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Abstract: Wastewater, which is rich with heavy elements, dyes, and pesticides, represents one of the
most important environmental pollutants. Thus, it has been significant to fabricate environmentally
friendly polymers with high adsorption ability for those pollutants. Herein, crosslinked chitosan
(C-Cs) was prepared using isopropyl acrylamide and methylene bisacrylamide. Carbon nanoparticles
(C-NPs) were also obtained by the treatment of the agricultural wastes, which was used with C-Cs to
prepare C-Cs/C-NPs nanocomposite (C-Cs/C-NC). Fourier-transform infrared spectroscopy (FTIR),
X-ray diffraction (XRD), and transmission electron microscope (TEM) were used to investigate the
prepared adsorbent. C-Cs, C-NPs, and C-Cs/C-NC were used in water treatment for the adsorption
of lead ions (Pb+2) and methylene blue (MB). The adsorption process occurred by the prepared
samples was investigated under different conditions, including contact time, as well as different
doses and concentrations of adsorbents. The findings exhibited that the adsorption of Pb+2 and MB
by C-Cs/C-NC was higher than C-Cs and C-NPs. In addition, the kinetic and isotherm models were
studied, where the results showed that the adsorption of Pb+2 and MB by various adsorbents obeys
pseudo-second-order and Langmuir isotherms, respectively.

Keywords: crosslinked chitosan; carbon nanoparticle; nanocomposite; water treatment

1. Introduction

Water is an essential provenance of life, as it caps about 70% of the territory’s surface.
However, only about 0.06% of this water is available as freshwater for drinkable [1]. Despite
the massive amount of water on Earth, very small amounts are suitable for consump-
tion [2,3]. Furthermore, human activities, such as industrialization, an energy-intensive
lifestyle, urbanization, etc., have contributed to raw-sewage-to-water contamination [4].
Water contamination by heavy metals, pesticides, and organic dyes has received higher
attention recently due to their toxicity to the environment, and bioaccumulation, posing a
grave menace to both human validity and the ecosystem, where the harmful compounds
are infiltrated and concentrated into the food chain, such as fish and other edible organisms
throughout their build-up in living tissues [5,6]. Even at low levels, the traces of metals can
interfere with the enzymes of living creatures, which are impossible to remove once they
have entered the organism, causing negative health consequences [7]. For that, the mean
task for the researchers is the purification of wastewater and removal of toxic metals. There
are various processing methods that can be used for this intent, such as electrochemical
treatment, chemical precipitation, reverse osmoses, membrane technologies, filtration,
ion-exchange, adsorption, etc. [8,9]. The adsorption process is the most cost-effective,
productive, and simple method [10,11].
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Recently, researchers worked to use adsorbents based on natural polymers, such
as cellulose, gums, chitosan, sodium alginate, etc., due to their abundance, non-toxicity,
biodegradability, cheap cost, etc. [12–14]. They were usually used in the flocculation
process or as adsorbents [15,16]. Chitosan has been deemed as one of the important
biopolymers, which is a derivative of chitin obtained from crustacean shells [17]. It is
inexpensive and is one of the most abundant biopolymers and has gotten high attention in
wastewater treatment, owing to its numerous amino and hydroxyl groups. However, there
are some limitations for practical application due to the weakened mechanical strength and
solubility in acidic environments, plus weak adsorption capacity, besides the shortage of
selectivity [18].

At the present time, nanotechnology is being used in many applications, such as agri-
culture, drug delivery, water purification, etc. [19–21]. Nanotechnology is the phenomenon
of the application of materials on a nanometer-scale level that is usually measured in the
range of 1 to 100 nm. Nanomaterials can be prepared in various forms, such as nano-wires,
sheets, tubes, particles, and quantum dots. In wastewater treatment, many nanomaterials
can be applied due to their efficiency, eco-friendliness, and unrivaled functionalities for the
decontamination of wastewater [22,23]. Nanomaterials are a class of adsorbents that have
received growing attention recently. They have the ability to adsorb both inorganic and
organic compounds from aqueous solutions. In addition, they have the ability to kill and
remove microorganisms such as Pseudomonas Aeruginosa, Escherichia Coli, Candida Albicans,
and Staphylococcus Aureus from water [24,25].

