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Abstract: We present results on polymorphism and perfection, as observed in the spontaneous
crystallization of freely jointed polymers of hard spheres, obtained in an unprecedentedly long Monte
Carlo (MC) simulation on a system of 54 chains of 1000 monomers. Starting from a purely amorphous
configuration, after an initial dominance of the hexagonal closed packed (HCP) polymorph and a
transitory random hexagonal close packed (rHCP) morphology, the system crystallizes in a final,
stable, face centered cubic (FCC) crystal of very high perfection. An analysis of chain conformational
characteristics, of the spatial distribution of monomers and of the volume accessible to them shows
that the phase transition is caused by an increase in translational entropy that is larger than the loss
of conformational entropy of the chains in the crystal, compared to the amorphous state. In spite
of the significant local re-arrangements, as reflected in the bending and torsion angle distributions,
the average chain size remains unaltered during crystallization. Polymers in the crystal adopt ideal
random walk statistics as their great length renders local conformational details, imposed by the
geometry of the FCC crystal, irrelevant.

Keywords: polymorphism; perfection; crystallization; hard sphere; Monte Carlo; hexagonal close
packed; face centered cubic; fivefold; phase transition; random walk

1. Introduction

The importance of crystallization in physics, materials, life science, and technology
cannot be sufficiently emphasized. It plays a major role in the pharmaceutical industry [1],
the storage of clean fuels such as hydrogen [2], and catalytic processes [3], among other
industrial processes [4]. Furthermore, ordered structures of polymer-based physical and
chemical systems are of paramount importance in the development of novel solar cells [5],
semiconductors [6], biological materials [7], or conventional plastics [8]. Due to its high
complexity, crystallization remains a topic surrounded frequently by scientific controversy
and debate, especially since the classical view is considered to be too simple to cover
a wide range of physical systems and conditions [9–11]. The basics of crystallization
have been studied, among other systems, on simple spherical hard colloids, due to their
suitability as macroscopic models, as they can be easily probed, and they bear properties
and characteristics that can be tailored within wide ranges [12,13].

Extensive and careful experimental work has unmistakably demonstrated the diffi-
culty of obtaining quite perfect crystals [14–16]. The identification of competing ordered
structures of colloidal crystals has been carried out using methods such as fluorescence con-
focal scanning laser microscopy [17], small-angle synchrotron X-ray diffraction [18], laser
scanning confocal microscopy [15], or light scattering [19]. In many of these experimental
studies, the random hexagonal close packed (rHCP) structure prevails as the final ordered
structure. It has also been shown that gravity and microgravity play a significant role in the
crystallization of colloids [14,20–23]. In many cases, the aging of the structures of colloidal
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spheres leads to a slow transition from the rHCP morphology to the theoretically expected,
and thermodynamically more stable, face centered cubic (FCC) structure of varying degrees
of perfection [24–26].

The existing experimental efforts have been accompanied by numerous analytical and
simulation works [27–33]. The experimentally observed sluggishness of the rHCP→FCC
transformation also appears in simulations [34]. Obtaining a stable crystal of well defined,
close packed character is still a very challenging task, even for the simplest possible
system realization, that of monomeric hard spheres (HS). This competition of the close
packed HCP and FCC crystals has been studied from the perspectives of nucleation [35–37],
entropy (free energy) difference [34,38–42], geometric arguments [43], and Ostwald’s rule
of steps [44], among others. Theoretical works have been accompanied by simulations, as
in [42,43,45–48].

The available estimates of the entropy (directly proportional to free energy for hard
spheres) demonstate an advantage of FCC against HCP that ranges between 9× 10−4

and 50× 10−4 per particle (expressed in terms of Boltzmann’s constant, k) [38,40–42,46].
The variation is attributable primarily to the methods used, and to a lesser extent, to
the conditions under which it is calculated: ∆S seems to vary by about 25–30% between
the melting transition and the maximum density. It is the smallness of this value that is
responsible for the difficulty of obtaining neat crystals of the stable FCC polymorph, both
experimentally and computationally. As a consequence, it is not surprising that the vast
majority of isochoric simulations, starting from predominately amorphous monomeric HS
packings, result in highly defective ordered structures of rHCP character [28,30,49,50]. The
body of simulation works where FCC-like crystals are obtained is very limited [51,52]. The
investigation of the FCC–HCP competition has been extended in simulations to the study
of the effect of gravity [53], crystallization from seeds [36], sedimentation [54], template-
assisted crystallization [55–57], or crystallization on surfaces and interfaces [58–60] .

