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Abstract: We report a simple and convenient approach to the one-pot synthesis of hyperbranched
polyurethane-triazoles with desirable properties. This method is based on in situ generation of an
AB2 + A2 + B4 azide-acetylene monomer mixture of known composition, due to quantitative reactions
of urethane formation between isophorone diisocyanate (IPDI), 1,3-diazidopropanol-2 (DAPOL)
(in the first stage) and propargyl alcohol (in the second stage). The obtained monomer mixture
can be involved in step-growth polymerization by azide-alkyne cycloaddition without additional
purification (in the third stage). The properties of the resulting polymers should depend on the
composition of the monomer mixture. Therefore, first the model revealing the correlation between the
monomer composition and the ratio and reactivity of the IPDI and DAPOL active groups is developed
and proven. In addition, the newly developed structural kinetic model considering the substitution
effect at polyaddition of the complex mixture of monomers allows the prediction of the degree of
branching of the target polymer. Based on our calculations, the hyperbranched polyurethane-triazoles
were synthesized under found conditions. All products were characterized by 1H NMR, FTIR, SEC,
DLS, DSC, TGA and viscometry methods. It was shown that the degree of branching, molecular
weight, intrinsic viscosity, and hydrodynamic radius of the final hyperbranched polymers can be
specified at the first stage of one-pot synthesis. The obtained hyperbranched polyurethane-triazoles
showed a degree of branching from 0.21 to 0.44 (calculated DB-0.25 and 0.45, respectively).

Keywords: hyperbranched polymers; polyurethane-triazoles; degree of branching; polyaddition

1. Introduction

The synthesis and investigation of new functional materials, such as highly and hy-
perbranched polymers has attracted considerable attention in the last few years [1–4].
Hyperbranched polymers with many functional end-groups are considered as promising
materials for design of ecological flame-retardant polyurethanes [5], new catalytic sys-
tems [6], biomaterials [7], and other applications [8–10]. They exhibit high solubility in
common organic solvents and high thermodynamic compatibility with other polymers,
low viscosity, and high sorption capacity.

Hyperbranched polymers can be prepared via the three-dimensional step-growth
polymerization of ABn-type monomers (n ≥ 2), where A and B groups can only react with
each other. This is the simplest example of a topological mechanism which enables the
formation of hyperbranched polymers [11]. One of the main advantages of step-growth
polymerization of ABn-type monomers is the absence of cross-linking (gelation), even at full
conversion of A groups [12]. However, the preparation of these monomers often involves
multi-step and complex reactions. Furthermore, the isolation of products is challenging,
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due to highly reactive groups [13]. Another way to obtain highly and hyperbranched
polymers is the co-polymerization of symmetric (A2 + B3, A2 + B4, A3 + B3 et al.) [14–16]
and asymmetric monomer couples (A2 + CB2, A2 + B2B′, AA′ + B3, AC + B3 et al.) [17,18].
These approaches are limited by the fact that branched polymers can be synthesized near
the critical conversion of gelation, or where there is a significant difference in the reactivity
of functional groups. In addition, there are strong limitations in the choice of starting
monomer couples for the synthesis of branched polymers with such an unusual structure
as triazoles. Thus, it is necessary to develop novel approaches to the synthesis of highly and
hyperbranched polymers by the simple step-growth polymerization of AB2 type monomers,
using a wide range of available reagents.

Previously, we developed an approach where the branched polyurethane-triazoles
are formed after the synthesis of the AB2 + A2 + B4 monomer mixture [19]. The synthe-
sis procedure involves two quantitative reactions: urethane formation and azide-alkyne
cycloaddition (AAC). The first step is forming a diazide-isocyanate precursor, through a re-
action between 1,3-diazidopropanol-2 (DAPOL) and an excess of symmetric hexamethylene
diisocyanate (HMDI), to reduce the amount of B4-type monomer. The diazide-acetylene
(AB2-type monomer) can be obtained by reaction of the precursor with propargyl alcohol
(PrAl) only after purification of diazide-isocyanate from HMDI, to protect the mixture
against the formation of the inappropriate component A2-type monomer. Finally, the
synthesis of branched polyurethane-triazoles can be carried out through the step-growth
polymerization of the AB2 + A2 + B4 monomer mixture by the AAC reaction.