Herein, crosslinked chitosan (C-Cs) was prepared by the grafting of N-isopropyl acry-
lamide onto the chitosan skeleton and using N,N′-methylene bisacrylamide as a crosslinker.
In addition, agricultural wastes obtained from trimming trees, a rich source of carbon,
were used in the preparation of carbon nanoparticles. Accordingly, a new nanocomposite
adsorbent was prepared by incorporation of C-Cs to crosslinked chitosan during grafting
polymerization of chitosan to apply as adsorbent for lead ions and methylene blue.

2. Methodology
2.1. Materials

Lead acetate, nitric acid (HNO3), hydrochloric acid (HCl), and sodium hydroxide
(NaOH) were obtained from Al-Gomhoria Co., Cairo, Egypt. Chitosan (medium molecular
weight, deacetylation >75%), N-isopropyl acrylamide, N, N′-methylene bisacrylamide and
methylene blue (MB) were obtained from Sigma. All solvents and reagents (analytical
grade) were applied without additional purification, and all aqueous media were prepared
using distilled water.

2.2. Preparation of Carbon Nanoparticles (C-NPs)

The agricultural wastes obtained from the trim tree were treated by pyrolysis at
300 ◦C in the absence of air to obtain the biochar [26,27]. The latter was mill ground and
sieved using Mesh Testing Sieve No. 400 to obtain a very fine powder of biochar. The
biochar powder was treated with nitric acid (1 N) to obtain active sites, and then washed
with distilled water till a neutral pH was reached. The collected powder was dispersed
in water and then left to settle down where the upper part containing floating carbon
nanoparticles (C-NPs) was taken. The latter step was repeated three times to guarantee
that the solution contained only C-NPs [28]. Finally, the floating solution containing C-NPs
was subjected to centrifugation for 20 min at 10,000 rpm, and then the wet powder was
exposed to drying at 60 ◦C for 24 h to obtain C-NPs.

2.3. Preparation of Cross-Linked Chitosan/C-NPs Nanocomposite

Cross-linked chitosan (C-Cs) was prepared by dissolving about 2 g chitosan (Cs) in an
aqueous solution of acetic acid (1%). Then 2 g of N-isopropyl acrylamide and 0.02 g N,N′-
methylene bisacrylamide were added to the reaction solution under stirring at 300 rpm.
A potassium persulfate solution was added to the reaction mixture and the temperature
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was raised to 70 ◦C to initiate the crosslinking polymerization process. However, for the
preparation of cross-linked chitosan/C-NPs (C-Cs/C-NC), the same previous experiment
was carried out, but in the presence of 0.02 g dispersed C-NPs. The reaction solution was
dried using a freeze dryer to obtain C-Cs/C-NC.

2.4. Instrumentation

FTIR analysis (400–4000 cm−1) was carried out for all prepared samples using the KBr
procedure on a Mattson 5000 spectrometer (Unicam, Cambridgeshire, UK).

The morphological structure of C-NPS was studied by TEM (JEM-1230, JEOL Ltd.,
Tokyo, Japan), where a drop of a dispersed C-NPS in water was placed on a copper grid
coated by carbon and then insert into a TEM device after drying in the air.

The morphological properties of the prepared samples were performed by SEM,
(Quanta-250, Tokyo, Japan). The sample was placed on the plate and exposed to coating
with gold using an EMITECH K550X sputter coater, England for 1 min.

The crystal structure of the prepared samples was obtained by an X-ray diffractometer
(XRD; Diano, WO, USA), where it used CoKα as a source of radiation which energized at
45 kV. XRD patterns were recorded by CuK radiation supply (λ = 0.154 nm).

The BELSORP MINI-X apparatus (Japan) was used in the study of the adsorption-
desorption isotherm of N2 for the prepared samples at 77 K to measure the surface area
and pore size using the Brumauer–Emmett–Teller method (BET).

