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Abstract: Nanocellulose is the most abundant material extracted from plants, animals, and bacteria.
Nanocellulose is a cellulosic material with nano-scale dimensions and exists in the form of cellulose
nanocrystals (CNC), bacterial nanocellulose (BNC), and nano-fibrillated cellulose (NFC). Owing to
its high surface area, non-toxic nature, good mechanical properties, low thermal expansion, and high
biodegradability, it is obtaining high attraction in the fields of electronics, paper making, packaging,
and filtration, as well as the biomedical industry. To obtain the full potential of nanocellulose, it
is chemically modified to alter the surface, resulting in improved properties. This review covers
the nanocellulose background, their extraction methods, and possible chemical treatments that
can enhance the properties of nanocellulose and its composites, as well as their applications in
various fields.

Keywords: nanocellulose; biodegradable; nanocomposites; chemical functionalization;
extraction; applications

1. Introduction

Polymeric cellulosic materials with high biodegradability and eco-friendliness have
received a lot of attention, owing to the damage caused by petroleum base products, such as
global warming, green gas emissions, and many others [1]. Several researchers are working
on cellulosic fibers, from which nanocellulose can be extracted. The use of nanocellulose as
a reinforcement in composites is because of their mesoscopic properties [2]. Nanocellulose
is derived from plant cell walls and has extremely valuable properties, such as high surface
area and strength [3–5]. Furthermore, the nanocellulose surface is easy to modify because of
the large number of hydroxyl groups present in its structure. Nanocellulose has numerous
applications in our daily lives, including filtration membranes, food packaging, biomedical,
and so on [6].

Various review papers on nanocellulose extraction and their application have already
been published [7–9], but in the present review, we described nanocellulose extraction by
comparing the various chemical and mechanical extraction methods, chemical function-
alization of cellulose, and cellulose composites processing, as well as their application in
various fields. Chemical modification of cellulose is important for achieving the strong
interfacial bond between cellulose and the matrix; therefore, the detailed discussion on
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chemical modification and the different techniques used for functionalizing the cellulose
surface is also part of this review. Cellulose nanocomposite processing is also of prime im-
portance for scientists working in the field of biocomposites, and numerous techniques can
be used to manufacture cellulose composites. The second part of the review analyzes the
nanocellulose composite production methods, followed by the applications of composites
in various fields, such as biomedical, paper, coatings, and water treatment.

2. Nanocellulose and Its Various Sources

As shown in Figure 1, the cell walls of most plants contain hemicellulose, cellulose, and
lignin. Lignin acts as a binder between cellulose and hemicellulose, holding them together.
It has high stiffness and strength and can protect the cell wall from the outside environment.
The amount of lignin in the plant cell wall ranges from 10 to 25% by weight, while the
amounts of hemicellulose and cellulose are 20–35% and 35–50%, respectively [1,10,11]. The
main component of the cell wall is cellulose, composed of repeating units of cellobiose,
linked together with β-1,4 linkages, as shown in Figure 1. Intermolecular or intermolecular
hydrogen bonding is used to connect the repeated units. Bonding occurs between the same
or different chains via open hydroxyl groups [12]. Hemicelluloses are primarily xylans and
glucomannans, connected by short or branched chains. Hydrogen bonding plays a vital
role in providing compactness, strength, and solvent impermeability to the networks in
cellulose fibers.
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molecules in the crystalline parts promotes high stiffness, whereas the amorphous parts give
flexibility to the bulk material [13]. For general lignocellulosic biomass, the cellulose fibers
present in between the crystalline and amorphous regions have a diameter of 3–100 µm
and a length of 1–4 mm [14].

Nanocellulose fibers with a diameter of less than 100 nm and a length in the microm-
eters range deserve special attention. Nanocellulose fibers are transparent and rich in
hydroxyl groups. These groups have a reactive surface that can be modified to obtain the
desired properties [15]. Nanocellulose nanofibers have a low density of 1.6 g/cm3 and has
exceptional strength [14]. Additionally, they have a tensile strength of nearly 10 GPa and a
high strength-to-weight ratio that is eight times greater than stainless steel.

The three primary forms of nanocellulose materials are BNC, NFC, and CNC, as shown
in Table 1. Three cellulosic forms have unique qualities, including biodegradability, tunable
surface chemistry, barrier properties, non-toxicity, high mechanical strength, crystallinity,
and high aspect ratio. Such a remarkable nature of nanocellulose makes it a new material for
food packaging and fillers in composites [16,17]. High-strength nanocellulose, sometimes
referred to as CNC, is typically recovered by the process of acid hydrolysis from cellulose
fibrils [18]. It is shaped like a short rod or a whisker and has a diameter of 2–20 nm
and a length of 100–500 nm. Additionally, it is entirely composed of cellulose, with high
crystallinity ranging from 54 to 88%. The long and entangled nanocellulose that may be
mechanically removed from cellulose fibrils is another type of nanocellulose and is known
as NFC, often referred to as micro-fibrillated cellulose. Its size ranges from 500 to 2000 nm
in length and 1–100 nm in diameter [19,20]. It is made from 100% cellulose, with crystalline
and amorphous region parts. Another different type of nanocellulose is BNC. It is formed
by bacteria, primarily Gluconacetobacter xylinus, over a few days to two weeks, whereas
lignocellulosic biomass is the primary constituent for the extraction of CNC and NFC
(top-down method). As BNC is extracted from bacteria, other amorphous compounds,
such as lignin, hemicellulose, and pectin, are never present in the pure form of BNC [21,22].
The chemical makeup of BNC is identical to that of the other two types of nanocellulose.