Research studies addressing the crystallization of hard spheres forming linear se-
quences of chains are very sparse compared to the monomeric (single) HS analogs. Experi-
ments on linear polymers of hard spheres are very challenging. In spite of the granular,
colloidal, or droplet polymers being significantly less well explored than the “traditional”
ones, over the years, there have been significant advances in their synthesis and char-
acterization [61–65]. From the perspective of theory and simulation [66,67], emphasis is
placed on the phase transition of semi-flexible [68–70] or flexible [71,72] chains of hard
spheres, while recently, it was demonstrated that the use of block copolymers leads to HCP
stable phases [73–75]. The stabilization of HCP colloidal structures has been investigated
through the insertion of polymers [76,77]. In spite of these advances, crystal perfection and
the relative stability of crystals of long, entangled HS polymers are still considered to be
uncharted territory.

The very long relaxation times are responsible for the difficulty of preparing crys-
tals of polymers of reasonable quality in the laboratory. It is no exaggeration to say that
high-quality bulk polymer crystals with a well defined habit remain a laboratory curiosity,
although a very valuable one, for they provide fundamental information on the unique
characteristics of polymer crystallization. Most crystalline and semicrystalline polymers
consist of huge assemblies of imperfect crystals, often and unavoidably combined with
amorphous regions. Focusing on the computational work, the large size and concomitant
sluggish dynamics of polymers present researchers with unusual challenges. Major con-
formational rearrangements involving the slowest modes, which play a key role in the
formation of polymer crystals, can be well beyond the reach of deterministic methods.

Monte Carlo (MC) methods do not suffer from the slow dynamics associated with
large molecular size, as in Molecular Dynamics (MD). The most advanced MC methods are
precisely based on highly non-physical moves that allow for rapid equilibration and robust
sampling in the configuration space [78,79]. This advantage is obviously offset by the loss
of dynamic information, although methods such as Kinetic Monte Carlo (KMC) [80,81] do
offer a reasonable compromise when the rates of individual events are known in advance.
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Developing MC methods that correctly and efficiently sample polymer conformational
space is not a trivial matter, especially for very long chains at very high concentrations. In
spite of these difficulties, a wide variety of increasingly more efficient MC methods have
been developed over the last few decades [78,79,82–88]. The work to be reported in this
manuscript is based on a powerful suite of advanced MC moves [89], which in the past
has enabled us to observe the entropy-driven athermal polymer crystallization for the first
time [71], and to identify and analyze the factors that affect the phenomenon, including
chain length and its distribution [71,90], the presence of bond gaps or tangency [91], and
confinement in one [92] or all three [93] dimensions.

In the present contribution, unprecedentedly long Monte Carlo simulations allow for
the study of polymorphism and perfection in very long chains of hard spheres. These
isochoric simulations start from an isotropic amorphous packing, and after a transient
dominance of the HCP polymorph and the successive establishment of rHCP morpholo-
gies of various levels of ordering, they eventually reach a final FCC crystalline state of
remarkable perfection. We gauge the established crystal structures and the fivefold local
symmetry, and analyze the bond geometry and global sizes of the hard-sphere chains
in each region of the phase transition. The entropic origins of crystallization, strongly
related to the structural rearrangements of the local environment around each site, are also
described and quantified.

In a companion paper [94] we support the computationally observed stability of the
FCC polymorph by means of quantitative analytic calculations.

2. Methodology

We adopt the freely jointed model of linear chains comprising hard sphere monomers
with uniform diameter σ, which is taken as the unit length. The pair-wise energy, uHS(rij),
is given by the equation:

uHS(rij) =

{
0, rij ≥ σ

∞, rij < σ
(1)

where rij is the distance between the centers of monomers i and j. This is the only type of
interaction; neither bending nor torsional potentials are applied to successive monomers
along the chain backbone. For numerical convenience, bond lengths, blen, are allowed to
vary uniformly in the interval blen ∈ [σ, σ + db], where db is the maximum bond tolerance
(gap) between two successive monomers, and it is set equal to 0.13σ. 〈blen〉 corresponds to
the average bond length, where 〈 〉 denote the average over all bonds for a given set of
system configurations (frames).