In this work, we suggest an approach to the controlled and targeted one-pot syn-
thesis of hyperbranched azide-containing polyurethane-triazoles, based on asymmetrical
isophorone diisocyanate (IPDI) with NCO-groups, which exhibited strongly different re-
action activity. Recently, we have reported that the ratio of reaction rate constants for
the cycloaliphatic NCO-group (kcal) and aliphatic NCO-group (kal) of IPDI approaches 40
when it reacts with DAPOL [20,21]. Therefore, utilizing IPDI would allow an increase in
the amount of AB2-type monomer in the generated mixture, without additional isolation
and purification.

2. Materials and Methods
2.1. Materials

Distillation of IPDI was performed under reduced pressure (~3 Pa) at 60 ◦C; the
isocyanate content was analyzed using a previously reported method [22], and it was 99.9%.
PrAl and catalyst dibutyltin dilaurate (DBTDL) (≥98.0% pure, all from Sigma Aldrich,
Geel, Belgium) were used without further purification. DAPOL was synthesized according
to methods from [23]; the purity was ≥98.0%, as was shown using FTIR, 1H NMR, and
elemental analysis. Solvents were purified by standard procedures [24].

2.2. Characterization

IR spectra were recorded on a Bruker Alpha FTIR spectrometer (Bruker, Ettlingen,
Germany). Solid samples were analyzed using the ATR module.

The 1H NMR spectra were obtained using a Bruker AVANCE III BIOSPIN spectrometer
(500 MHz, Bruker, Ettlingen, Germany) with DMSO-d6 and TMS as an internal standard.

The molecular weight distribution was analyzed using size-exclusion chromatogra-
phy (SEC), using a Waters GPCV 2000 chromatograph (column PL-gel, 5 µm, MIXED-C,
300 × 7.5 mm, Waters Corporation, Milford, MA, USA) equipped with refractometer,
viscometer and light-scattering detector WYATT DAWN HELEOS II (λ = 658 nm). N-
methylpyrrolidone with a small amount of LiCl was used as an eluent. All measurements
were carried out at 70 ◦C; flow rate was 1 mL/min. “EMPOWER”, and Astra 5.3.2.20
software (Wyatt Technology, Santa Barbara, CA, USA) was used for data processing. The
absolute parameters of the molecular weight distribution of hyperbranched polymers were
calculated, based on light-scattering detector data.
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Thermal analysis was performed using a differential scanning calorimeter Mettler
Toledo DSC822e in the temperature range from −70 to 170 ◦C in an inert atmosphere,
with a heating rate of 5 ◦C/min. The glass transition temperature of polymers (Tg) was
found from the temperature relationship W = f(T). Thermo-gravimetric analysis (TGA) was
carried out using a Mettler-Toledo TGA/SDTA 851e/SF/1100 from 25 to 350 ◦C, in an inert
atmosphere (Ar, 20 mL/min), with a heating rate of 10 ◦C/min and 2 ◦C/min in ceramic
crucibles. The decomposition temperature (Td) was found, using a minimum of the first
derivative from weight loss vs. temperature.

The solutions of polyurethane-triazoles in N-methylpyrrolidone with a small amount
of LiCl were analyzed with the dynamic light scattering method using a Photocor Compact
(Photocor Instruments Inc., College Park, MD, USA, detection angle 90◦, 654 nm wavelength
laser diode, 70 ◦C). The solutions were preliminarily filtered through a PES membrane with
a 0.45 µm pore diameter, and kept for 1 h at a constant temperature before measurement.
The data processing was performed using DynaLS v. 2.8.3 software (Alango, Israel) by the
regulation method (Distribution Analysis). The Einstein-Stokes equation was used to find
the value of the hydrodynamic radius of dispersed particles (Rh).

Rheological characteristics were analyzed using the Ubbelohde viscometer at 70 ◦C
for polymer solutions in N-methylpyrrolidone.