Table 1. Types of nanocellulose materials.

Nanocellulose Types Sources Extraction Method and Size

CNC Cotton, tunicin, mulberry bark,
hemp, wood, wheat straw.

Acid hydrolysis
5–70 nm in diameter
100–250 nm in length

BNC Sugars and alcohols. Extracted from bacterial synthesis
20–100 nm in diameter

NFC Wood, hemp, flax, potato tuber,
sugar beet.

A mechanical method of breaking
the cellulose

5–60 nm in diameter

3. Nanocellulose Extraction Processes

The use of agricultural leftovers for the extraction of nanocellulose is a very appealing
field from the researcher’s point of view. Agriculture leftovers are lignocellulosic biomass
that are rich in cellulosic content. The extraction of nanocellulose from lignocellulosic
biomass involves various steps that can be seen in Figure 2. First, the pretreatment elimi-
nates the non-cellulosic compounds, including lignin, hemicellulose, pectin, etc., followed
by nanocellulose extraction through various extraction techniques [23].

3.1. Biomass Treatment for Nanocellulose Extraction

The pretreatment of lignocellulosic biomass to remove the amorphous compounds is
the first step in the extraction of nanocellulose. Alkali treatment and acid-chlorite treatment
are the two common methods for pretreating biomass. The amorphous compounds are
removed from the biomass in the process of alkali treatment, primarily by treating the
biomass with an alkali solution. Alkali can be sodium hydroxide or potassium hydrox-
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ide. Several scholars have provided in-depth descriptions of the alkaline pretreatment
process [24]. Sharma et al. [25] worked on an alkali treatment technique to extract cel-
lulose nanofibers from rice straw waste. For the removal of hemicelluloses and lignin,
the rice straw was heated to 90–160 ◦C for 1–2 h after being soaked in various NaOH
concentrations (8–16%).
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Acid-chlorite treatment is another technique used for the removal of amorphous
compounds. The simultaneous treatment of sodium chlorite, along with glacial acetic
acid as an acidifying agent, removes the majority of the lignin from the lignocellulosic
biomass. This procedure is also referred to as a bleaching or delignification technique. It is
carried out when a mixture of lignocellulosic biomass and distilled water is added to the
sodium chlorite and acetic acid solution at 70–80 ◦C for 4–12 h [26]. After completion of the
treatment, the mixture is stirred continuously for an entire night before being washed with
distilled water to bring the pH level to a neutral state. This leads to a collection of white
residue, which is then dried at 50 ◦C in an oven to obtain lignin-free holocellulose [27].

3.2. Nanocellulose Isolation

Acid hydrolysis, mechanical treatment processes, and enzymatic hydrolysis are some
of the techniques used for nanocellulose isolation. Table 2 shows three cellulose isola-
tion processes. The most commonly used technique for extracting nanocellulose is acid
hydrolysis [28]. It involves the use of strong acids, such as sulfuric acid, that can easily
hydrolyze the amorphous area of cellulose fibrils by esterifying the hydroxyl groups with
sulfate ions [29,30]. Maiti et al. [31] suggested the use of 47% of sulfuric acid to recover
nanocellulose from waste tissue papers, China cotton, and south African cotton. The results
show that the types of the precursors and the hydrolysis conditions largely determine
the shape and size of the nanocellulose. It was noted that esterification creates a colloidal
dispersion of crystalline nanocellulose inside the reaction mixture. Acid hydrolysis can be
performed by other mild acids, such as formic acid, phosphoric acid, etc. Bond cleavage
is the mechanism behind the acid hydrolysis of cellulose. The glycosidic bonds present
between anhydroglucose units are subjected to hydrolytic cleavage, resulting in the rear-
rangement of tangling chains and strain release. Acid hydrolysis thereby dissolves the
amorphous portion, leaving the crystalline sections intact. Formed crystalline regions
are then projected to mechanical treatment, which transforms them into fine cellulose
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particles. The use of a 30–50% concentration of sulphuric acid in acid hydrolysis gives
very fine cellulose particles. Reinforcing fine cellulose particles in biocomposites facilitates
high plastic deformation in the composite. Acid hydrolysis reactions and the properties
of nanocellulose can be controlled by varying the concentration, time, and temperature
provided [32]. The size of cellulose particles and their distribution depend highly on the
temperature, time, and concentration of the acid. A high temperature and short reaction
time are usually recommended for dilute acid hydrolysis. Using dilute acid eliminates the
need for acid recovery. Iranmahboob et al. [33] performed dilute acid hydrolysis and found
that, to achieve a high yield from dilute acid, high temperature, less time, and high pressure
are required. Similarly, Hamelinck et al. [34] performed hydrolysis using concentrated
acid and concluded that hydrolysis through concentrated acids requires moderate temper-
atures and longer reaction times. The use of concentrated acid enhances the difficulty of
recovering acid from the mixture. Later stages of acid hydrolysis also involve the washing
of cellulose, which is usually achieved by centrifuging the mixture of cellulose and cold
water [35]. The main disadvantage of this procedure is the need to treat acid-containing
wastewater before releasing it into the environment.

