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Abstract: Superior strong and tough structural materials are highly desirable in engineering appli-
cations. However, it remains a big challenge to combine these two mutually exclusive mechanical
properties into one body. In the work, an ultrastrong and tough cellulosic material was fabricated by
a two-step process of delignification and water molecule-induced hydrogen bonding under compres-
sion. The strong and tough cellulosic material showed enhanced tensile strength (352 MPa vs. 56 MPa
for natural wood) and toughness (4.1 MJ m−3 vs. 0.42 MJ m−3 for natural wood). The mechanical
behaviors of ultrastrong and tough bulk material in a tensile state were simulated by finite element
analysis (FEA) using mechanical parameters measured in the experiment. FEA results showed that
the tensile strength and toughness gradually simultaneously improved with the increase in moisture
content, demonstrating that water molecules played an active role in fabricating strong and tough
materials, by plasticizing and forming hydrogen bonding among cellulose nanofibrils.

Keywords: wood; cellulose nanofibril; hydrogen bonding; strengthening; finite element analysis (FEA)

1. Introduction

High-performance structural materials with high strength and fracture toughness have
consistently drawn significant attention and are in great demand in the modern manufac-
turing industry [1–6]. When developing such high-strength and tough structural materials,
natural polymers should be preferred due to their renewable and sustainable character-
istics [7,8]. Cellulose is the most abundant biopolymer on Earth, found in trees, bamboo,
rattan, agricultural crops, and other biomass, even bacteria [9–14]. Cellulose possesses at-
tractive intrinsic mechanical properties with tensile strength of about 3.0−4.7 GPa g−1 cm3

and a theoretical modulus of about 63−125 GPa g−1 cm3 in its crystal region [15,16], both
of which are higher than most metals, alloys, and some ceramics, which makes it an ideal
building block for a series of strong and tough materials, such as nanopaper, films, and
superstrong wood [17–19].

In general, cellulose-derived materials (cellulose nanofibrils or cellulose crystals) could
be directly bought from a factory and corresponding structural materials can be fabricated
using bottom-up assembly methods such as vacuum filtration, layer-by-layer assembly,
or solvent casting [20–24]. However, this bottom-up assembly method has some intrinsic
drawbacks including (1) cellulose-derived materials’ isolation is chemical–energy intensive;
(2) the assembly process is time-consuming and laborious and complicated; (3) the products
are usually on a small scale and hard to transfer to bulk materials. Recently, a top-down
recombination method has been adapted to fabricate large-scale cellulosic structural mate-
rials due to their natural disadvantages of aligned nanocellulose structure [25–30]. During
the fabrication process, some kinds of organic (epoxy, phenolic resin, etc.) or inorganic
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polymers (nanosilica, calcium carbonate, etc.) were combined with a cellulosic framework
to improve the physical and mechanical properties of products [31–33]. Our group also
proposed a simple yet universal top-down method for making strong and tough struc-
tural materials by water molecule-induced hydrogen bonding. This method can convert
natural wood into strong and tough bulk materials by a three-step process of delignifi-
cation, drying-induced assembly, and water molecule-induced hydrogen bonding under
compression. A tough and strong cellulose nanofiber bulk material was derived, showing
simultaneously enhanced tensile strength (352 MPa vs. 56 MPa for natural wood) and
toughness (4.1 MJ m−3 vs. 0.42 MJ m−3 for natural wood) [34]. Although we analyzed the
plasticizing and strengthening mechanism of water molecules for cellulose nanofibrils, this
explanation can only be indirectly characterized by macroscopic physical and mechan-
ical data. Some visible means of characterization is necessary for identifying the water
molecule-induced strengthening mechanism between cellulose nanofibrils. Finite element
analysis (FEA) has been commonly used in engineering fields by virtue of developing
technologies [35,36]. Meanwhile, FEA has also been confirmed as an effective method
commonly used in wood engineering [37,38].

In this study, a methodological means was proposed: the water molecule-induced
hydrogen bonding effect between cellulose nanofibrils was investigated numerically by
first using FEA. The relationship between hydrogen bonding and tensile properties was
analyzed by comparing FEA simulation and experimental data.

