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Abstract: In this study, an antagonistic actuator using dielectric elastomer actuators (DEAs) is
developed to investigate the use of rolled DEAs in underwater robots. The actuator consists of a
backbone, an elastic hinge, and two rolled DEAs placed in an antagonistic fashion, allowing for
the generation of bidirectional movements of the actuator tip. To prove this concept, an analytical
model of the actuator is built. The experimental samples are fabricated based on the specification
determined by the model. In the fabricated actuator, each rolled DEA has a diameter of 6 mm and a
length of 21 mm. The whole device weighs 1.7 g. In the tested voltage range of 0–1200 V, the actuator
exhibits a voltage-controllable angle and torque of up to 2.2◦ and 11.3 mN·mm, respectively. The
actuator is then implemented into a swimming robot, which shows forward speed of 0.9 mm/s at the
applied voltage of 1000 V and the driving frequency of 10 Hz. The results demonstrate the feasibility
of using rolled DEAs in underwater robots.

Keywords: dielectric elastomer actuators; soft robotics; underwater robots; biomimetic robots

1. Introduction

Dielectric Elastomer Actuators (DEAs) are a promising soft actuator technology in
the field of soft robotics [1–4], which has received a significant research effort in recent
years [5–8]. DEAs are a type of electrostatic actuator that work by converting electrical
energy into mechanical energy. They are usually composed of an elastomeric membrane
and two compliant electrodes placed on both sides of the membrane. Under application
of a high voltage (a few kV), the electrostatic force between the electrodes squeezes the
membrane in the thickness direction and expands it in the planar direction. The features
of DEAs are represented as: high compliance, large active deformation, fast response,
and high energy density [9–11]. Moreover, their characteristics are similar to those of
mammalian muscles [11].

As an application of DEAs, biomimetic underwater robots have been a topic receiving
much research effort. The reason behind this is that the features of DEAs, such as com-
pliance and large deformation, are thought to be suitable for mimicking the structures
and swimming behavior of fish leading to a realization of advanced underwater systems.
Moreover, the simplicity of the structure allows applying DEAs to diverse morphologies.
In these contexts, researchers have developed DEA-based biomimetic underwater robots in
different forms such as fish [12,13], jellyfish [14–18], ray [19], eel [20,21], cephalopod [22],
and frog [23].

In DEA-based swimming robots, the configuration of the actuator plays an important
role in determining the resulting locomotion characteristics. As a configuration of DEAs, the
rolled type has several features, which are expected to be effective for the underwater robots.
This type of DEA configuration exhibits muscle-like linear actuation and is relatively easy
to perform scaling when compared to other configurations [24–27]. However, to the best of
our knowledge, no study is conducted on the use of rolled DEAs for underwater robots.
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The aim of this study is to investigate the use of rolled DEAs for underwater robots.
For this purpose, we propose and develop an antagonistic actuator shown in Figure 1.
It has a rigid backbone, an elastic hinge, and two rolled DEAs placed in an antagonistic
fashion. The entire architecture of the actuator is inspired by the endoskeletal structures
of fish, where muscles are placed across a backbone. In the actuator, the rolled DEAs are
pre-stretched so that the tip is centered under no voltage. When a voltage is applied to
one of these DEAs, the activated part extends while the other one shrinks, resulting in a
bending deformation of the hinge; therefore, an angular displacement of the tip. Alternate
actuation of each DEA allows for bidirectional movements, which we assume are suitable
for underwater locomotion, given many fish swim with symmetric deformation of a fin.
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Figure 1. Structure and working principle of the antagonistic actuator proposed in this study.

In the rest of this paper, we first construct an analytical model of the actuator. After
that, we fabricate and characterize the actuator samples to clarify their actuation behaviors.
Subsequently, we develop a fish-type underwater robot and test it in a water environment
to demonstrate the applicability of the proposed actuator. Finally, we discuss and conclude
the results.

2. Working Principle and Model

As mentioned previously, the actuator has two rolled DEAs. One side of the DEAs
are fixed to the base part, and the other side is connected to the tip via a ribbon. In the
actuator, the DEAs are pre-stretched. The backbone and tip are connected with an elastic
hinge. When a voltage is applied to one of the DEAs, it is elongated while the other one is
contracted. This causes the elastic hinge to bend, which in turn rotates the tip.