Table 2. Nanocellulose isolation methods.

Biological Methods Mechanical Methods Chemical Methods

Fungi treatment Steam explosion Ionic treatment
Bacteria treatment Ball milling Alkaline treatment
Enzymatic hydrolysis Disintegration Acid hydrolysis

Grinding Oxidation
Electrospinning Solvent extraction
Ultrasonication
Homogenization

Enzymatic hydrolysis comes under the list of biological processes that use enzymes
to break down the cellulose fibers into washed cellulose [36]. The literature reveals that
cellulase, cellobiohydrolase, endoglucanase, etc., are frequently used enzymes for this pro-
cess. Although the mechanism is intricate, the enzyme’s activity is dependent on catalyzing
the breakage of the connecting H-bond in between the cellulosic fibers [37]. Enzymes
activity involves the removal of hemicellulose, protection of cellulose from hydrolysis,
and production of monosaccharides from hemicellulose for subsequent fermentation to
produce bioethanol [38]. The cellulases and hemicellulases present in the process are closely
connected to effectively hydrolyze a variety of lignocellulosic biomasses. When compared
to acid hydrolysis, it is normally conducted under milder conditions and takes significantly
longer to operate. To reduce the processing time, enzymatic hydrolysis can be used in com-
bination with other techniques. Moniruzzaman et al. [39] used a novel method to separate
nanocellulose from wood by pre-treating the cellulose with an ionic solution, followed by
laccase-enhanced enzymatic hydrolysis. A comparison of the produced nanocellulose to
the existing methods of cellulose preparation shows that the produced cellulose has a high
surface area and higher crystallinity with enhanced thermal properties.

Different mechanical techniques, including ball milling, ultrasonication, and high-
pressure homogenization (HPH), can be used to mechanically prepare nanocellulosic
fibers [17]. However, these methods require a lot of energy, which is why some pre-
treatment is always suggested to save energy. HPH involves the treatment of a cellulose
mixture at high pressure and velocity [36]. High pressure and velocity divide the cellulose
microfibrils into nanometre-sized fragments, based on the fluid shear and impact forces
created. Figure 3 shows the schematic of the homogenizer used for cellulose isolation.
Li et al. [40] used HPH to separate nanocellulose from sugarcane bagasse. To dissolve the
bagasse cellulose, the material was initially pre-treated with an ionic liquid (1-butyl-3-
methylimidazolium chloride ([Bmim]Cl)), followed by passing the homogenized solution
at high pressure, without becoming clogged. The produced nanocellulose had a diam-
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eter of 10–20 nm, with a crystallinity lesser than the original cellulose. By using HPH,
Wang et al. [41] separated nanocellulose from cotton cellulose. The final product obtained
(20 nm in diameter) was less thermally stable and had a low crystallinity than the pre-
treated cotton cellulose. A decrease in crystallinity is because of the high pressure, which
disrupts cellulose intermolecular and intramolecular hydrogen bonding.
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Cellulose fiber can also be defibrillated using the ultrasound’s hydrodynamic forces,
through the process of ultrasonication [42]. In this technique, ultrasonic energy is generated
by mechanically oscillating the power and implosion of gas bubbles. The generated energy
is then absorbed by the liquid molecules [43,44]. Tang et al. [45] used the process of
ultrasonication to extract the nanocellulose from the wood pulp. The results showed that
cellulose obtained without ultrasonication has a yield of 48.16%, whereas ultrasonication of
the sample gives the cellulose sample a yield of 85.38%. The obtained nanocellulose had
widths of 10–100 nm and a yield of 85.38%.

Cellulose fibers are defibrillated using another mechanical technique, which involves
the use of ball milling. Since the 1990s, researchers have used ball milling for grinding and
improving particle size. The milling jar contains milling balls of various sizes, as one of
the primary components of the ball milling machine. Planetary ball mills and vibration
ball mills are some of the common types of ball mills used in industry and laboratories
today [46]. The planetary ball mill is the one that defibrillates cellulose and biomass the
most frequently. In the planetary ball, the mill balls collide with each other and with the
wall of the milling jar, thus creating friction, which helps in size reduction [47,48]. The
created friction grinds the large-size materials into smaller particles with large surface
areas. The friction is linked with the shear forces that are produced between the balls and
the surface of the rotating jar as a result of the centrifugal force [49,50]. The application of
shear force onto the cellulose breaks them into nano-size particles. The number and size
of the balls, time, weight ratio between the balls and material, and speed are a few of the
variable elements on which the characteristics of ball-milled products depend [51]. The
planetary ball mill is also shown in Figure 4. Ago et al. [46] investigated the properties
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of ball-milled, cotton-derived cellulose at 400 rpm for two hours by varying the water
content in the mixture. It was discovered that the presence of a small amount of water
(10 wt.%) in a dry state changes the cellulose type I to amorphous. However, when water is
up to 30 wt.% cellulose type I, it transformed into the stable form of cellulose type II. This
suggests that the crystalline structure of the cellulose is greatly influenced by the amount
of water in the milling jar [52].
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3.3. BNC Extraction