2. Materials and Methods
2.1. Materials and Chemicals

Basswood with dimensions of 50 mm (L) × 50 mm (T) × 10 mm (R) was used in this
study. Sodium chlorite (NaClO2, 80%), sulfuric acid (H2SO4, 72%), acetic acid (HAc, 99.7%),
potassium sulfate (K2SO4), acetone (99.8%), and hexane (99.8%) were purchased from Fisher
Scientific (Thermo Fisher Scientific Inc., Shanghai, China). All chemicals were used as
received without further purification. Deionized (DI) water was used for sample preparation.

2.2. Fabrication of Ultrastrong and Tough Cellulose Nanofibril Bulk Material

Basswood was chemically treated to remove most lignin and partial hemicellulose and
then dried using a solvent exchange drying method, followed by compression to the final
ultrastrong and tough cellulose nanofibril bulk material according to a previous report [34].
In this study, NW stands for natural basswood, DW stands for delignified wood, DWSD
stands for delignified wood by solvent exchange drying, CDWSD stands for compressed
delignified wood by solvent exchange drying, followed by drying at 105 ◦C; CDWSD0
stands for compressed delignified wood under 0% moisture content, followed by drying
at 105 ◦C; CDWSD9 stands for compressed delignified wood under 9% moisture content,
followed by drying at 105 ◦C; CDWSD18 stands for compressed delignified wood under
18% moisture content, followed by drying at 105 ◦C.

2.3. Characterization

The chemical compositions of both natural wood (NW) and delignified wood (DW)
were qualitatively analyzed by a Nicolet 6700 infrared spectrophotometer (IR, Thermo
Scientific, Waltham, MA, USA) equipped with an ATR accessory. The lignin contents
(Klason lignin) of NW and DW were determined according to a standard TAPPI T 222
om-2 method [39]. The morphologies of NW, DW, compressed delignified wood by solvent
exchange drying compressed under 0% moisture content (CDWSD0), 9% moisture content
(CDWSD9), and 18 moisture content (CDWSD18) were characterized using a Phenom XL
G2 Desktop scanning electron microscope. The mechanical properties of the samples
were measured using an Academic User Instron 5969 Uniaxial Materials Testing System
(Instron 5969, Norwood, MA, USA). At least ten specimens were tested for all samples and
the averages and standard deviations were presented.
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The densities of NW, DWSD, CDWSD0, CDWSD9, and CDWSD18 were determined
from the ratios of mass to volume. The porosities of the above samples were calculated
as follows:

Porosity (%) =

(
1 − ρa

ρb

)
× 100%

where ρa is the density of the cellulose nanofiber bulk material and ρb is the density of the
delignified wood, taken as 1.5 g·cm−3.

2.4. Numerical Modeling of Ultrastrong and Tough Bulk Material

The fabricated ultrastrong and tough bulk material is simulated for validation of
the model for strength, stiffness, and failure mechanisms by macro and micro finite el-
ement analysis (FEA). The macro FEA of the tension test based on a 3D solid model
was performed. The micro FEA construction of tension test included two steps: (1) the
length of cellulose nanofibril was assumed to be 7.5 µm and the transverse section’s side
length was 3.5 nm. The vertical distances between cellulose nanofibrils were 0.29 nm
(0% moisture content), 0.17 nm (9% moisture content), and 0.13 nm (18% moisture content),
respectively. The distance along the cellulose nanofibrils’ ends was assumed to be 0.5 nm.
After that, finite element software ABAQUS (ABAQUS version 2014) was used to capture
representative bulk unit cells consisting of wood cellulose nanofibrils and mesenchyme.
Figure S1 (Supporting Information) shows representative bulk unit cell models of CDWSD0,
CDWSD9, and CDWSD18; (2) determination of the conditions for FEA. Based on the rep-
resentative bulk unit cell model above, the conditions of micro FEA were determined as
follows: the fracture strength and Young’s modulus of microfibrils were set as 2.3 GPa and
129 GPa, respectively [10,40]. The strength of nanofibril mesenchyme was unknown and
it represented the bonding force between cellulose nanofibrils under different moisture
contents. The mechanical properties of mesenchyme were characterized through simulating
and comparing the experimental tensile strength and fracture strain data, which revealed
bonding force between cellulose nanofibrils of CDWSD0, CDWSD9, and CDWSD18.