In order to predict the behavior of the actuator for the design purpose, we built an
analytical model. In this model, the tip angle θ is calculated with respect to the applied
voltage to the DEAs. θ is determined from the minimum value of the total potential energy
in the actuator Utotal. The condition for minimizing Utotal is,

∂Utotal
∂θ

= 0 and
∂2Utotal

∂θ2 > 0 (1)

Utotal consists of the following terms,

Utotal = UstrainDEAa
+ UelectricDEAa

+UstrainDEAb
+ UelectricDEAb

+Uribbon_a + Uribbon_b + Uhinge

(2)

where Ustrain_DEA_a and Ustrain_DEA_b are the strain energy of the DEA on side a and b,
respectively. Similarly, Uelectric_DEA_a and Uelectric_DEA_b are the electrostatic energy of the
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DEA on each side, and Uribbon_a and Uribbon_b are the elastic energy of the ribbons. Uhinge is
the elastic energy of the hinge. In the model, each of these energies is derived as a function
of θ.

In order to express the energies related to the DEAs, the coordinates of the points in
the schematics, shown in Figure 2a,b are obtained. When the actuator generates a tip angle
θ, the following relationship can be established between the radius of curvature r and the
length of the hinge lhinge.

rθ = lhinge (3)
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Using the auxiliary line shown in Figure 2a, the coordinates of point A is expressed as:

A =

[
−r(1− cos θ)

r sin θ

]
=

[
− lhinge

θ (1− cos θ)
lhinge

θ sin θ

]
(4)

The coordinates of point B can be obtained using the thickness of the hinge hhinge and
the width of the fixing parts w as follows:

B

∣∣∣∣∣∣= A +

( hhinge
2 + w

)
cos θ( hhinge

2 + w
)

sin θ


∣∣∣∣∣∣=
− lhinge

θ (1− cos θ) +
( hhinge

2 + w
)

cos θ
lhinge

θ sin θ +
( hhinge

2 + w
)

sin θ

 (5)
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Then, based on the auxiliary line represented in Figure 2b, the angle of ribbon θa can
be expressed by using its length lribbon:

θa = cos−1

 hhinge
2 + 2w− Bx

lribbon

 (6)

The coordinates of point C become,

C =

[
2w( lhinge

θ +
hhinge

2 + w
)

sin θ − lribbon sin θa

]
(7)

Given that the initial angle is θ = 0, θa0 is given as,

θa0 = cos−1
(

w
lribbon

)
(8)

The initial position C0 can be expressed as,

C0 =

[
2w

lhinge − lribbon sin θa0

]
(9)

The displacement ∆lDEA is then obtained as,

∆lDEA = Cy − Cy0 (10)

The elastomer of the DEA is known to be incompressible and the following relationship
can be established:

λ1λ2λ3 = 1 (11)

Here, λi represents the stretch in the three directions illustrated in Figure 2c. Let
lDEA0, wDEA0, and hDEA0 be the length, width, and thickness of the DEA before rolling,
respectively. Similarly, let lDEA, wDEA, and hDEA be their value in a deformation state.
Using these parameters, the stretches of the DEA can be expressed as:

λ1 =
lDEA

lDEA0
, λ2 =

wDEA

wDEA0
, λ3 =

hDEA

hDEA0
(12)

In the model, the DEA is assumed to be a solid cylinder, meaning that the radial strains
λr are equal during deformation. This assumption is also verified in the literature for rolled
DEAs [28]. The following relationship holds from Equation (11) as follows:

λ1λ2λ3 = λ1λ2
r = 1 (13)

From this, the radial strain λr can be obtained as: λr = 1/
√

λ1. As mentioned
previously, the DEAs are pre-stretched in the actuator. Based on the pre-stretch in the
single-axis direction λ1p, the radial pre-stretch λrp is given as: λrp = 1/

√
λ1p. In addition,

the dimensional parameters of the pre-stretched DEA are:

lDEAp = λ1plDEA0, wDEAp = λrpwDEA0, hDEAp = λrphDEA0 (14)

Consider that a voltage is applied to the DEA on side a, its displacement ∆lDEA_a is:

∆lDEA_a = lDEA_a − lDEA_ap (15)

Here, the following relationship holds from Equation (10),

lDEA_a(θ) = lDEA_ap + Cy(θ)− Cy0 (16)
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The stretch λ1a of the DEA on side a can be expressed as a function of θ from
Equations (12) and (14) as follows:

λ1a(θ) =
lDEA_a(θ)

lDEA_a0
= λ1p +

Cy(θ)− Cy0

lDEA_a0
(17)

Since the stretch λ1b of the DEA on side b changes opposite to the other side, it is
given as:

λ1b(θ) = λ1p −
Cy(θ)− Cy0

lDEA_a0
(18)

To calculate the strain energy of DEAs, the Yeoh hyperelastic material model [29] is
used, in which the strain energy density function W is given as follows:

W =
3

∑
i=1

Ci(I1 − 3)i (19)

where Ci is the material constant and I1 = λ2
1 + λ2

2 + λ2
3. From Equations (17) and (18), the

strain energy of Ustrain_DEA can be expressed by the following equation:

UstrainDEA(θ) = vol·
3
∑

i=1
Ci(I1(θ)− 3)i

I1(θ) = {λ1(θ)}2 + 2
λ1(θ)

vol|= lDEA0wDEA0hDEA0

(20)

Since the DEA has a capacitor-like structure, the electrostatic energy Uelectric_DEA under
an applied voltage V is:

Uelectric_DEA = −1
2

CDEAV2 = −1
2

ε0εr
Se

dDEA
V2 (21)

Here, CDEA is the capacitance, Se the electrode area, dDEA, the distance between the
electrodes, ε0 the vacuum permittivity, and εr is the dielectric constant of the elastomer. Se
and dDEA change depending on the strain of the DEA. The electrostatic energy is negative
because the applied voltage is inputted from outside the DEA.

In the rolled DEA employed in this study, the inner and outer dielectric layers overlap
to form a single dielectric layer. Since the polarity of the electrode layers on both sides is
different, an electric field is generated in the overlapping dielectric layer and it functions as
a DEA. Therefore, the electrode area of the DEA is twice the area of the electrode before the
roll, minus the area of the electrodes on the inner and outer parts of the structure where no
electric field is generated.

As shown in Figure 2c, consider a DEA with an initial length and width as le0 and we0,
respectively, and a margin of wm. After rolling, the DEA has a cylindrical shape with inner
diameter rin0, outer diameter rout0, and height lDEA0. By using λ1 and λ2, the electrode area
Se0 can be expressed as:

Se = 2λ1λ2le0{we0 − π(rin0 + rout0) + wm} (22)

The distance between the electrodes de can be expressed as dDEA = λ3dDEA0 using
its initial value de0 and λ3. Then, Uelectric_DEA can be obtained as a function of θ from
Equations (21) and (22) as follows:

Uelectric_DEA(θ)| = − 1
2 ε0εr

Se
de

V2∣∣∣= −ε0εr
λ1(θ)le0{we0−π(rin0+rout0)+wm}

de0
V2 (23)
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From the volume vol of the DEA in Equation (20), the following relationship is estab-
lished for the inner diameter rin0 and outer diameter rout0 of the DEA:

vol = lDEA0π
(

r2
out0 − r2

in0

)
= lDEA0wDEA0hDEA0 (24)

The elastic energies of the two ribbons and hinges, Uribbon_i and Uhinge, are calculated
using θ and the rotational spring constants k′ribbon and k′hinge for the ribbon and hinge,
respectively, as follows:

Uribbon_i =
1
2

k′ribbonθ2, Uhinge =
1
2

k′hingeθ2 (25)

k′ribbon and k′hinge are determined by the material properties, dimensions, and shape of
the ribbon and hinge as follows:

k′ribbon

∣∣∣∣= Eribbon Iribbon
lribbon

=
Eribbonwribbonh3

ribbon
12lribbon

k′hinge

∣∣∣∣= Ehinge Ihinge
lhinge

=
Ehingewhingeh3

hinge
12lhinge

(26)

where Ei is the respective Young’s modulus of the ribbon and hinge, Ii is the cross-sectional
second moment, and wi and hi are the width and thickness, respectively.