Besides plants, bacteria can be used to produce cellulose. Bacterial cellulose can be
used as a primary source for the production of CNC and cellulose nanowhiskers because
of their high purity and crystallinity. It is generally acknowledged that the source of the
bacterial cellulose and the isolation techniques utilized affect the shape of BNC. Some
commonly used bacteria are Pseudomonas, Rhizobium, Sarcina, genera Acetobacter, Azotobacter,
and Alcaligenes. Acetobacter xylinum, a species of bacteria that produces acetic acid, is the
most effective generator of BNC. Cellulose biosynthesis is the method of extraction of
BNC. Extracted BNC has a width of less than 100 nm and is 100–1000 nm long [53,54].
BNC isolation from bacterial cellulose can be achieved by using acid hydrolysis, enzymatic
hydrolysis, and ionic liquids. By acid hydrolysis, CNC and BNC can likewise convert
into bacterial nanocrystals. However, acid hydrolysis also has some disadvantages, as it
decreases the degree of polymerization (DP) and reduces the number of sulphate-containing
nanocrystals. Reduction in DP and nanocrystals brings down the mechanical properties of
cellulose nanocomposites. Therefore, the enzymatic system is suggested to retain the actual
properties of bacterial cellulose. Ullah et al. [55] developed a cell-free enzyme system for
producing bio-cellulose. The system was developed using a single-cell line and contained
all the enzymes needed to run a successful biosynthesis process. The prepared bio-cellulose
were scattered and had extracellularly produced glucose chains. The results revealed that a
better yield can be obtained by following the produced cell-free system.
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4. Chemical Treatment of Nanocellulose

Surface modification of nanocellulose is one of the important steps in nanocomposite
preparation that can improve the mechanical performance of cellulose nanocomposites.
Pretreatment using some chemicals is, therefore, required to strengthen the interfacial
bond between the matrix and cellulosic material. Treatment also provides a barrier against
moisture absorption by making a good interfacial bond that restricts the water movement
towards the interface and enhances the wetting properties of the reinforcement towards
the matrix [56–59]. Figure 5 shows the scheme of various chemical modification processes.
One of the popular techniques for the surface modification of cellulose is the attachment
of covalently bonded hydroxyl groups on the surface of nanocellulose or direct chemical
modification. Additionally, the modification of grafted polymers and nanocomposites
is frequently achieved by the grafting of polymers onto biopolymer [60]. The creation
of amphiphobic surfaces is one of the principal uses of surface-modified nanocellulose.
Amphiphobic surfaces can be related to uses such as self-cleaning, anti-reflective, etc.
Both polar and non-polar liquids can be protected by an amphiphobic surface [61,62].
Nanocellulose is also used to alter the surface’s wettability because it adds hydroxyl groups
to the surface, enhancing the surface’s hydrophobization when exposed to chemicals. The
hydroxyl groups in nanocellulose are also modified through other chemical processes, such
as etherification, carbonylation, and silylation [63]. CNC is often chemically modified by
poly(glutamic acid). To obtain the best properties, cellulose is partially oxidized, followed
by the reaction of amino groups of poly(glutamic acid) with the aldehyde groups. Treatment
with poly(glutamic acid) enhances the hydrophobicity of the cellulose, resulting in the
formation of a strong interfacial bond with a matrix [64]. Table 3 describes the various
chemical modification methods, their chemical sources, and the modified characteristics of
cellulose obtained by the treatment.
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Table 3. Nanocellulose treatment methods and characteristics.

Modification Method Chemical Sources Modified Characteristics References

Silylation Alkoxy silane, triethoxyvinylsilane,
chlorodimethyl isopropylsilane

Hydrocarbon chains in silane enhance
the wettability of cellulose. [65]

Esterification Aromatic and aliphatic carboxylic
reagents (acidic anhydride)

Plasticization of lignocellulosic
strands due to interaction of OH groups

of cellulose with acetyl moieties.
[66]

Carbamylation
Isocynaic acids (Butyl

4-(Boc-aminomethyl) phenyl
isothiocyanate)

Bonding of functional groups of cellulose
with isocyanic acid. [67]

Functionalized reactions TEMPO oxidizers (sodium
hypochlorites)

Attachment of carboxyl groups on the
cellulose surface to initiate

further reactions.
[68,69]

The most effective chemicals for improving the interfacial bond between cellulose
and matrix are silane coupling agents, such as alkoxy silane. Silane’s hydrocarbon chains
increase the fibers’ wettability, raising their chemical affinity toward the matrix. Silane
modification is highly efficient for alkali-treated fibers, rather than for untreated fibers. High
efficiency is because of the creation of more reactive sites by silane treatment. Cellulose
fibers can be projected to silylation when treated in the absence of water and at high
temperatures. The unavailability of water at high temperatures restricts the Si–OR group to
interact with the OH group of cellulose; therefore, the silane group comes in contact with
the OH of the cellulose [70–73]. To start a response between the Si–OR and OH groups of
cellulose, water content needs to be increased. Silylation effect can also be observed by
using chlorodimethyl isopropylsilane on NFC that is extracted from blanched softwood
mash. Surface analysis shows that silylation causes the surface of cellulose nanofibers to
acquire substituted silyl groups, which are beneficial in the enhancement of hydrophobicity.

Carbamylation is the method in which isocyanic acid binds to the functional groups
of cellulose to modify its surface. Navarro et al. [67] used butyl 4-(Boc-aminomethyl)
phenyl isothiocyanate to modify NFCs and used DMSO as the solvent. Additionally,
NFCs were treated with a solution of rhodamine B ester, which was modified with N-
hydroxysuccinimide to create luminous NFCs. Such kinds of NFCs are commonly used in
sensor applications.