WATERS chromatograph, Symmetry 300 C18, 5 µm, 4.6 × 250 mm column, methanol/
water eluent (75/25 by volume), 0.7 mL/min flow rate, UV-detectors with diode array
PDA 996 (210 nm–400 nm), and WATERS 2414 refractometric detector were used for
reversible-phase chromatography (RPC) analysis. RPC-chromatograms registration and
data processing were carried out using the “EMPOWER” software package.

The resulting mixture’s composition was identified using the RPC method for the
reactions between IPDI and DAPOL interaction in CCl4 with a variation of [NCO]0/[OH]0
ratios. After reaction, the mixture of products was treated with methanol (indicated by
FTIR spectroscopy) to deactivate the NCO groups. The methanol/water eluent (75/25 by
volume) was efficient for separating the reaction mixture during RCP characterization.

2.3. One-Pot Synthesis of Hyperbranched Polyurethane-Triazoles

The synthesis of the monomer mixture for hyperbranched polyurethane-triazoles
was performed in situ in CCl4. The first step was forming a diazide-isocyanate precursor
through a reaction between DAPOL and IPDI. A 50 mL flask was filled with 25 mL of CCl4
and calculated amounts of IPDI and DAPOL under argon in ratio [NCO]0/[OH]0 = 1.50–1.93,
[OH] = 0.5 mol/L. The reaction mixture was stirred at 20 ◦C with a DBTDL catalyst
(concentration of 5 mmol/L) for 6 h. FTIR spectroscopy was used for monitoring the
reaction by decreasing the intensity of NCO-groups IPDI valent oscillations (2270 cm−1,
the molar extinction coefficient of the NCO-groups, is equal to 1076 L/(mol·cm) in CCl4).

At the end of the precursor synthesis, the AB2 + A2 + B4 monomers mixture was
obtained through a one-pot reaction of the leftover NCO groups of the precursor with
a calculated amount of PrAl. FTIR spectroscopy was used for monitoring the end of
the reaction by the disappearance of the NCO groups absorption band. The obtained
monomer mixture was dried in a vacuum (10−2 torr) at room temperature. In addition,
the completion of the reaction was proven by 1H NMR, where signals for 1,4- and 1,5-
disubstituted-1,2,3-triazoles were observed. The conversion of ethynyl groups did not
exceed 10% (see Figure S1 in Supporting Information).

NMR data of the monomer mixture was obtained in the reaction of DAPOL with IPDI
at ratio [NCO]0/[OH]0 = 1.70: 1H NMR, ppm: δ = 8.05 (s, H(12′ 1,4), 7.70 (s, H(12′ 1,5),
7.51–6.82 (m, H(3), H(9)), 5.23–5.0 (m, H(11′), H(13′ 1,4), H(13′ 1,5)), 5.0–4.78 (m, H(11)),
4.71–4.46 (m, H(13), H(10′ 1,4), H(10′ 1,5)), 3.75–3.42 (m, H(5), H(10), H(12)), 2.88–2.58 (m,
H(8)), 1.77–1.03 (m, H(2), H(4), H(7)), 1.03–0.70 (m, H(1), H(6)). FTIR, cm−1 (capillary film):
3446, 3342 (NH), 2985, 2957, 2926, 2873, 2874 (CH2), 2106 (N3), 1730 (C=O), 1514 (NH).

Finally, the synthesis of hyperbranched polyurethane-triazoles was carried out through
the step-growth polymerization of the AB2 + A2 + B4 monomer mixture by the AAC
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reaction in bulk at T = 100 ◦C; see Figure 1. The signal intensity ratio of asymmetric valent
oscillations of azide groups and valent oscillations of carbonyl groups of urethane in the
FTIR spectra (at ca. 2100 cm−1 and 1705 cm−1, respectively) allowed the control of the
degree of polyaddition reaction.
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Figure 1. Scheme for the synthesis of hyperbranched polyurethane-triazoles.