2.5. Adsorption Measurements
2.5.1. Effect of Adsorbent Content

The removal efficiency of the adsorbent doses by adding (0.125, 0.25, 0.5, and 1 g) of
C-Cs, C-NPs, and C-Cs/C-NC for removal of 100 mg/L Pb+2 and 10 mg/L MB were evalu-
ated. The solutions were filtered, and the concentration of Pb+2 and MB was determined
by atomic absorption and UV-spectrophotometer, respectively. The percentage of removal
efficiency (R%) of adsorbents was estimated by Equation (1).

R =

(
Co − Ct

Co

)
∗ 100 (1)

where Ct is the total content of the remaining contaminants after time (t; mg L−1), and Co is
the initial contaminants’ content (mg L−1) of ions.

2.5.2. Effect of Contact Time

The removal efficiency of Pb+2 (100 mg/L) and MB (10 mg/L) by the C-Cs, C-NPs,
and C-Cs/C-NC was studied at numerous different times (5–120 min), pH = 6 using 1 g/L
of adsorbent. The removal efficiency percent (R%) was determined by Equation (1). The
quantity of Pb ions or MB uptake by 1 g adsorbent (q) was estimated by Equation (2).

q = (Co − Ct)x
V
M

(2)

where Co is the total content of the initial contaminants (mg/L), Ct is the total content of the
remaining contaminant after a time (t) (mg/L), M is the mass of the adsorbent added (g),
and V is the solution volume (mL).

2.5.3. Effect of the Contaminants (Pb Ions and MB) Concentrations on Removal Efficiency
and Adsorption Capacity

The R% and q were calculated for the prepared adsorbents at various concentrations
of Pb+2 (10, 30, 50, 100, and 150 mg/L) and MB (1, 3, 5, 10, and 15 mg/L) were investigated
at the time 120 min and pH 6 using 1 g/L of the adsorbent.
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2.5.4. Kinetic Measurements

In order to study the adsorption kinetics of Pb+2 and MB using C-Cs, C-NPs, and
C-Cs/C-NC as adsorbents, four kinetic models were applied, which are pseudo-first-order,
pseudo-second-order, intraparticle diffusion model, and Elovich.

I. Pseudo-first-order kinetics are denoted by

log(qe − qt) = log qe −
k1

2.303
t (3)

where qt is the uptake capacity (mg/g) at any given time (t, min), qe is the equilibrium
uptake capacity (mg/g), and k1 is the pseudo-first-order rate constant (min−1) which
can be estimated from the slope of the logarithm line graph (qe − qt) against t [29].

II. Pseudo-second-order kinetics were applied to verify the constant adsorption rate
according to the subsequent equation:

t
qt

=
1

K2qe
+

(
1
qe

)
t (4)

where K2 represents pseudo-second-order rate constant (g/mg min) which can be
analyzed from the intercept of the linear plot of t/qt versus t. The following expression
indicates the rate of adsorption h (mg/g min) [30]:

h = k2q2
e (5)

III. The intra-particle diffusion kinetic model can be denoted as

qt = kp(t)0.5 + c (6)

where kp represents the intraparticle diffusion rate (mg.min1/2/g), and C represents
the constant which can be expressed from the slope and intercept, respectively, of the
line graph of qt vs. t0.5 [31].

IV. The Elovich kinetic model can be described by

qt =
1
β

ln(αβ) +
1
β

ln(t) (7)

where β is the constant of desorption (mg.min/g), and α is the initial adsorption rate
(mg/g.min), which can be determined from the slope and intercept, respectively, for
the linear plot of qt versus ln t [32].

2.5.5. Isotherm Study

Adsorption isotherms demonstrate how the adsorbent particles interact with the
adsorbate particles. The interaction of Pb+2 and MB with C-Cs, C-NPs, and C-Cs/C-NC as
adsorbents were fixed by using four isotherm models.

I. Langmuir isotherm assumes monolayer adsorption which is epitomized by the subse-
quent equation

qt

qmax
= bCt/(1 + bCt) (8)

where qt represents the uptake capacity after time t (mg/g), Ct represents the con-
centration after time t (mg/L), qmax is the maximum uptake capacity (mg/g), and b
represents Langmuir constant (L/mg), which is associated with the adsorption energy.