The TEMPO oxidation technique, which has grown in popularity in the recently
referenced publications, is another interesting way to chemically alter the surfaces of NFC.
In this process, the NFC surface can initially be modified by attaching carboxyl groups to
it. The attached groups then assist the other functionalization processes that are required
to produce modified NFCs. Recent publications show that TEMPO-oxidized NFCs found
numerous applications in water-resistant films, which can be employed as fluorescence
sensors for the detection of nitroaromatics [68,69].

Acetylation and esterification are important approaches to modify the surface of
NFCs [74]. It involves the utilization of both aromatic and aliphatic carboxylic reagents in
organic media. Various types of research have been performed where acetylation is used as
a surface modification technique [66,75–78]. Acetylation refers to the response of cellulose’s
OH groups to acetyl groups, resulting in the plasticization of lignocellulosic strands [76].
Acidic anhydride is commonly used as an acetylation media and modification is achieved
by preparing a solution of ethanol/toluene solvent and acidic anhydride, followed by the
addition of NFC suspension. Bulota et al. [66] performed the acetylation modification
process to study its effect on the properties of polylactic acid (PLA) and acetylated NFC
composites. The acetylation procedure was conducted at 105 ◦C in toluene, which proved
to be a successful method of boosting cellulose dispersion in a non-polar PLA solution.
Acetyl content on the treated cellulose highly depends on the reaction time and could be
assigned a degree of substitution (DS) of 0.43. Fourier transform infrared spectroscopy was
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also used to verify the acetylation. The findings show a prominent impact of nanofibers,
with higher DS, on the characteristics of polylactic acid-acetylated NFC composites. Vari-
ous anhydrides can be used to enhance the cellulose performance in cellulose-reinforced
composites [79]. Recently, propionic anhydride has been used, instead of acetic anhydride,
because it provides superior dimensional stability to cellulose. It is also noted that DS can
be increased by combining pyridine with the catalyst sulphuric acid, whereas the grafting
of acetyl moieties can increase the hydrophobicity of the cellulose. The combined effects
of the aforementioned treatments led to the creation of NFCs with a highly hydrophobic
surface that strongly restricts water movement toward the interface. Missoum et al. [80]
used several anhydrides in an ionic liquid as a novel method for heterogeneous surface
modification that lead to effectively nanoscaled cellulose substrate grafting, without modi-
fying their morphological characteristics. Liquid–liquid extraction was employed to recycle
the ionic liquid in consideration of environmental concerns. Utilizing these ionic liquids
has the benefit of not producing volatile organic molecules.

Methylcellulose (MC) is a synthetically altered form of cellulose used as a reinforce-
ment in nanocomposites. It is an ester of cellulose and has up to 32% of methoxy groups.
MC with a methoxy content of 29.1% shows a DS of 1.75 [81]. Reinforcing nanocellulose
with MC, or the use of MC as filler in biopolymer, can increase the ductility of the prod-
uct. Hynninen et al. [82] prepared MC/CNC nanocomposite fibers by wet-spinning of
nanocomposite hydrogels in an ethanol coagulation bath. The prepared fibers showed a
high modulus, as well as ductility. Fibers with 80% of MC and 20% of CNC provided the
best mechanical properties. An increase of CNC in fibers makes them brittle, whereas, to
achieve the desirable properties, MC and CNC must be used hand-in-hand. The combi-
nation of MC with CNC provides a synergistic effect on the fibers, and no fiber can be
prepared solely from CNC or MC.

5. Nanocellulose Composites and Their Processing

Natural fiber composites can be produced by various processing methods, such as
resin transfer mold (RTM) [83], injection molding [84], and extrusion [85]. Three common
factors, namely molding time, temperature, and pressure, can be used to optimize the
composite in these manufacturing processes [86]. Some pre-fabrication steps are also
required to achieve better properties. For example, preheating the natural fibers before
processing them into composites is frequently used to lower their moisture content, but the
strength of the composites could be significantly affected by the degradation of cellulose at
high temperatures. Other than temperature, the inadequate distribution of cellulose fibers
in the matrix may cause fiber aggregation, which results in a decrease in the composite’s
tensile strength [87]. There are several methods for processing composite materials, but
the majority of them are modifications of the fundamental procedures. The most crucial
phase in the manufacturing of a composite is choosing the best technique. This decision
can be made based on several factors, such as how simple it is to produce, the geometry of
the product required, the maximum cost, the application, and the properties required [88].
Nanocellulose is usually obtained in aqueous form; therefore, the composite processing
is also performed in some suitable aqueous medium. As a result, the manufacturing of
composites was best served by using polymers that are water-soluble or have the ability to
form dispersions. Several wet lab techniques for processing cellulose nanofiber-reinforced
nanocomposites are in practice, but the most commonly used techniques are layer-by-layer
assembly (LbL), freeze drying, electrospinning, cast-drying, etc. [89,90].