From the above, the total potential energy in the system Utotal can be expressed as a
function of θ. Partial differentiation of Utotal with respect to θ allows to find θ for a given
applied voltage as follows:

∂Utotal
∂θ

∣∣∣∣= ∂UstrainDEAa
∂θ +

∂UelectricDEAa
∂θ

+
∂UstrainDEAb

∂θ +
∂UelectricDEAb

∂θ

+
∂Uribbon_a

∂θ +
∂Uribbon_b

∂θ +
∂Uhinge

∂θ

∣∣∣= 0

(27)

Furthermore, from θ, k′ribbon and k′hinge, the torque of the actuator τ can be obtained
from the following equation:

τ = 2k′ribbonθ + k′hingeθ (28)

In this study, the model is implemented as a MATLAB code, where Equation (27) is
numerically solved to obtain θ and τ for a given V. Figure 3 shows a typical output of the
model. Both the tip angle θ and torque τ increase with the applied voltage V (Figure 3a,b).
The size of the angle increases as the initial distance between the electrodes de0 decreases
(Figure 3c). This is because the actuation of the DEA results from the Maxwell stress
whose magnitude is proportional to the inverse of the distance between the electrodes. As
indicated in Equation (26), the rotational spring constant of the hinge is proportional to
the inverse of the length and the third power of the thickness. These change the rigidity
of the hinge and, therefore, the output angle (Figure 3d,e). The model also suggests
that the pre-stretch ratio of rolled DEAs has less impact on the actuation performance
(Figure 3f). This may be because a large amount of pre-stretch stiffens the DEA in the
stretched direction, which prevents actuation. Increasing the amount of pre-stretch slightly
increases the actuation of the DEA by providing the pulling force from the other side of the
DEA, but at some point, the effect of stiffening becomes dominant, and then the actuation
is reduced.
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3. Fabrication

Based on the analytical model, we designed the actuator. First, the initial thickness
between the electrodes was set to 100 µm to facilitate the handling of DEAs during the fab-
rication. Then, the thickness and length of the hinge and the pre-stretch ratio were selected
to achieve the target tip angle (in this study, 10◦) at 2000 V. Under these specifications, we
fabricated the actuator.

The actuator mainly consists of three parts: the rolled DEAs, the hinge mechanism
containing the tip, and the backbone with base. The rolled DEA has a five-layer structure
consisting of two electrodes and three dielectric elastomers, whose fabrication process is
summarized in Figure 4a. The elastomer layer on the outside is to avoid contact between
the electrodes of different polarities when rolled. Furthermore, these elastomers become
a new dielectric layer when the inner and outer surfaces come into contact after rolling.
Since the polarity of the electrode layers on both sides are different, an electric field is
generated between the newly created dielectric layers, which functions as a DEA. For this
reason, the thickness of the outer elastomeric layer was set to half the thickness of the one
originally sandwiched by the electrodes, as can be seen in Figure 4b, so that the thickness
of the dielectric layer of the DEA after rolling is equal. Moreover, since the dielectric layer
is always outside after rolling, it acts as an electrical insulation allowing to use the actuator
in water.

For the dielectric layers, a mixture of Ecoflex 00-30 (Smooth-On) and Sylgard 184 (Dow
Corning) reported in another study [30] was used. The mass ratio of each silicone was
Ecoflex 00-30: Sylgard 184: curing agent = 50:40:1. A mixture of carbon black, Ecoflex
00-30, and isooctane was used as the electrode material. The mass ratio of the electrode
material was carbon black: Ecoflex 00-30: isooctane = 1:11:40. A film applicator (TQC
Sheen B.V., AB4220) and a universal applicator (Zehntner, ZUA 2000) were used for casting
the dielectric layer. A pad printer (Teca-Print, TPE 151) and a mask (Polypropylene film:
25 µm thick) prepared by laser processing were used for patterning the electrode layers. As
summarized in Figure 4a, each layer was formed by curing in an oven at 80 ◦C for 1 h.
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Figure 4. (a) Fabrication process of the actuator. (b) Structure and dimensions of the DEA part
before rolling.