The simulations are conducted using the Simu-D simulator-descriptor suite [89] in the
isochoric, semigrand ensemble [VTNsitesµ∗]. In the [VTNsitesµ∗] ensemble [95] underlying
the present calculation, chain lengths obey a given distribution, which is enforced via
means of the chemical potentials µ∗, and are allowed to fluctuate within a predetermined
range. The practical implementation for the uniform and Flory chain length distributions is
explained in detail in the Appendix of Ref. [96]. For athermal systems, the formal conjugate
pair of the variables T, U is inactive (see [95] for details). The system under study comprises
N = 54 chains of average size lav = 1000, leading to a total of Nsites = 54,000 monomers or
sites. Here, a flat (uniform) chain length distribution is chosen within the interval [lmin, lmax]
with lmin = 600 and lmax = 1400, as a requirement for the application of specific algorithms
(see below). As will be shown in the results section, this chain length range lies deep in the
polymeric regime. The uniform distribution is selected over the Flory one, as it allows for
the robust sampling of the long-range chain characteristics in the whole interval [lmin, lmax].

The core of the Monte Carlo suite consists of chain-connectivity-altering moves
(CCAMs) that allow for the robust equilibration of the system, even at very high volume
fractions [96–98], up to the maximally random jammed state [99]. CCAMs are accompanied
by more standard MC moves. The following attempt probabilities for each move have been
used: (i) rotation (10%), (ii) reptation (10%), (iii) flip (34.8%), (iv) intermolecular reptation
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(25%), (v) configurational bias (20%), (vi) simplified end-bridging, sEB (0.1%), and (vii)
simplified intermolecular end-bridging, sIEB (0.1%). Neither cluster [100] nor identity
exchange moves [89] are incorporated here.

The initial configuration is generated through the progressive shrinkage of a very
dilute configuration that meets the constraints imposed by chain connectivity until a desired
packing density (volume fraction) of ϕ = 0.56 is reached [89], or ϕ∗ = ϕ

ϕFCC = 0.756 relative

to the maximum compacity of the FCC or HCP crystals (ϕFCC = ϕHCP = 0.7405). The
cubic simulation cell is subjected to periodic boundary conditions in all directions. Due
to the high density, a configurational MC bias pattern is used throughout, with ndis = 50
candidate configurations being attempted per local move, as explained in detail in [89,99].
The isochoric simulation is carried out over 1.4× 1012 MC steps, and system configurations
are recorded every 108 MC steps. Due to the very large system size, the time required to
establish crystal perfection was close to 4 years of continuous wall-clock CPU time on a
single Intel i5 processor with 32 Gb of memory.

The core post-processing tool of the work is the Characteristic Crystallographic Ele-
ment (CCE norm), as implemented in the descriptor part of the Simu-D software [89]. This
descriptor of structural order gauges both the radial and orientational similarity of the local
environment of a monomer with respect to the reference crystals in two or three dimen-
sions [101,102]. To this end, a tessellation into Voronoi cells (VC) around all monomers
of the system is carried out (by means of the voro++ software [103]), and as a first step,
the closest neighbors are identified for each monomer. The CCE norm is then computed
for each monomer by carrying out the geometric symmetry operations of the point group
of several candidate reference crystals (e.g., FCC and HCP) and evaluating the deviation
from geometric invariance. The CCE norm, εX

j is assigned to each monomer, j, which
is a measure of the deviation of its environment with respect to each reference crystal,
X. The closer the value of the norm to zero, the greater the similarity of the monomer’s
environment to the reference crystal. A type is assigned to each monomer, depending on its
structural similarity to a given characteristic point group (crystalline or not), by checking
its CCE-norm against a threshold value, set here at εthres = 0.3. This value was found to
ensure selective discrimination among competing polymorphs for the system at hand. We
calculate this CCE norm for each monomer at each MC frame, independently of which
chain they belong to, in order to quantitatively analyze the evolution of crystallinity and
the competition among polymorphs [101,102].