NMR data for hyperbranched polyurethane-triazoles obtained at ratio [NCO]0/[OH]0
= 1.70: 1H NMR, ppm: δ = 8.05 (s, H(12′ 1,4), 7.70 (s, H(12′ 1,5), 7.51–6.82 (m, H(3), H(9)),
5.50–5.30 (m, H(11′ ′)), 5.29–4.97 (m, H(11′), H(13′ 1,4), H(13′ 1,5)), 4.97–4.83 (m, H(11)),
4.71–4.51 (m, H(10′ 1,4), H(10′ 1,5)), 3.75–3.42 (m, H(5), H(10)), 2.88–2.58 (m, H(8)), 1.77–1.03
(m, H(2), H(4), H(7)), 1.03–0.70 (m, H(1), H(6)). FTIR ATR, cm−1: 3327 (NH); 2952, 2926,
2869, 2846 (CH2); 2100 (N3); 1705 (C=O); 1523 (NH); 1460 (triazole).

3. Results and Discussion

The composition of the monomer mixture in the reaction of IPDI with DAPOL can be
controlled by varying the [NCO]0/[OH]0 ratio, due to difference in kcal and kal. When chang-
ing these parameters, the formation of mono-substituted (potential AB2 type monomer),
disubstituted IPDI (B4 type monomer), and the diisocyanate derivative (A2 type monomer)
is possible. Therefore, it is necessary to understand the composition of the resulting
mixture of AB2 + A2 + B4 monomers. The mixture composition will also influence the
properties of key products such as molecular weight distribution, rheological behavior,
hydrodynamic characteristics, structural parameters, heat resistance, and glass-transition
temperature (Tg).

Thus, the prediction of the composition of the monomer mixture (AB2 + A2 + B4)
at known [NCO]0/[OH]0 and kcal/kal = 40 is of great importance for the final step of
polymer synthesis.

3.1. Influence of [NCO]0/[OH]0 Ratio on the Composition of AB2 + A2 + B4 Monomer Mixture
and Structural-Kinetic Model of Their Polyaddition

The first synthetic step is the reaction of the IPDI-bearing aliphatic isocyanate group
(rate constant kal) and cycloaliphatic isocyanate groups (rate constant kcal) with DAPOL
(Figure 2). The obtained diazide-isocyanate precursor can act further as an AB2-type
monomer. The unreacted IPDI can act further as an A2-type monomer. Further interaction
of the precursor with DAPOL leads to the formation of a B4-type monomer. All components
in the AB2 + A2 + B4 mixture are important for forming hyperbranched polyurethane-
triazoles. In particular, the AB2-type monomer can be considered as a branching agent.
The A2-type monomer can be considered as a cross-linking agent. Finally, the B4-type
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monomer decreases the molecular weight of the final polymers. The concentration of these
compounds can be controlled by a different ratio [NCO]0/[OH]0.
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In order to avoid gelation, we have to choose the concentration ratio of A2- and B4-type
monomers. As was reported previously, gelation can occur at critical ratio [A2]/[B4] of
0.67 [25]. The composition of the product in reaction IPDI with DAPOL was simulated vs.
[NCO]0/[OH]0 ratios, using differential equations as follows:

d[IPDI]
dt

= −kal [IPDI][DAPOL]− kcal [IPDI][DAPOL] (1)

d
[

ABal
2

]
dt

= −kcal

[
ABal

2

]
[DAPOL] + kal [IPDI][DAPOL] (2)

d
[

ABcal
2

]
dt

= −kcal

[
ABcal

2

]
[DAPOL] + kal [IPDI][DAPOL] (3)

d[B4]

dt
= kcal

[
ABal

2 ] [DAPOL] + kcal [ABal
2

]
[DAPOL] (4)