The most typical method for preparing thin composites and coatings is LbL assembly.
Operation characteristics, including adhesion, gas barrier, and composition, should be
tuned for adaptability throughout the processing [91]. For single molecular level nanoparti-
cle deposition, various substrates can be used, and the deposition occurs through the in-
volvement of hydrogen bonding, electrostatic interactions, and hydrophobic–hydrophobic
interactions [92]. For nanocomposites, LbL technology can provide the use of numer-
ous substrates, along with the precise control of biocomponent thickness and distribu-
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tion [93]. Fibers, flat wafers, textiles, particles, glass, and flexible films can be assem-
bled into nanocomposites using different deposition techniques, such as spin-coating,
immersive/dip-coating, and spray-coating [94]. By choosing the suitable substrate and its
dissolving solvent, the prepared composite can be separated from the substrate and used
for additional post-processing purposes [95].

The fiber spinning processes, such as wet spinning and electrospinning, are some of
the most common methods for creating nanocomposite fibers or biopolymer fibers [96].
Biopolymer microfibers are produced on a large scale via wet spinning, while electrospin-
ning is utilized to produce mats from extremely fine nanofibers [97]. The fiber spinning
techniques depends on the shear force acting along the fiber. These forces also help in
aligning the nanostructured components during spinning [98]. Recently, the electrospin-
ning technique has been employed by researchers to coat cellulose matrix with CNC. The
orientation of the coated product is an important factor and can be monitored through
uniaxial alignment [99]. The mechanical and thermal stability of the cellulose nanofibers
can be improved by controlling the fiber’s orientation. The electrospinning technique is
also shown in Figure 6.
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The freeze-drying process is another method used to prepare nanocomposite aerogels
from materials such as starch, cellulose, silk, alginate, and chitosan [100]. The schematic for
the freeze-drying process is shown in Figure 7. This process is sometimes referred to as
lyophilization because of the removal of water from suspensions of composite materials
or aerogels. A sublimation process is usually used to freeze the material and involves
the removal of small molecules from the solvent [101]. The aerogel particles’, pore size,
and characteristics of the dispersion can be altered according to the requirement [102].
Altering the shape of the container can also affect the aerogel’s formation and orientation.
The method of preparing aerogel using an ice template is most commonly used in the
literature [103].
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In comparison to LbL assembly, the one-pot-directed assembly approach overcomes
significant problems by being relatively straightforward and quick. This process is used
to produce bionanocomposites with high levels of material compatibility, enhanced me-
chanical properties, and homogeneity [104]. The bionanocomposites prepared through
one-pot-directed assembly are thick, similar to microscopic paper, and have high dimen-
sions, but composition control cannot be precise. One-pot-directed synthesis is the most
viable technique, as it gives excellent properties to the nanocomposite and takes less time
to complete [105]. Cast-drying and vacuum-assisted filtration are two approaches for
one-pot-directed synthesis. The use of these two techniques, with the mixture of nanofiller
dispersion and biopolymer solution, can successfully prepare multilayer nanocomposite
films [106,107]. Vacuum-assisted filtration involves passing a colloidal mixture through
nanofilters. Nanofilters allow the solvent to pass through, while trapping the nanofillers
that would otherwise cause the polymer to aggregate [108]. For cast-drying, materials
are deposited on the surface of the substrate using some specific coating procedure, fol-
lowed by the evaporation of the solvent, resulting in the deposition of a solid film onto the
surface [109]. Figure 8 shows the schematic for the cast-drying process.
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Another cost-effective method for cellulose nanocomposite preparation is inkjet print-
ing. In this method, the solution that needs to be coated erupts into tiny drops of liquid
and is deposited onto the target with predetermined patterns [110]. Inkjet printing can be
used for various liquid “inks”. The resolution and performance of the final product can be
adjusted by changing the substrate, droplet size, and viscosity of the solution. To deposit
proteins, cell patterns, and DNA with high resolution, various biopolymer materials were
employed by the researcher [111,112].

6. Applications of Nanocellulose and Its Composites

Nanocellulose is appealing for applications in various industries, such as a thickening
agent in cosmetics, a filler in fabrics, and an oil recovery agent. Due to its exceptional char-
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acteristics and biodegradability, it is also used in the preparation of transparent paper and
nanocomposites with unique functions [19]. Nanocellulose is used to create nanocomposite
materials that have excellent thermal conductivity, high mechanical strength, transparency,
and are lightweight [15]. Nanocomposites based on cellulose have several applications,
as shown in Figure 9. Nanocellulose has been used to create windmill blades with highly
durable structures, light armor, flexible batteries, and other various products [113,114]. Ac-
cording to research by Wang et al. [115] on the mechanical performance of nanocomposites
reinforced with soybean-extracted nanocellulose, the tensile strength of the polymers is
significantly improved, when compared with virgin polymer. Reinforcement of 5 wt. %
of cellulose nanofibers in polyvinyl alcohol enhanced the tensile strength from 21 MPa to
103 MPa. The addition of nanofibers changes the stress–strain behavior of the composite,
thus improving the overall properties.
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6.1. Nanocellulose Based Paper

The paper industry has largely accepted nanocellulose and its related biocomposites
for prospective applications. The paper industry primarily uses nanocellulose-based
applications to replace petrochemical products [14]. Paper made from nanocellulose has
good mechanical properties and is bendable, transparent, and optically clear. Instead of
using ordinary paper sheets, these transparent papers can be used for flexible circuits,
flexible displays, and electrical devices [116,117]. When Nogi et al. [118] prepared the
transparent nanocellulose paper using wood flour, the prepared paper had the same
chemical constituents as that of conventional paper, but the difference existed in the fiber
sizes and interstitial cavities present. The transparency, high Young’s modulus, and low
thermal expansion of the paper make it ideal for electronic devices. Nanocellulose is used
in the production of paper as a substrate or as an additive. Among other nanocellulosic
materials, cellulose nanofibers are mostly used for paper manufacturing, as they induce
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special properties to the paper, such as dry strength, low thermal expansion, and low
surface roughness.