3. Results

Scheme 1 shows our top-down approach for fabricating ultrastrong and tough cellulose
nanofibril bulk material with the aid of water molecule-induced hydrogen bonding. In
detail, this material was fabricated following a three-step process: (1) delignification to
remove hydrophobic lignin and ionic interacted hemicellulose, which exposed well-aligned
cellulose nanofibrils and enhanced hydrogen bonding ability; (2) a solvent exchange drying
method was employed to remove water and maintain the original wooden framework
facilitating water molecule adsorption; (3) rehydration of solvent exchange dried delignified
wood to different moisture content levels, followed by mechanical compression to introduce
hydrogen bonding for enhanced mechanical performance.
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Scheme 1. Schematic illustration of the top-down fabrication of ultrastrong and tough cellulose
nanofibril bulk material with delignification, solvent exchange drying, moisture absorption, and
compression process.
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In order to investigate the water molecule-induced hydrogen bonding effect on inter-
cellulose nanofibrils, the natural basswood was subjected to sodium chlorite (NaClO2)
and sodium hydroxide (NaOH) treatment to remove lignin and hemicellulose. The re-
sult showed that the DW sample was composed of 80.2% cellulose, 14.7% hemicellulose,
and 2.1% lignin, indicating 22% hemicellulose and 91% lignin removal (Figure 1a). The
delignification result was further validated by FTIR spectroscopy (Figure 1b). There are
typical hemicellulose absorption peaks at 1734 cm−1 (unconjugated carbonyl C=O) and
lignin absorption peaks at 1507 cm−1 and 1595 cm−1 (C=H stretching of the aromatic rings),
1365 cm−1 (symmetric C-H bending from methoxyl group), and 1234 cm−1 (C-O stretch-
ing of the aromatic rings) in natural basswood. However, the above absorption peaks
disappeared in DW after NaClO2 and NaOH treatment. As the hemicellulose and lignin
were removed, the DWSD had lower density (0.21 g cm−3) and higher porosity (86.00%)
compared to natural basswood. In order to validate the water molecule-induced hydrogen
bonding strengthening effect, the DWSD absorbed different water vapor contents (0% mois-
ture content, 9% moisture content, and 18% moisture content) and was then compressed
and dried. The result presented that the density of CDWSD increased and the porosity de-
creased with increasing moisture content, indicating a positive effect of water molecules for
improving the densification degree of the cellulose nanofibrils within DWSD (Figure 1c,d).
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Figure 1. (a) The composition of cellulose, hemicellulose, and lignin in natural wood (NW) and
delignified wood (DW). (b) FTIR spectra of NW and DW. (c) Density and (d) porosity of NW,
delignified wood by solvent exchange drying (DWSD), compressed delignified wood by solvent
exchange drying compressed under 0% moisture content (CDWSD0), 9% moisture content (CDWSD9),
and 18 moisture content (CDWSD18).

The morphologies of NW, DWSD, CDWSD0, CDWSD9, and CDWSD18 are presented in
Figures 2 and S2 (Supporting Information). Compared with NW, the volume of DWSD was
slightly reduced (Figure 2a), indicating that the solvent exchange drying technique did
not destroy the microstructure of NW. The SEM cross-section images of NW and DWSD
(Figure 2b,c) showed the separated individual wood cells, showing non-polar hexane
restricted the association between wood fibers. In addition, the wood cell walls of DWSD
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was thinner than that of NW because of hemicellulose and lignin removal. As we all know,
DW is a hygroscopic material, which tends to bind water molecules through hydrogen
bonding via its surface hydroxyl groups. In order to investigate the effect of bound water
on the densification and mechanical properties of the delignified wood, the DWSD absorbed
a given mass of moisture (0%, 9%, and 18%) in a desiccator containing K2SO4 solution,
which can provide 97.6 ± 0.5% relative humidity (RH) at 20 ◦C. The DWSD having different
moisture contents were then compressed and dried. At 0% moisture content, the DWSD
could not be compressed to a dense material and the CDWSD0 experienced springback,
indicating cellulose nanofibrils could not tightly link together. Therefore, there are a lot
of big gaps caused by fewer bindings among wood cells (Figure 2d). When increasing
moisture content on the surface of cellulose nanofibers, the CDWSD showed more dense and
compact cross-section microstructure, which is because water molecules can be plasticizers,
increasing the flexibility and softness of cellulose nanofibers and causing wood cell walls to
tightly intertwine and densely pack together under compression. Additionally, more bound
water molecules on the surface of cellulose nanofibers increased the hydrogen bonding
capacity, creating more strong interactions between cellulose nanofibrils. Thus, these
big gaps disappeared and there were fewer microcracks in the CDWSD9 (Figure 2e). For
CDWSD18, the cellulose nanofibrils inside cell walls had merged together by compression
(Figure 2f). The above results were also consistent with the density and porosity analyses
as shown in Figure 1c,d.
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Figure 2. (a) Photographs of NW and DWSD. SEM cross-section images of (b) NW, (c) DWSD,
(d) CDWSD0, (e) CDWSD9, and (f) CDWSD18.