The experimental correlations are based on RPC data for the products in reaction
IPDI with DAPOL at a different [NCO]0/[OH]0 ratio (Figure 3). Obviously, with the
increase of the [NCO]0/[OH]0 ratio, more amounts of the AB2-type monomer form in the
mixture of AB2, A2 and B4. Only two peaks can be seen on RPC, which correspond to AB2-
and B4-type monomers, while the formation of A2-type monomers is limited at selected
[NCO]0/[OH]0 ratios (Figure 3). Attempts to achieve monomer separation with other ratios
failed because of the limited solubility of the A2-type monomer. Nevertheless, there are
enough experimental data to confirm a theoretical dependence between the composition
of the AB2 + A2 + B4 monomer mixture and the [NCO]0/[OH]0 ratio in reaction IPDI
with DAPOL. Based on this knowledge and the gelation condition ([A2]/[B4] ≥ 0.67), the
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ratio [NCO]0/[OH]0 ≤ 1.95 was found as acceptable for the synthesis of hyperbranched
polyurethane-triazoles without the cross-linking process (Figure 2).
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The composition of the AB2 + A2 + B4 monomer mixture is the first factor which
influences the degree of branching (DB) of final polymers and their properties. However,
the structure and properties of hyperbranched polyurethane-triazoles are also influenced
by the kinetics of the polyaddition reaction. It is known that the substitution effect in the
copper(I)-catalyzed azide-alkyne cycloaddition reaction for 1,3-diazides can change the
rate constants (k1 and k2) for azide groups [26–28]. Since we use the same type of diazides,
this effect should be also considered.

We proposed the structural-kinetic model of the general polyaddition reaction, consid-
ering the parameters found above.

It is well known [29] that the DB can be determined from the following relation:

DB =
D + T

D + T + L
≈ 2D

2D + L
≈ 2T

2D + L
(5)

where D, L, and T are the number of branched, linear and terminal fragments of hyper-
branched polymers.

The kinetic-structural model for cycloaddition of the AB2 + A2 + B4 monomer mixture
contains a set of elementary reactions (Figure 4).

The kinetic model of polyaddition can be described by a set of twenty-four reactions
using 13 differential equations:

d[TB0]

dt
= −4k1 [TB0]([TA0] + [TA] + [TA1]) (6)

d[TB1]

dt
= ([TA0] + [TA] + [TA1])(−2k1 [TB1]− 2k2 [LB1] + 2k1 [TB0]) (7)

d[TB2]

dt
= ([TA0] + [TA] + [TA1])(−2k1 [TB2] + 2k2 [LB1]) (8)
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d[TB3]

dt
= −2k1 [TB3]([TA0] + [TA] + [TA1]) (9)

d[LB1]

dt
= ([TA0] + [TA] + [TA1])(−k2 [LB1]− k1 [TB1] + k1 [TB0]) (10)

d[LB2]

dt
= ([TA0] + [TA] + [TA1])(−2k2 [LB2] + k1 [TB1]) (11)

d[LB3]

dt
= ([TA0] + [TA] + [TA1])(−k2 [LB3] + k1 [TB2] + k2 [LB2]) (12)

d[LB4]

dt
= ([TA0] + [TA] + [TA1])(−k2 [LB4] + k1 [TB3]) (13)

d[TA0]

dt
= [TA0](−2k1([TB0] + [TB1] + [TB2] + [TB3])− 2k2([LB1] + [LB2] + [LB3] + [LB4])) (14)

d[TA]

dt
= ([TB0] + [TB1] + [TB2] + [TB3])(−k1[TA] + k1[TA0]) + ([LB1] + [LB2] + [LB3] + [LB4])(−k2[TA] + k2[TA0]) (15)

d[TA1]

dt
= [TA1](−k1([TB0] + [TB1] + [TB2] + [TB3])− k2([LB1] + [LB2] + [LB3] + [LB4])) (16)

d[D2]

dt
= k2[LB4]([TA0] + [TA] + [TA1]) (17)

d[D4]

dt
= k2[LB3]([TA0] + [TA] + [TA1]) (18)

This system of differential equations was solved using standard computational meth-
ods. As result, D, L, and T components can be expressed as follows:

D = LB3 + 2D4 + D2 + 0.5 TB2 (19)

L = LB1 + LB2 + LB3 + LB4 (20)

T = TB0 + TB1 + TB2 + TB3 (21)



Polymers 2022, 14, 4514 8 of 14

This kinetic-structural model predicts a correlation between the initial ratios [NCO]0/[OH]0
for the reaction of IPDI with DAPOL and DB of the final hyperbranched polymers (Figure 5, 2).
Moreover, this model allows the prediction of the influence of positive (Figure 5, 1) and
negative (Figure 5, 3) substitution effects on DB.
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As can be seen, DB decreases when the substitution effect is negative (k2/k1 < 1), and
increases in the case of positive effect k2/k1 > 1. It is worth noting that these trends are true
only for step-growth polymerization of the AB2 + A2 + B4 monomer mixture.