Energy supply and its conversion are the essential factors that protect the environ-
ment, and they are unquestionably major challenges that humanity has to overcome in
this century. Cellulose has high specific modulus, low toxicity, and natural abundance,
which makes them the most suitable material for energy application [119–122]. Due to
their increased flexibility and conductivity, nanocellulose paper is abundantly used in
the electronics industry. Polyaniline nanocellulose composite films have been extensively
researched for a variety of electronic end uses, including paper-based sensors, and flexible
electrodes [123,124]. Razaq et al. [125] stated that electrodes used in paper-based energy
storage devices can be made by combining polypyrrole, nanocellulose, and carbon fila-
ments. It was observed that the non-electroactive carbon filaments minimized the resistance
of the polypyrrole composites. The use of polypyrrole, carbon filament, and nanocellulose
offers a substantial advancement in the creation of low-cost, green energy storage units for
high-power applications. Additionally, flexible organic electronics can be created using
nanocomposite membranes made of highly electrically conductive BNC and undoped
poly-(3,4) ethylene dioxythiophene [126].

6.2. Biomedical Applications

Nanocellulose finds a variety of applications in the medical industry, owing to its
biodegradability, low toxicity, and great physical qualities [127–130]. When utilized as
a wound dressing by Hakkarainen et al. [131], they discovered that NFC works as an
extremely biocompatible material with the wound donor sites, and the dressing can easily
be removed after the skin is healed [132–134]. Recent years have seen an increase in research
on the uses of nanocellulose in medicine, including medication delivery to specific cells,
soft tissue implants, and others [135]. A novel type of hairy cellulose nanocrystalloid,
made of CNC with functionalized chains at both ends, is also in high demand for its
exceptional properties. By using a chemical process, Hosseinidoust et al. [136] separated
the nanocellulose from softwood pulp sheets. Their technique generates nanocrystals with
an incredibly high carboxyl content (6.6 mmol g−1) and allows for continuous control of
the surface charge, without modifying the reaction conditions. Nanocellulose composites
are also being used as a scaffold for tissue engineering [137].

The most effective biomedical application of nanocellulose is nanocellulose-reinforced
hydrogel composites, having the potential to improve the mechanical performance of
polymeric gel formulations with the desired characteristics of reinforcement and ma-
trix [138]. A novel hydrogel with a semi-interpenetrating polymer network having the
ability to increase pH sensitivity and excellent mechanical capabilities has recently been
developed [139]. This hydrogel can be employed for innovative pharmacological and
gene delivery applications. CNC, with the involvement of carboxylated chains, can resist
agglomeration and can be taken up by different cells, making it suitable as a carrier for
nanomedicine. The use of cellulose in hydrogels increases the shear modulus of the gel,
along with a reduction in gelation time and enhanced cell adhesion, thus increasing their
use in the biomedical field. Nanocellulose hydrogels can mimic the extracellular matrix at
low cytotoxicity in the 3D cell culture. These gels have shown excellent cell regeneration,
while providing the necessary mechanical properties for tissue engineering scaffolds, mak-
ing them useful for treating wounds and repairing cartilage. The use of nanocellulose as an
encapsulation for carrying drugs to certain parts of the body is also possible.

6.3. Food Packaging

Effective packaging offers the quality and safe preservation of the food during trans-
portation and storage. The need for biodegradable packaging materials, which cause very
little environmental threat and are made from environmentally friendly and renewable
resources, has increased. Using three alternative methods of modification, Yang et al. [140]
created translucent films from electrosterically stabilized nanocrystalline cellulose (ENCC).
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The films that were produced by protruding ENCC chains with carboxyl groups displayed
87% light transmission. Furthermore, after being treated with trichloromethyl silane, the
transparent films showed prominent hydrophobicity. These organic films can be used to
make biodegradable items, such as flexible packaging. Additionally, because they are de-
rived from a natural material, they possess both cost-effective and non-toxic nature, making
them an excellent choice for applications involving food packaging [141,142]. Resistance to
penetration of oxygen in food packaging is crucial, since, in the presence of oxygen, aerobic
microbes start to contaminate the food and destroy its nutritional value. Maintaining a low-
oxygen environment is necessary to increase the food’s shelf life. To create a dense network
for preventing the penetration of gases, nanocellulose can make hydrogen bonds with itself
and with other biopolymers. A dense network is necessary for achieving the gas barrier
properties in films used for packaging. Trifol et al. [143] produced nanocomposite film for
food packaging applications using nanoclay and nanocellulose as a reinforcement in the
PLA matrix. The use of nanocellulose, along with nanoclay, further enhances the water
and oxygen barrier ability of the composite film. Packaging with antibacterial properties
is also beneficial. The goal of antibacterial active packaging is to maintain and lengthen
the shelf life of food products by reducing the growth of bacteria. Therefore, the use of
nanocellulose is recommended for making antibacterial packaging because the high surface
area of nanocellulose ensures the high loading of the antibacterial material.