The separation factor (RL) is the basic property of the Langmuir isotherm which is
described as

RL = 1/(1 + bCo) (9)
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RL > 1 signifies unfavorable adsorption, RL = 1 signifies linear adsorption, and
RL = 0 translates into irreversible, whereas RL values between 0 and 1 specify promis-
ing adsorption [33].

II. The Freundlich isotherm model, which assumes a multilayers adsorption, is denoted
by the following equation:

lnqe = lnk f +

(
1
n

)
lnCe (10)

where kf is the constant of Freundlich, and n is the adsorption strength which can be
expressed from the intercept and slope, respectively, of the linear graph of ln qe versus
ln Ce. n = 1 signifies linear adsorption; n < 1 designate chemical process; and n > 1
represents the physical process [34].

III. The Temkin isotherm model suggests that the sorption energy during the process of
adsorption decreases linearly as a function of increasing adsorption site saturation.
The Temkin isotherm can be given by Equation (11)

qe = B ln kt + B ln Ce (11)

where Kt is the equilibrium binding constant (mol/L), B is the constant associated
with the adsorption heat B = RT/b, b is the Temkin constant related to the adsorption
energy, R is the gas constant (0.00813 kJ/mol−1), and T is the temperature (K).

If the constant B is less than 8 kJ/mol, it specifies a weak interaction between the
adsorbate and adsorbent, so such adsorption is considered physical adsorption [34].

IV. The Dubinin–Radushkevich (D–R) isotherm can be given in the following form [35]:

ln qe = ln qm − βε2 (12)

where β is the activity coefficient, and ε is Polanyi potential, which is defined as

ε = RT ln
(

1 +
1

Ce

)
(13)

Sorption energy (E) is the energy used (kJ/mol) when the Pb+2 and MB transferred to
the surface of the C-Cs, C-NPs, and C-Cs/C-NC, which can be described as

E =
1

(2β)0.5 (14)

3. Results and Discussion
3.1. Morphological Studies

Figure 1 illustrates the transmission electron microscope micrographs and scanning
electron microscope of the prepared C-NPs. Figure 1a illustrates the spherical shapes of the
prepared C-NPs, which have a narrow size distribution and the majority of particle sizes
are less than 100 nm. Furthermore, the SEM image (Figure 1b) shows homogeneous and
spherical particles with narrow particle size distribution.

The surface morphology of C-Cs and C-Cs/C-NC is illustrated in Figure 2a,b, re-
spectively. Generally, the images clearly point out the difference in surface morphology
between the cross-linked chitosan and the nanocomposite. The micrograph of C-Cs shows
a relatively smooth surface interspersed with some pores of small size. The crosslinked
polymer appears as massive matrices with dense and smooth hemispherical and irregular
structures on the surface. However, the C-NPs in C-Cs/C-NC contribute to changing the
morphology into a rough surface filled with highs and lows. The image shows denser
pores than C-Cs image with the emergence of some huge caves.
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Figure 2. SEM image of C-Cs (a) and C-Cs/C-NC (b).

The X-ray diffraction patterns of C-Cs, C-NPs, and C-Cs/C-NC are recorded in
Figure 3. The XRD pattern of C-NPs shows the crystal plane index (0 0 2) at 2θ = 24.85◦.
The emergence of this broad peak indicates the existence of stacking amorphous carbon
structures with random parallel and horizontal orientation of aromatic sheets. Another
diffraction peak appeared at 2θ = 43.65◦ indicating that the carbon crystals are stacked in
an ordered turbostratic structure [36–38].