After fabricating the five-layer DEA, the unnecessary parts were removed and the
whole structure was rolled. During the rolling of DEA, a carbon rod with diameter of 1 mm
was used as a core. Then, a PET sheet with a diameter of 7 mm was attached to both ends
of the rolled DEA with silicone adhesive (Dow Corning, DOWSIL 734). A hole of 1 mm
diameter was made on the exposed terminals of the DEA, and an electrical connection
was established using a thin enamel wire (diameter 0.05 mm) and a silver epoxy (Gwent
Electronic Materials, C60531D1). The fabricated rolled DEA, shown in Figure 5a, had a
diameter of 6 mm, length of 21 mm, and mass of 0.6 g. Regarding the fabrication accuracy
of the membranes, the total thickness of the five-layer DEA was designed to be 200 µm.
The measured thickness of the six five-layer DEA samples was 208.1 ± 7.6 µm, slightly
larger than the designed value. This may have resulted from the presence of electrodes.
They had a thickness of a few µm, resulting in an error in the total thickness of the DEA, as
such the value was higher.

The hinge mechanism of the actuator displayed in Figure 5b was fabricated by laminat-
ing several sheet materials: polyimide film (thickness 50 µm), PET film (thickness 250 µm),
and double-sided tape. The ribbons made of polypropylene film (thickness 25 µm) were
attached to the hinge mechanism and 3D printed parts using double-sided tape. The 3D
printed parts were fabricated by Form 3 (Formlabs).

The backbone and base were fabricated from two parts that were laser cut from 1 mm
thick acrylic sheets. These parts were connected using super glue. The height of the
backbone determined the amount of pre-stretch applied to the DEAs. In this study, the
height was set to 24 mm so that the pre-stretch was approximately 1.05.

The rolled DEAs, the hinge mechanism, and the backbone with base were assembled
to form the antagonistic actuator. Masking tape was also applied to the contact points of the
hinge mechanism and the backbone to reduce friction. The mass of the fabricated actuator
was 1.7 g. The specification and model parameter of the actuator is summarized in Table 1.
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Table 1. Model parameter of the actuator.

Parameter Value Parameter Value

Dimensions Dimensions
Rolled DEA Fixing part

Initial length lDEA0 21 mm Thickness w 400 µm
Initial width wDEA0 141 mm Material properties
Initial thickness hDEA0 200 µm DEA elastomer
Initial inner diameter rin0 0.5 mm Relative permittivity εr 2.8

DEA electrode Material Constant C1 0.0170 MPa
Initial length le0 15 mm Material Constant C2 0.00386 MPa
Initial width we0 135 mm Material Constant C3 −6.89 × 10−5 MPa
Initial width of margin wm 2 mm Hinge
Initial distance de0 100 µm Young’s modulus Ehinge 3.3 GPa

Hinge Ribbon
Length lhinge 1 mm Young’s modulus Eribbon 2.675 GPa
Width whinge 5 mm Other parameters
Thickness hhinge 50 µm Applied voltage V 0–1200 V

Ribbon Pre-stretch ratio λ1p 1.05
Length lribbon 2 mm Permittivity of free space ε0 8.85 × 10−12 F/m
Width whinge 5 mm
Thickness hhinge 25 µm