System configurations are tested against all reference 3D crystals implemented in
Simu-D: hexagonal close packed (HCP), face centered cubic (FCC), body centered cubic
(BCC), simple hexagonal (HEX), but also with respect to the non-crystallographic fivefold
(FIV) local symmetry. The salient differences in the crystallographic operations and point
groups, as well as in the shape and size of the corresponding Voronoi polyhedra for each
reference crystal, are analyzed in detail in Ref. [102]. Only four different types of monomers
are detected along the entire simulation:

• Monomers with first neighbors whose arrangement conforms to the point symmetry
group m3m of the face centered cubic crystal (FCC sites),

• Monomers with first neighbors whose positions conform to the point group 6̄m2 of
the hexagonal close packed crystal (HCP sites),

• Monomers whose first neighbors conform to the point group 5 of a non-crystallographic
fivefold axis (FIV sites),

• Monomers with first neighbors that are not arranged according to any kind of sym-
metry (apart from the identity E), either crystallographic or non-crystallographic
(amorphous, denoted AMO).

In all of the analyzed sites and over all of the recorded configurations (frames), no
instances of sites with BCC or HEX symmetry are found. Based on the CCE-norm, an
order parameter, SX ∈ [0, 1] for each reference point group type X ∈ [HCP, FCC, FIV] is
defined as:
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SX =
∫ εthres

0
P(εX) dεX

where P(εX) is the probability distribution function for the CCE norm of the X reference
point group symmetry. In addition, given that only FCC and HCP crystalline sites exist in
the system configurations SAMO = 1− SHCP − SFCC − SFIV . As neither AMO nor FIV sites
contribute, the total crystallinity is given simply by:

τc = SFCC + SHCP

3. Results

As stated earlier, the simulation reaches 1.4× 1012 MC steps, with one configuration
for every 108 MC steps being stored, for a total of 14,000 configurations (or frames or
snapshots). This separation between successive frames was found to be sufficient to ensure
frame decorrelation. The number of 108 MC steps between successive frames corresponds
to an average of 1.85× 106 MC moves per chain between successive frames.

3.1. Evolution of Crystallinity

Starting from a purely amorphous, statistically homogeneous configuration, the sys-
tem evolves through intermediate states until a stable polymorph of remarkable perfection
is formed. The evolution of the individual order parameters and total crystalinity as a
function of the MC steps is shown in Figures 1 and 2. The intermediate states, which appear
before the MC calculation settles in an equilibrated FCC polymorph, are characterized
by a spatial distribution of regions of varied crystallographic nature, which evolve both
in size and perfection along the simulation. Figure 1 covers the whole trajectory while
Figure 2 focuses on the early part. The fraction of amorphous sites, SAMO, quantifies the
degree of disorder in the system, to be contrasted against the degree of crystallinity, τc. The
system evolution can be conveniently split in four qualitatively different regions (Figure 1),
numbered I through IV. Region I: MC steps 1× 108–1.5× 1011 (or equivalently frames
1–1500), II: MC steps 1.5× 1011–5.3× 1011 (frames 1500–5300), III: 5.3× 1011–9.1× 1011

(frames 5300–9100), IV: 9.1× 1011–1.4× 1012 (frames 9100–14,000). From now on, except
if otherwise stated, the frame numbers are quoted as rounded to the nearest 100, and are
understood to be approximate, just as the boundaries between regions are not strictly sharp.
Throughout the manuscript we will use kinetic terms such as “rate”, “fast”, etc., for brevity
and simplicity, in order to describe the evolution of the system measured in terms of MC
steps, but without claiming any truly kinetic or dynamic meaning.

In Region I, starting from the initial amorphous configuration, a rapidly growing
number of monomers spontaneously develop crystalline characters, as evidenced by the
steep drop in the AMO curve and the simultaneous growth of the number of FCC and HCP
sites. As a matter of fact, 8.4% of all sites already have definite HCP or FCC character, and
11% show FIV character in the very first frame (108 MC steps). This is the reason for the
curves in Figures 1 and 2 apparently not starting at 0 (HCP, FCC, and FIV) or 1 (AMO), and
is a consequence of the great length of the calculation: alone in the first frame, 1.85× 103

MC moves have been carried out, on average, for each of the Nsites = 54,000 monomers.
These observations are also qualitatively consistent with past simulations of dense random
packings of monomers [49,50] and polymers [91,104,105], where the population of fivefold
sites can exceed the sum of sites with HCP or FCC character.