The X-ray diffraction of C-Cs shows the two distinct peaks of chitosan at 2θ = 8.19◦

and 20.24◦. These two peaks indicate the ordered crystal structure created by hydrogen
bonds in chitosan structure. In addition, other peaks at 2θ = 29.74◦, 30.94◦, 37.07◦, 40.86◦,
43.22◦ and 48.83◦ indicating the formation of crosslinked chitosan nanoparticles [39]. The
XRD pattern of C-Cs/C-NC shows a high match with that of C-Cs where the characteristic
broad peaks of chitosan appeared at 2θ = 12.11◦ and 21.35◦. The other sharp peaks also
emerge at 2θ = 29.77◦, 30.89◦, 37.05◦, and 40.37◦. The presence of C-NPs in C-Cs/C-NC can
be proved by the peak indexed as 002 that emanates as a shoulder at 2θ = 24.16◦, and the
other peak at 2θ = 43.55◦.
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FT-IR spectra of C-Cs, C-NPs, as well as the synthesized C-Cs/C-NC were illustrated
in Figure 4. The crosslinked Cs have a broad peak at 3300 cm−1 conformable to O-H and
N-H stretching vibration, and the basic characteristic bands at 1650, 1550 and 1050 cm−1

are congruous to C=O, the N-H stretching of a primary amine group vibration, and C-O-C
stretching vibration, respectively [40]. In addition, the carbon nanoparticles showed char-
acteristic bands of the common peaks at 3400, 1650 and 1050 cm, owing to the stretching
vibrations of O-H, C=O, and C-O, respectively [41]. These peaks indicate the high function-
ality of the prepared carbon nanoparticles, which qualifies them to use as sorbents. The
prepared nanocomposite (C-Cs/C-NC) contains distinct groups for both C-Cs and C-NPs
as illustrated in Figure 4.
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The surface and pore lineaments of the prepared crosslinked chitosan and their
nanocomposite with carbon nanoparticles were examined using the BET method, and
their values are summarized in Table 1. Evidently, there is a considerable change in the
surface area of crosslinked chitosan by incorporation of carbon nanoparticles, where the
surface area raised from 24.5 for C-Cs to 30.3 m2/g for C-Cs/C-NC. This is the cause for the
higher adsorption of lead ions and MB by C-Cs/C-NC over C-Cs and C-NPs. In addition,
the average size of pores is less than 50 nm, which indicates the mesoporous structure of
the prepared adsorbents [42,43].

Table 1. The surface characteristics of the prepared C-Cs and C-Cs/C-NC.

Sample Average Pore
Radius (nm)

Surface Area
(m2/g)

Pore Volume
(cm3/g)

Total Pore
Volume (cm3/g)

C-NPs 0.9 14.8 0.0189 0.0117

C-Cs 1.6 24.6 0.0172 0.0192

C-Cs/C-NC 1.8 30.3 0.0238 0.0267
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As maintained by the classification of Brunauer–Deming–Deming–Teller [44], the
adsorption–desorption isotherms for all adsorbents samples exhibit type III with hysteresis
loop of type H3 as shown in Figure 5, which is distinguishing for the mesoporous structure
of the prepared adsorbents [45,46].
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3.2. Adsorption of Pb+2 and MB

The adsorbent amount has a significant value in the adsorption process, and it defines
the adsorbent capacity through the number of active binding sites available to remove
the pollutants from solutions. Figure 6a,d illustrates the effect of changing the dose of
C-Cs, C-NPs and C-Cs/C-NC from 0.125 to 1 g on the uptake capacity of lead ions and MB,
respectively, at pH 6, time 120 min, and 100 mg/L of adsorbent concentration. The findings
display that the adsorption is increased as the adsorbent dose from 0.125 to 1 g, which
may be due to the increase of active site numbers that are available to adsorb ions [47]. In
addition, the order of adsorption of Pb ions and MB by various adsorbents was C-Cs/C-NC
> C-NPs > C-Cs.

An additional increase in the percentage of the removal of metal ions of adsorbent
dosage was detected when the same doses were used after adding the activated carbon
nanoparticles. The results exhibited that the removal percentage of lead ions at a dosage of
0.125 g of C-Cs/C-NC (Figure 6a) was 33.6% which increased to 72.8% by increasing the
dosage to 1 g, while for MB, the R% was increased from 25.6% to be 80.1% by increasing
the dosage of adsorbent to 1 g (Figure 6d).