6.4. Water Treatment

In addition to having biodegradable qualities, nanocellulose are sustainable bioma-
terials that have a high surface area, numerous reactive sites, and scaffolding stability to
support inorganic nanoparticles. These nanomaterials offer a vast range of applications
for water treatment. Nanocellulose, when used as reinforcement, has unique characteris-
tics, such as a nanoscale dimension, which gives strength to the composite and provides
water and gas barrier properties to it [144]. These properties can be beneficial in creating
nanocomposite films with a strong framework for penetrating molecules [145]. Due to
the renewable adsorption capacities, composites based on nanocellulose are of tremen-
dous interest in wastewater treatment. Numerous hydroxyl groups on the surface of
nanocellulose allow for a wide range of chemical changes. These surface properties of
nanocellulose are of great importance and help in designing an environmentally friendly
cellulosic membrane to remove impurities from water. Figure 10 shows the schematic for
the nanocellulose-based membranes that are used for water treatment. They are the best
choice as an adsorbent for the removal of toxins, such as the heavy metals, organic colors,
oils, and pharmaceuticals from the moist environment. The adsorption process depends
heavily on the interaction between the adsorbent and the adsorbate [146,147]. Different
mechanisms, including ion exchange, dipole–dipole contact, complexation on surfaces and
pores, van der Waals forces, and hydrophobicity, can cause the interactions between the
absorbent and adsorbate. Natural organic materials that are obtained from the degradation
of biomass can also have a negative impact on both human health and the environment.
Humic acid (HA) and fulvic acid are some of the common acids obtained from biomass that
need to be prevented from affecting the water. Humic acid elimination from wastewater
was investigated by Jebali et al. [148] using nanocellulose that has been modified by the
amine group. They also discovered the involvement of electrostatic forces during humic
acid adsorption. The amine group of the amine-modified nanocellulose interacted with the
carboxyl and hydroxyl functional groups of the acid to change its behavior [149].

6.5. Coatings

Nanocellulose usage in the development of nanocomposite coating and films has
been a point of attention for many authors [132,150,151]. Among various applications of
nanocellulose, the use of nanocellulose for coating surfaces that have different structures
and compositions is also one of the major applications. Variables such as porosity and
thickness of the deposited cellulose can be changed to alter the coatings’ permeability
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and filtering capabilities. For many applications, the mechanical stability of nanocellulose
coatings, in both the wet and dry states, is crucial. The first report on the improvement
in mechanical characteristics of nanocomposite coatings using cellulose nanofibers as
reinforcement and potato starch as the polymer matrix was provided by Dufresne et al. [12].
He described that these nanoparticles have great potential to be used as reinforcement in
nanocomposites, due to their impressive mechanical characteristics, reinforcement capacity,
low density, and biodegradability. Having a Young’s modulus in between 100–130 GPa and
a surface area of a few nanometers, they significantly enhanced the mechanical properties of
the polymers, even at low filler loadings. Zimmermann et al. [152] used hydroxypropylated
cellulose and observed the enhancement in tensile properties, whereas Nakagaito and
Yano [153] examined the same improvement in tensile characteristics by using phenol-
formaldehyde resin with nanofiber cellulose (HPC).
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The significance of nanocellulose coatings is highlighted by their high biodegradability,
affordability, and availability. To generate self-cleaning surfaces, researchers have been
trying to imitate the superhydrophobic nature in nanocellulose-based coatings. Superhy-
drophobicity can be achieved by creating micro or nanostructures thereby increasing the
roughness and lowering the surface energy. A decrease in surface energy affects the wetting
properties of the coating, resulting in the achievement of superhydrophobicity [154,155].
Nanocellulose coatings are also used to protect the wood from different environmental
agents, such as bacteria or microbes in a humid environment. Previously, unsaturated
amino acids, lacquer, and chemical treatments have been used to protect the wood, but the
use of these chemicals produces some volatile compounds that may produce environmental
problems. Therefore, using a nanocellulose coating that has no environmental impact is
recommended [156,157].
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7. Conclusions and Perspectives

Nanocellulose possesses many exceptional qualities, but its extraction from ligno-
cellulosic biomass is still a significant challenge. To extract the nanocellulose from the
biomass, the removal of lignin, hemicelluloses, and other non-cellulosic materials is re-
quired, which can be achieved by pretreatment. Pretreatment can involve the use of toxic
chemicals; therefore, care should be taken to use eco-friendly chemicals for pretreatment.
Nanocellulose extraction techniques also have some limitations, such as obtaining plenty of
acidic wastewater during acid hydrolysis, significant energy usage, and prolonged reaction
times during enzymatic hydrolysis. Extracted cellulose can then be used as a reinforcement
for cellulose-based nanocomposites. Composites based on nanocellulose have excellent
qualities and are proven to have great potential in the field of packaging, electronics, and
biomedical industries.

This review paper focuses on the introduction of nanocellulose, extraction processes,
chemical treatment of cellulose, and nanocellulose-based composites processing, as well
as their applications. Composites made from nanocellulose can be used in the near future
to make implants, structural components, self-healing materials, protective textiles, etc.
Based on the review and arising environmental concerns, it is suggested to use renewable
biopolymer sources for industrial and domestic applications that can be beneficial to health
care and act as food preservation materials to solve the problems related to food insecurity.
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