After growing to approximately ≈10% within the first frame, the noncrystallographic
FIV population remains largest in the first few frames, and then it drops steadily in parallel
with the population of AMO sites, in favor of the FCC and HCP sites. The initial nucleation
sites are transformed into compact assemblies of four sites of very approximate tetrahedral
shape. The appearance of FIV sites is favored by the ease with which these four-monomer
tetrahedra can be arranged in a variety of almost compact clusters that fill space efficiently
at a small scale, like the pentagonal bipyramid shown on the right panel of Figure 3. The
reason for the metastability of such arrangements is primarily geometric: at the smallest
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scale, five four-site tetrahedra can be arranged around a common axis so that they share
an edge and build a seven-monomer bipyramid of almost, but not quite, exact fivefold
symmetry, the fivefold axis being the common edge. By the ordered accretion of further
elemental tetrahedra, structures of pentagonal symmetry and varying complexity [106–109]
appear as metastable, long-lived morphologies in simulations. The left panel of Figure 3
shows the first neighbor shell of a representative site of FIV character (εFIV

14717 = 0.05), as
is spontaneously formed in Region I. Two of the pentagonal bipyramids described above
share one site (marked in red in Figure 3) and also have a common, single fivefold axis,
running vertically on the paper in this figure. This 13-site structure and other similar
arrangements [110] are favored with respect to local disorder, because they lead to a
localized increase in available volume and thus in translational entropy.

Figure 1. Evolution of the number fractions, SX , X ∈ [HCP, FCC, FIV, AMO] of sites of each type
along the MC calculation. Fivefold-order parameter is shown on the right y-axis. Roman numerals
and dashed vertical lines denote the four distinct regions in the evolution of the morphology (see
main text). Also shown are perspective visualizations of representative frames in the four regimes.
Spherical monomers are colored following the same convention as the curves according to their point
group symmetry/crystal type: HCP: blue, FCC: red , FIV: green, and AMO: yellow. The corresponding
curves are represented by solid (HCP), dashed (FCC), dotted (FIV), dashed-dotted (τc), and short-
dotted (AMO) styles. The correspondences of the color scheme and line style to the HCP/FCC/FIV
structures of this figure are valid for the rest of the manuscript. For the system snapshots, the
corresponding order parameters are: Frame 1 (Region I): SHCP = 0.0548, SFCC = 0.0406, SFIV = 0.108;
Frame 4000 (Region II): SHCP = 0.259, SFCC = 0.452, SFIV = 0.006; Frame 8000 (Region III):
SHCP = 0.149, SFCC = 0.751, SFIV = 5× 10−4; Frame 14,000 (Region IV): SHCP = 0.005, SFCC = 0.940,
SFIV = 9× 10−5.
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Figure 2. Early evolution of site fractions SX , X ∈ [HCP, FCC, FIV] in the first 2000 frames (2× 1011

MC steps). Inset: zoom on the first 200 frames (2× 1010 MC steps) in log-linear scale.

Figure 3. (Left panel) First neighbor shell for a representative site of FIV character (εFIV
14717 = 0.05)

in frame 1276 (Region I) of the MC simulation. The 12 neighbor atoms are marked in blue, and the
reference atom in red. Ten four-monomer tetrahedra share a common fivefold axis and the reference
site (marked in red).The non-crystallographic fivefold axis runs through the topmost, the middle (red),
and the bottom-most sites, i.e., vertically on the page. (Right panel) The corresponding pentagonal
bipyramid. Image created with the VMD visualization software [111].

Initially, FIV sites appear abundantly and are randomly distributed in the simulation
cell, but as their population subsequently decreases, they develop a remarkably non-
homogeneous distribution in space. The left panel of Figure 4 shows this spatial distribution
of sites with FIV symmetry at a configuration within Region I (frame 125). At this stage,
most of the numerous FIV sites (SFIV = 0.129) are still isolated, although the first traces of
the linear assemblies of FIV sites are already visible. At a later stage of the simulation (frame
1622, early in Region II), as can be seen in the right panel of Figure 4, the FIV population
is significantly lower (SFIV = 0.014) and the majority is organized in specific geometric
patterns that are entirely analogous to those observed in the past [108,109].
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Figure 4. Spatial distribution of FIV sites in (Left): Region I (frame 125, SFIV = 0.129) and (Right):
Region II (frame 1622, SFIV = 0.014). Image created with the VMD visualization software [111].