Figure 6b,e represents the effect of 1 g of C-Cs, C-NPs and C-Cs/C-NC on the removal
efficiency of Pb+2 and MB, respectively, by varying the contact time from 5 min to 120 min
at pH = 6. The removal efficiency was found to increase with growing the contact time,
where it increased sharply during the first 60 min then slowly from 60 to 120 min until
reaching equilibrium. The fast initial adsorption rate could be attributed to the availability
of sufficient vacancies and the high driving force of the ions within the adsorbents, which
causes the rapid transfer mechanism between lead ions and MB and the binding site of the
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C-Cs, C-NPs and C-Cs/C-NC [48]. The slow removal performance is due to active sites
becoming exhausted [9].
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(a–c, respectively) as well as MB (d–f, respectively).

The results showed that the removal efficiency of Pb+2 and MB using C-Cs/C-NC
was 72.8 and 80.1, respectively. This may be due to the addition of carbon nanoparti-
cles to crosslinked chitosan improving the removal percentage by increasing the active
sites that are capable of absorbing ions and the numbers as well as the pore size of the
prepared nanocomposites.
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Figure 6c,f represents the effect of 1 g of C-Cs, C-NPs and C-Cs/C-NC on the R% of
various concentrations of lead ions and MB, respectively, after 120 min and at pH = 6. The
data show that the R% decreased by increasing the concentration of lead ions and MB. This
could be attributed to the rarer number of active sites, as well as the surface area of different
adsorbents, was constant against the increase of the ions in the solution. So, at the lower
ions concentration in the solution, the loading capacity of ions in the adsorbent was high,
and so the residual ions concentration in the solution was decreased [49].

3.3. Kinetic and Isothermal Studies

The kinetic models, including pseudo-first-order, pseudo-second-order, Elovich and
intra-particle diffusion models, as well as the adsorption isotherms, including Freundlich,
Langmuir, Temkin and Dubinin–Radushkevich (D–R), were employed to study the kinetics
and interaction between lead ions and MB with adsorbents. The kinetic and isotherms
model’s constants and correlation coefficients of C-Cs, C-NPs, and C-Cs/C-NC for adsorp-
tion of Pb+2 and MB were determined and stated in Tables 2 and 3, respectively.

Table 2. Parameters of kinetics for Pb2+ and MB removal onto C-Cs, C-NPs, and C-Cs/C-NC.

Pseudo-First-Order

K1 (min−1) qe (exp.) (mg/g) qe (cal.) (mg/g) R2

Pb2+ MB Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 0.04 0.02 2.05 9.35 4.2 0.40 0.8296 0.9632

C-NPs 0.05 0.02 4.05 9.60 9.7 0.63 0.8494 0.9939

C-Cs/C-NC 0.05 0.04 7.28 9.80 12.9 1.10 0.9094 0.9345

Pseudo-Second-Order

K2 (g/mg min) qe (exp.) (mg/g) qe (cal.) (mg/g) R2

Pb2+ MB Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 0.005 0.19 2.05 9.35 3.0 9.38 0.8618 1.0

C-NPs 0.003 0.12 4.05 9.60 6.1 9.65 0.8864 0.999

C-Cs/C-NC 0.003 0.09 7.28 9.80 9.1 9.87 0.9925 0.999

Intra-Particle Diffusion Model

Kp (mg. g−1min1/2) C R2

Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 0.2 0.03 0.2 8.96 0.9706 0.9879

C-NPs 0.4 0.06 0.38 8.96 0.9752 0.9928

C-Cs/C-NC 0.69 0.08 0.36 8.98 0.9627 0.974

Elovich Model

β (mg. min/g) α (mg/g.min) R2

Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 1.8 10.3 0.13 2.84819 × 1038 0.886 0.9136

C-NPs 0.9 5.86 0.27 3.55255 × 1021 0.8945 0.9669

C-Cs/C-NC 0.52 4.56 0.7 4.73069 × 1016 0.9784 0.9446
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Table 3. Parameters of isotherms for Pb2+ and MB removal onto C-Cs, C-NPs, and C-Cs/C-NC.