3.2. Synthesis of Hyperbranched Azide-Containing Polyurethane-Triazoles

In order to verify the proposed model, the two-step synthesis of hyperbranched
polyurethane-triazoles was performed under the established conditions. First, the
diazide-isocyanate precursor was obtained in the reaction of IPDI with DAPOL
at [NCO]0/[OH]0 = 1.5 − 1.93. The reaction of the resulting precursor with PrAl
at [NCO]/[OH] = 1 was then carried out. The composition of the monomer mixture
was studied using FTIR (Figure 6) and 1H NMR spectroscopy (Figure 7).

In the spectrum of the diazide-isocyanate precursor (Figure 6a) no absorption band of
the hydroxyl group from the DAPOL (υ -O-H at ca. 3600 cm−1) can be seen, while the band
of the urethane group (υ -NHC(O)O- at ca. 1728 cm−1) is observed. The conversion of PrAl
and urethane-isocyanate precursor in the next step was confirmed by the disappearance
of the bands of the hydroxyl group (υ -O-H at ca. 3600 cm−1) and the isocyanate group
(υ -NCO at ca. 2264 cm−1) (Figure 6b). According to the FTIR and 1H NMR spectra of
the monomer mixture, 1,4- and 1,5-disubstituted-1,2,3-triazoles were formed in the AAC
reaction at room temperature. Under these conditions, the conversion of ethynyl groups
did not exceed 10% over the seven days of storage time (Figure 7).
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3.3. Structural, Molecular Weight, Hydrodynamic and Thermal Characteristics of Hyperbranched
Polyurethane-Triazoles

We compared simulated parameters with experimental data obtained using 1H NMR,
to validate a developed structural-kinetics model (Table 1).

DBexp was calculated from the amount of linear (L) and dendric (D) units in polymer
chains, which in turn was estimated from 1H NMR data. The signals with chemical shifts
in the range 5.50–4.97 ppm (Figure 7) are from the CH-group of D and L units of polymer
chains [19]. In particular, the CH-group (11”) with δ = 5.50 – 5.30 ppm belongs to the
D-unit, whereas the CH-group (11′) from L-units has signals in the range of 5.27–4.97 ppm.
As can be seen, this signal overlaps with those of the CH2-groups (13′ 1,4, 13′ 1,5) from
1,4- and 1,5-disubstituted 1,2,3-triazoles. Therefore, the amount of CH-group of L-unit
can be calculated by subtracting the number of triazoles from the integrated signal in the
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range 5.27–4.97 ppm. Triazoles has two resolved signals (12′ 1,4, 12′ 1,5) from 1,4- and
1,5-disubstituted derivatives at 8.20–7.99 ppm and 7.79–7.64 ppm, respectively.

Table 1. Structural parameters, molecular weights, hydrodynamic and thermal characteristics of
hyperbranched polyurethane-triazoles.

[NCO]0/[OH]0 [AB2]:[A2]:[B4] DBexp (DBcalc) Mw
LS [η]·102

(dl/g)
Rh

p

(nm)
Tg

(◦C)
Td

(◦C)

1.50 1:0:0.50 0.21 (0.25) 10,100 3.5 1.9 40 230
1.57 1:0:0.35 0.28 (0.29) 10,800 4.0 2.4 53 228
1.70 1:0:0.20 0.33 (0.35) 15,900 5.6 3.0 69 231
1.81 1:0.008:0.13 0.39 (0.40) 28,600 7.8 5.7 73 232
1.88 1:0.025:0.097 0.44 (0.45) 174,700 - - 86 230
1.93 1:0.042:0.083 Cross-linking 90 232

Here [NCO]0/[OH]0—initial ratio in reaction DAPOL with IPDI; [AB2]:[A2]:[B4]—the molar ratio of monomers in
AB2 + A2 + B4 monomer mixture; DBexp, DBcalc—degree of branching of synthesized polymers using experimental
and calculation data, respectively; Mw

LS—weight average molecular weight obtained using light-scattering
detector; [η]—intrinsic viscosity; Rh

p—average hydrodynamic radius; Tg—glass transition temperature; Td—
decomposition temperature.

