioning the agglomerate configuration for the RDF peak appearing
between 8 and 10 Å in the aged system. Even though the literature reported that it was
in general due to T-shaped stacking [54], our simulation demonstrated that this peak was
mostly attributed to the distance between the two outer monomers in a parallel stacking
trimer configuration, as shown in Figure 11.

4.2.3. Aggregation Number

The aggregation number provides a direct quantification for the degree of self-association
of the asphaltene molecules, defined as [40]

gz = ∑
i

nig3
i / ∑

i
nig2

i (14)

where gz is the z-average aggregation number, and ni is the number of agglomerates con-
taining gi monomers. A higher gz suggests a higher degree of self-association of asphaltenes.
For the systems considered in this study with a total of 16 asphaltene molecules, gz would
vary between 1 (the asphaltenes all separate from each other, not forming any agglomerates)
and 16 (all the molecules agglomerate to form a single cluster). Figure 12 provides the
time histories and distributions of the aggregation number over the 20 ns NVT ensemble
dynamics run.
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Figure 12. The aggregation number results: (a) time histories, and (b) distributions.

As illustrated in Figure 12a, none of the molecular systems attained a gz-value of 1 or
2, indicating that the self-association of asphaltenes always occurred to a greater or lesser
extent. According to the distributions shown in Figure 12b, the asphaltene aggregation state
in the aged system was dominated by aggregation numbers below 8 for which roughly
80% of the states were characterized by small (gz < 4) and intermediate agglomerates
(4 < gz < 6). The addition of DBP effectively reduced the number of moderately large
(6 < gz < 8) agglomerates. This effect can be attributed to the benzene ring present in the
DBP molecule that interacted with the asphaltene aromatic cores, limiting their growth
into larger agglomerates [40]. Use of TBC appeared to encourage the formation of large
agglomerates (gz > 8), corresponding to the slight shift of the first RDF peak to shorter
distances, as previously noted in Figure 10. This observation was presumably due to the
aforementioned strong interactions between TBC and asphaltenes as well as among the
TBC molecules themselves. Nevertheless, this adverse impact appeared to be insignificant.
Compared to the aged system, the percentage of gz < 6 was approximately the same,
but TBC demonstrated a significant deagglomerating effect in increasing the share of
small associations.

4.2.4. Order Parameter

An order parameter, as the name suggests, measures the degree of order across the
system. Its definition varies depending on the specific phenomenon under consideration
and has been used frequently in dealing with phase transition and magnetization [55,56].
It is recognized that the previous three MD parameters describe physical characteristics
of the asphaltenes all based on the particle-wise considerations. The interactions among
the asphaltenes in general tend to form stacking and T-shape configurations [39], which
suggests that the molecular orientation should also be taken into account as an important
complement in characterizing the aggregation behavior.

In this study, the orientational order parameter was employed to investigate the
orientational distribution of the asphaltene molecules, defined as

ϕ =
1
2

(
3
〈

cos2 θ
〉
− 1
)

(15)

where ϕ denotes the order parameter, θ is the inclination angle of a specific molecule with
respect to a reference direction, and 〈〉 denotes average over all the molecules. For any
system snapshot, the best-fit plane for each asphaltene molecule was first identified using
the coordinates of the aromatic carbons. The angles formed between the planes and the
z-axis were then averaged to obtain the reference orientation, which was then substituted
into Equation (15) to determine the order parameter for each frame. According to the
definition, a set of perfectly aligned asphaltenes corresponds to an order parameter of
unity, while increase in the randomness of the molecular orientations would reduce the
order parameter.

Figure 13 presents the distributions of the order parameter for the three molecular
systems. The asphaltenes in the aged system provided a distribution skewed toward
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the unity, which evidenced that the molecules tended to be highly ordered in terms of
orientation, promoting the formation of parallel stacking agglomerates. Introduction of
DBP shifted the distribution toward lower ϕ-values and in the meanwhile widened the
spread of the order parameter. Recall in Figure 12b that DBP was able to dissociate the
aged asphaltenes into intermediate agglomerates, which had a higher degree of freedom
to assume different orientations, hence the increased range of ϕ. TBC had a negligible
impact on the range of ϕ but exhibited a higher effectiveness in shifting the distribution
toward the lower end, i.e., reducing the degree of orientational orderliness. The strong
molecular polarity and the hydroxyl group allowed TBC to be more capable of interfering
with asphaltenes and promoting the randomness of their orientations, thereby hindering
the parallel stacking.
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5. Conclusions

This study selected traditional and environmentally friendly plasticizers based on
the molecular structural discrepancy and investigated their potential in rejuvenating the
oxidatively aged paving asphalts from the rheological and molecular perspectives. The
following summarizes the key conclusions drawn based on the findings:

• The two plasticizers were both highly effective in softening the aged asphalt. As
interred from their impacts on the dynamic shear modulus and phase angle master
curves, incorporation of appropriate dosages of DBP or TBC were able to retore the
low-temperature performance to a level comparable to the virgin asphalt without
sacrificing the stiffness and elasticity properties required at high temperatures;

• Increase in the blending dosages of both plasticizers consistently improved the fatigue
resistance of the aged asphalt. At the same dosages of 1% and 3%, TBC demonstrated
a slightly higher effectiveness than DBP in restoring the fatigue performance by
providing lower G-R values and higher fatigue lives;

• Compared to DBP, TBC provided stronger interactions with the aged asphaltenes due
to the presence of three polar ester groups and a hydroxyl group that formed hydrogen
bonds with the latter. The stronger interactions hindered the mobility of asphaltenes
at the room temperature condition but temperature rise enabled the asphaltenes to
overcome the energy trap. At higher temperatures, TBC promoted the mobility by
yielding the highest diffusion coefficients of the asphaltenes;

• Analyses based on RDF and order parameter indicated the deagglomerating effects
of both plasticizers. They dispersed and dissociated the asphaltenes by decreasing
the number of molecules surrounding a reference and by promoting the orientational
randomness of asphaltene molecules so as to weaken the formation and growth of
parallel stacking agglomerates;

• The benzene ring structure present in DBP allowed aromatic interactions with the
cores of asphaltenes, limiting their growth into larger agglomerates; the resulting
aggregation state was dominated by intermediate-sized agglomerates according to
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the aggregation number results. Owing to its high polarity and hydroxyl group, TBC
exhibited a slightly better deagglomerating effect as it yielded a higher percentage of
small agglomerates and on average a lower orientational orderliness of the asphaltenes.
This observation helped to shed light on the higher rejuvenating effectiveness of TBC
as noted in the rheological performance.

The rheological characterizations suggested that the two plasticizers were rejuve-
nating, not simply softening the aged asphalt, while the MD simulation indicated that
the rejuvenating effects were ascribed to the plasticizer molecules being able to disperse
and dissociate the asphaltenes. Future study is needed to assess the rejuvenating effects
from different performance perspectives and to optimize the incorporation dosages. Addi-
tional effort may be devoted to the long-term rejuvenating effectiveness of the plasticizers,
considering the possible oxidation and volatilization of the rejuvenator molecules.
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