Langmuir Isotherm

qmax (mg/g) b (L/mg) R2

Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 2.07 2.79 0.049 0.06 0.9503 0.8792

C-NPs 8.40 7.60 0.015 0.05 0.9960 0.9678

C-Cs/C-NC 10.60 12.7 0.150 0.06 0.9762 0.9866

Freundlich Isotherm

n Kf R2

Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 1.90 1.7 0.18 0.08 0.8872 0.8004

C-NPs 1.38 1.6 0.20 0.20 0.9990 0.9328

C-Cs/C-NC 2.11 0.4 1.67 1.59 0.9539 0.9729

Temkin Isotherm

kt (mol/L) B R2

Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 0.38 3.66 0.50 0.08 0.8733 0.6668

C-NPs 0.24 5.50 1.48 0.16 0.9535 0.9101

C-Cs/C-NC 2.66 2.70 0.85 0.55 0.9716 0.9410

(D–R) Isotherm

qmax (mg/g) B E (kJ/mol) R2

Pb2+ MB Pb2+ MB Pb2+ MB Pb2+ MB

C-Cs 1.55 0.24 1 × 10−5 3 × 10−7 0.1 0.58 0.8789 0.8852

C-NPs 3.17 0.48 7 × 10−6 1 × 10−7 0.12 1 0.7917 0.8835

C-Cs/C-NC 6.10 0.69 3 × 10−7 6 × 10−4 0.58 1.29 0.8284 0.8807

From the findings summarized in Table 2, due to the correlation coefficient super value
(R2) of the pseudo-second-order model, and the close reliability among the experimen-
tal and uptake capacities [50], we concluded that the adsorption study of Pb+2 and MB
obeys the pseudo-second-order mechanism (Figures 7 and 8, respectively). Many kinds
of literature illustrated that the adsorption kinetics studied of divalent metals follow the
pseudo-second-order mechanism [51].

The equilibrium between the lead ions and MB removal and the adsorbent’s sur-
face was studied using various isotherm models to determine the adsorption isotherm
(Figures 7 and 8, respectively). The data obtained from equilibrium isotherm using various
isotherm models were estimated and are summarized in Table 3; they give important
knowledge about the mechanisms of adsorption as well as the adsorbent surface properties
and the relationship between solution and the adsorbent.

The results demonstrate that the adsorption of Pb+2 and MB provided the best fit with
the Langmuir model, which is attributed to the higher value of the correlation coefficient
(R2). This proposes that the fixation of lead ions and MB is performed in a monolayer,
and on energetically equivalent sites (homogenous sites) without interaction between the
adsorbed molecules [52]. Remarkably, from the data, the value of n > 1 in Freundlich,
B < 8 in Temkin and, E < 8 in (D-R) model validates that the adsorption is weak interaction
(physical process). Furthermore, the separation factor (RL) is monitored between 0 and 1,
which mentions promising adsorption between sorbates and adsorbents [47].
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4. Conclusions

In this study, carbon nanoparticles as well as crosslinked chitosan-N-isopropylacryla-
mide were prepared from agricultural residues and N,N′-methylenebisacrylamide, respec-
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tively. A nanocomposite of crosslinked chitosan/carbon nanoparticles was also fabricated.
The prepared materials were used as sorbents for lead ions and methylene blue from
their solutions. The carbonized structure and nanoscale of the prepared carbon particles
were confirmed by XRD pattern and TEM image, which showed average sizes less than
100 nm. Adsorption studies have shown that the greater the amount of sorbents in the
solution from 0.125 g to 1 g, as well as the soaking time of these sorbents, the higher the
removal of lead ions and methylene blue from the solutions. Additionally, the adsorption
efficiency of crosslinked chitosan/carbon nanocomposite, at all dosage concentration, was
higher than that of both carbon nanoparticles and crosslinked chitosan. BET analysis
showed that the surface area of the nanocomposite (30.35 m2/g) is higher than both carbon
nanoparticles (14.82 m2/g) and crosslinked chitosan (24.56 m2/g). This explains the higher
adsorption efficiency of the nanocomposite than carbon nanoparticles and crosslinked
chitosan. The kinetic adsorption study of Pb+2 and methylene blue obeyed the pseudo-
second-order mechanism. However, their isotherm studies provided the best fit with the
Langmuir model.
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