The DB of obtained polymers has a trend of growth with increasing amounts of the
AB2- and A2-type monomers. On the other hand, DB parameter become lower when the
amount of B4-type monomer increases. The maximum DB value of the polymers was 0.44
(Table 1), which is close to DB in the case of polymerization of a single AB2-type monomer.

The molecular weight characteristics presented in Table 1 were found using size-
exclusion chromatography (Figure 8). The weight average molecular weight (Mw

LS) was
found using a light-scattering detector. Figure 8a shows that the molecular weight of the
polymer grows with increasing the ratio [NCO]0/[OH]0. This behavior can be explained
by the simultaneous decrease in the amount of B4-type monomer in the AB2 + A2 + B4
monomer mixture and the increase in the amount of AB2- and A2-type monomers.
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Figure 8. SEC profiles (a) and particle distribution (b) of hyperbranched polyurethane-triazoles
obtained at [NCO]0/[OH]0 as: 1.50 (1); 1.57 (2); 1.70 (3); 1.81 (4); 1.88 (5).

Multimodal molecular weight distribution is due to the presence in the mixture of
two (AB2 + B4, for samples 1–3) or three (AB2 + A2 + B4, for samples 4–6) monomers at
the same time. Monomer B4-type act as a termination agent that will define the molecular
weight of the formed polymer. In the case of an excess of the B4-type monomer in the
mixture, low-molecular-weight polymers with a low polydispersity index can be obtained.
This can be seen on SEC for samples 1 and 2. When decreasing the amount of B4-type
monomer to 0.1–0.2 equivalent with respect to the AB2-type monomer, high molecular



Polymers 2022, 14, 4514 11 of 14

weight hyperbranched polymers are formed that can be observed on SEC as peaks with
elution time in the range of 6.0–7.7 min (samples 3 and 4). It should be mentioned that
the A2-type monomer in the mixture of the three monomers AB2 + A2 + B4 acts as a cross-
linking agent for macromolecules of branched polymers. This is the reason for the observed
increase in the molecular weight of the obtained polymers in the series 3-4-5, as well as a
significant increase in polydispersity. As a result, when the concentration of the A2-type
monomer reaches a critical value of 0.03–0.04 equivalent with respect to the AB2-type
monomer (the ratio of the concentrations of A2- and B4-type monomers is close to 0.3–0.5,
and differs from the previously predicted 0.67, theoretically), the solubility of the resulting
polymers in N-methylpyrrolidone becomes extremely poor.

The rheological characteristics of hyperbranched polyurethane-triazoles were studied
in the same conditions as molecular weight characteristics. As expected, the viscosity ([η])
of polymers increased with the value of [NCO]0/[OH]0 and hence the molecular weights
of the polymers (Table 1). Based on the viscosity parameter, we calculated the critical
overlap concentration of macromolecules in solution that is needed for estimation of the
average size of particles. The hydrodynamic radius (Rh) of particles was calculated using
the Stokes–Einstein equation for spherical objects. Rh values correlate with the molecular
weight of resulting polymers. The average particle size (Rh

p) shifts from 1.9 nm to 5.7 nm
in a maximum of the size distribution for polymers obtained at [NCO]0/[OH]0 = 1.50
compared with polymers at [NCO]0/[OH]0 = 1.88 (Table 1). This enables control of particle
size by variation of the ratio of the starting components.

We note that all obtained results are valid for soluble polymers which can be syn-
thesized when the ratio [NCO]0/[OH]0 does not exceed the critical range of 1.88–1.93.
Otherwise, the cross-linking leads to forming a rigid polymer network.