Figure 3 demonstrates tensile–strain curves and the corresponding mechanical per-
formance of the NW, DWSD, CDWSD0, CDWSD9, and CDWSD18. Due to the loose and
separated structure formed during delignification and solvent exchange drying, the DWSD
showed low mechanical properties with tensile strength, Young’s modulus, and toughness
of 43.4 MPa, 5.5 GPa, and 0.4 MJ m−3, respectively, which were lower than those of NW
(55.8 MPa, 6.0 GPa, and 0.4 MJ m−3). For compressed solvent exchange dried delignified
wood, the mechanical properties increased with increasing moisture content prior to com-
pression. The tensile strength (351.8 MPa), Young’s modulus (32.9 GPa), and toughness
(4.1 MJ m−3) of CDWSD18 were more than 5, 3, and 6 times higher than those of CDWSD0.
As previously discussed, the CDWSD0 displayed a springback phenomenon and big gap
microstructure due to mutually exclusive hydroxide groups, which could not form enough
hydrogen bonds when compressed at 0% moisture content. The mechanical performance
change clearly indicated that water molecules played the role of plasticizers and structural
molecules between cellulose nanofibrils to enhance the hydrogen bonding interactions of
inter-nanofibrils.
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Figure 4 shows the stress distributions of CDWSD0 (Figure 4a), CDWSD9 (Figure 4b),
and CDWSD18 (Figure 4c) when subjected to tension load. Meanwhile, Videos S1–S3
(Supporting Information) also present the variations of stress distributions during the
loading process. The results of macro FEA indicated that the main loading was located at
the middle of the sample. The CDWSD18 possessed superior tensile strength (365.5 MPa)
compared to CDWSD9 (302.2 MPa) and CDWSD0 (78.4 MPa), which was also in accordance
with the experimental studies.
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Figure 5 presents the stress distributions of a representative bulk unit cell, cellulose
nanofibril, and nanofibril mesenchyme models of CDWSD0 (Figure 5a), CDWSD9 (Figure 5b),
and CDWSD18 (Figure 5c) during the micro FEA process. The micro FEA result indicated
that the main breaking points belonged to cellulose nanofibril mesenchyme, which was
consistent with experimental data. There are some burrs at the breaking point that also
proved that the cellulose nanofibril mesenchyme, not cellulose nanofibril, experienced
fracture in tensile testing. With the increase in moisture content in compressed samples,
the tensile strength was gradually improved, which illustrated that the hydrogen bonding
among cellulose nanofibrils was increased from the qualitative perspective. Therefore, the
CDW can endure higher stress, which was caused by bigger fracture forces of cellulose
nanofibril mesenchyme with the increase in moisture content.
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Figure 5. The stress distributions of representative bulk unit cell, cellulose nanofibrils, and nanofib-
ril mesenchyme for (a) CDWSD0, (b) CDWSD9, and (c) CDWSD18 during micro finite element
analysis process.

4. Conclusions

In this work, we reviewed a strong and tough material and investigated the dynamic
tensile deformation behavior of this material by using macro/micro FEA and experimental
methods. The deformation modes for compressed delignified wood under different mois-
ture contents subjected to dynamic mechanical stretching were identified. The following
conclusions were drawn: (1) the numerical simulation and theoretical analysis results were
in accordance with experimental data; (2) FEA was an effective approach to predict the
fracture position and force situation for samples under dynamic stress; (3) the results of FEA
showed that water molecules can serve as plasticizers and hydrogen-bonding bridges to
simultaneously enhance strength and toughness. In conclusion, the proposed macro/micro
FEA is capable of being used to evaluate the dynamic mechanical properties and reveal
strengthening mechanisms for cellulosic materials, which will contribute to fabricating
superior structural composites.
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