4. Characterization

We measured both the angle and torque of the fabricated actuator as functions of
the applied voltage as well as its frequency response. During these experiments, a high
voltage power supply (HVPS v4b3 [31]) was used to actuate the device. For measuring
the angle, a camera (Nikon, D7500) was used followed by image processing. In the torque
measurement, a square wave voltage with frequency of 0.05 Hz was applied to the actuator
and the values of a load cell, which was put on the tip was recorded. Figure 6a plots the
output signal from the load cell, from which the force generated at the actuator tip was
acquired, this was followed by multiplying the measurement position (i.e., moment arm)
of 3.0 mm to obtain the torque. For the measurements of the output angle and torque, the
applied voltage was set to 1200 V. In a preliminary test, we observed that the fabricated
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actuators tended to exhibit electrical breakdown within the voltage range of 1400–2000 V,
even though the DEAs before the rolling process had withstood the applied voltage of
2000 V. This may have resulted from the tiny air voids existing in the rolled DEAs. During
the rolling process, these air voids may be accidentally trapped between the surfaces of
the DEA. They contribute to reducing the applicable voltage since the dielectric strength of
air is ~3 V/µm [32]. To ensure a safe margin, we decided to use 1200 V to investigate the
actuated angle and torque. For the frequency response, a square wave voltage of 1000 V was
applied to the actuator while the motion was captured by the camera. In these experiments,
given the symmetric structure of the actuator, only one side of DEA was activated.
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The results are summarized in Figure 6b–d. The angle and torque increases as the
applied voltage is increased. This suggests that the output of the actuator is voltage-
controllable. The angle and torque at 1200 V take the value of 2.2◦ and 11.3 mN·mm,
respectively. From the results, it can be seen that the model well predicts the trend of the
actuator output. The error between the model prediction and the experimental data may
have resulted from several factors. Firstly, there is the friction between the DEAs and the
hinge mechanism, which hinders the actuation. Secondly, the model does not consider the
electrode layers that act as a passive element and reduce the amount of actuation. Thirdly,
misalignment of the load cell may influence the measured force and, therefore, the torque.
The measured frequency response indicates the presence of a resonance in the actuation,
exhibiting an angle of 3.0◦ at the frequency of 140 Hz. The resonance actuation is useful in
underwater robots that work by oscillation [12].
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5. Swimming Demonstration

In order to confirm the applicability of the actuator for underwater robots, we fabri-
cated a fish-type robot shown in Figure 5c. The materials used in the robot are identical to
that of the actuator, while dimensions of the backbone and hinge are changed to form a
head and caudal fin, respectively. The fact that the head and the caudal fin, both of which
are necessary for realizing a swimming movement, can be obtained by simply changing
their geometry is a unique feature of the actuator proposed in this study. The total length
of the robot is 53 mm and weighs 2.2 g.

Figure 7 displays a sequence of the robot swimming in water, where the two DEAs are
activated alternately (see also Supplementary Video S1). As a result, a swimming speed of
0.9 mm/s was observed when a square wave voltage of 1000 V with frequency 10 Hz was ap-
plied. The swimming speed of the robot 0.9 mm/s, corresponding to 1.7 × 10−2 BL/s (BL:
body length), is comparable to some of the DEA-based swimming robots (e.g., 1.9 mm/s
(0.9 × 10−2 BL/s) [20] and 3.2 mm/s (1.0 × 10−2 BL/s) [17]). However, when compared to
fast swimming robots (e.g., 64 mm/s (0.69 BL/s) [19] and 37.2 mm/s (0.25 BL/s) [12]), there
is a significant difference. In short, the performance of the robot equipped with rolled DEAs
is in the range of those of existing robots. It should be noted that those DEA-based robots
are driven at relatively higher voltage, such as 5000 ([12]) and 10,000 V ([19]), when com-
pared to that applied to our robot (1000 V). This suggests that the swimming performance
of the robots, based on the antagonistic actuator with rolled DEAs, will be significantly
increased once they are driven at higher voltages (i.e., higher electric fields). To do so, the
dielectric elastomer used in the rolled DEAs could be replaced with an elastomeric material
that has a higher dielectric strength. Moreover, optimization of the design of the robot
(e.g., actuator dimensions and geometry of the fin) is expected to realize faster swimming
movements. For this purpose, existing optimization techniques in soft robotics could be
applied [33,34]. Nevertheless, we believe that our result already satisfies the objective of
this study because our focus is to investigate and demonstrate the applicability of rolled
DEAs for underwater robots through the development of an antagonistic actuator.
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6. Conclusions

In this study, to investigate the use of rolled DEAs for underwater robots, we proposed
and developed an antagonistic actuator. The following results were obtained: Firstly, an
analytical model was built, which guided the design of the actuator. Secondly, a fabrication
process for this particular actuator was established. Thirdly, the actuator concept was
demonstrated through characterization. Lastly, the actuator was successfully implemented
in a swimming robot that showed locomotion in water and demonstrating the feasibility
of using rolled DEAs in underwater robots. Future work should further characterize the
actuator and robot, while also aiming to increase the output by improving the voltage
tolerance of the DEA by reorganizing the fabrication process, modifying various aspects
of the actuator design (such as the hinge mechanism), and enhancing the model accuracy
by considering the presence of the electrode layers, followed by the development of other
types of underwater robots.
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