The thermal properties of the hyperbranched polyurethane-triazoles were investigated
using thermal gravimetric analysis (Figure 9). Decomposition temperatures (Td) for all
obtained polymers were almost the same (230 ◦C). Since the usual heating rate resulted
in multiple explosion effects of polymers, the measurements were performed at a lower
heating rate of 2 ◦C/min. Significant difference can be observed for the destruction kinetics
of polymers in the temperature range 150 to 290 ◦C. The first derivative TGA curve for
a polymer obtained at [NCO]0/[OH]0 of 1.5 exhibited the single maximum evidencing
standard decomposition mechanism. At the same time, the derivative TGA curve for
the polymer obtained at [NCO]0/[OH]0 = 1.88 demonstrated multiple peaks that can be
attributed to the above-mentioned multiple explosions. Similar effects are typical for azide-
containing compounds. However, multiple explosions of obtained polymers might be
explained by a high local concentration of azido groups on the periphery of polymers,
affecting their thermal stability.
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4. Conclusions

In this work we performed a complex investigation on the synthesis of hyperbranched
polyurethane-triazoles from an AB2 + A2 + B4 azide-acetylene monomers mixture. The pro-
posed one-pot method for the synthesis of hyperbranched polyurethane triazoles consists
of three stages. The first step is forming a diazide-isocyanate precursor through a reaction
between DAPOL and a lack of asymmetric IPDI. In the second stage, the azide-acetylene
monomer mixture is obtained by the reaction of the diazide-isocyanate precursor with
PrAl. Finally, the synthesis of hyperbranched polyurethane-triazoles can be carried out
through the step-growth polymerization of the AB2 + A2 + B4 monomer mixture using the
AAC reaction.

Firstly, the relationships were established between the [NCO]0/[OH]0 ratio at the
stage of diazide-isocyanate precursor formation and the composition of the mixture of
AB2 + A2 + B4 monomers formed at the second stage of synthesis. For this, a kinetic model
of the reaction of IPDI with DAPOL was developed, considering the differences in the
reactivity of the NCO groups of the diisocyanate. Using RPC, it was found that the results
of the calculation are in full agreement with the experimental data. We predicted that
synthesis of non-cross-linked polyurethane-triazoles without additional purification of the
monomer mixture, can be carried out only by [NCO]0/[OH]0 < 1.95.

Next, a structural kinetic model for the polyaddition of the AB2 + A2 + B4 mixture was
developed, considering the possibility of change in activity of the B functional groups. This
model allowed the revealing of the relationships between the ratio of [NCO]0/[OH]0 when
synthesizing the diazide-isocyanate precursor and the branching degree of hyperbranched
polyurethane-triazoles. Based on calculations, starting conditions were established for
the synthesis of the AB2 + A2 + B4 ([NCO]0/[OH]0 = 1.5–1.93) mixture with a degree of
branching from 0.25 to 0.46. Target hyperbranched polyurethane-triazoles were synthesized,
and it was shown that the polymer is insoluble in NMP when [NCO]0/[OH]0 = 1.93.
Nevertheless, the maximum DB achieved in the thermo-induced reaction AAC of AB2 +
A2 + B4 (if [NCO]0/[OH]0 = 1.88) was 0.44 (experimental) and 0.45 (calculated). Based
on the results obtained from the structural-kinetic model and previously reported data,
it would be expected that the value of DB could be increased when the CuAAC reaction
was performed.

According to the results of the investigation of hyperbranched polyurethane-triazoles
by NMR spectroscopy, FTIR, SEC, DLS, and viscometry, it was found that the degree of
branching, molecular weight, hydrodynamic radius and intrinsic viscosity of the obtained
hyperbranched polymers are controlled by the ratio [NCO]0/[OH]0 at the first stage of
synthesis. We believe that these promising hyperbranched polyurethane-triazoles con-
taining azide side groups can be modified in the reactions with terminal alkynes, which
opens numerous opportunities for obtaining novel functional polymers for a wide range
of applications.
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