Pentatwin formation is especially favorable due to the similarity between the pen-
tagonal 72◦ angle and the value of the dihedral angle 70.53◦ between two faces of the
regular tetrahedron. A gap of 360◦ − 5× 70.53◦ = 7.35◦ is left when five equally sized
tetrahedra share an edge. Such tetrahedral nuclei appear easily via site accretion around
the initial, minimal, four-monomer tetrahedra of Region I, and five such clusters form an
almost perfect pentagonal dipyramid. Interestingly, the small angular mismatch of 7.35◦ is
not taken up by non-crystalline monomers as five equal, wedge-like gaps ≈ 1

5 7.35◦ placed
among the five twins, but the whole mismatch remains confined between two adjacent
tetrahedra that are less perfect than the remaining three (see the rightmost two sectors
in the middle panel of Figure 5). Because of the impossibility of compactly tesselating
the 3D space using regular tetrahedra [112], noncrystallographic FIV sites are a transient
phenomenon and tend to disappear in favor of compact structures of crystallographic
symmetry. The simulation does indeed evolve the system into configurations of higher
crystallographic FCC or HCP character. Consequently, a marked decrease in the number
of FIV sites is observed in Region I, while total crystallinity increases rapidly. A video
showing the FIV sites’ evolution in Regions I and II (first 5000 frames) can be found in the
Supplementary Material.

Figure 5. Typical cyclic twin structure (left panel) at frame 1622, early in Region II. View is along the
twin axis [110] (perpendicular to the page). The twin axis is occupied by sites with fivefold symmetry;
sectors are of mixed HCP (middle panel) and FCC (right panel) characters. Only a spherical portion
of the simulation cell around the fivefold axis is depicted. Radius of spheres is reduced for clarity.
Image created with the VMD visualization software [111].

The growth rates of both FCC and HCP crystalline sites are roughly similar in Re-
gion I, as shown in both the main and inset panels of Figure 2. The main reason is the
high geometric similarity in the structures of HCP and FCC: both can be obtained via
the stacking of two-dimensional, hexagonally close packed layers, differing only in the
stacking sequence, . . . A-B-A-B-. . . for HCP and . . . A-B-C-A-B-C-. . . for FCC. In the case of
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monomeric hard spheres, these two polymorphs (and all rHCP variations on the stacking
theme) are separated by a very small entropic difference [34,38–42], i.e., there is no initial
overwhelming preference for the formation of the one over the other. As a consequence,
and as long as a sufficient pool of amorphous sites is available, both polymorphs have
roughly similar probabilities of being formed. The very large size of the simulation cell
offers abundant volume for the independent growth of the nuclei of both types of crystals,
i.e., there is plenty of available space for both the FCC and HCP crystalline regions to grow,
as described above, without direct mutual competition.

In Region II, the rapid decrease in the number of AMO and FIV, and the acompanying
growth in the crystalline FCC and HCP sites slows down appreciably, especially when
compared to the trends observed in Region I. In this region, the numbers of FCC, FIV,
and especially HCP sites remain much more constant, while the total crystallinity already
exceeds ≈ 60%. Region II is characterized by the competition between the HCP and FCC
crystalline regions. Region II can be seen as an induction period, and is, in a sense, a crucial
phase and a stringent test of the efficiency of the MC scheme to properly and efficiently
evolve the system towards the stable FCC polymorph, which is separated from HCP and
the various rHCP structures by tiny free energy differences. The small fraction (O(10−2))
of FIV sites remaining in Region II have a different character from those in Region I, and
they are not homogeneously distributed in space any more. After the rapid disappearance
of the initial isolated FIV sites of Region I, the remaining FIV sites associate in almost
perfectly linear clusters of ≈O(10) sites. These linear assemblies of FIV sites are the axes of
cyclically twinned crystalline domains (see the schematic in Figure 6). In the ideal case, the
pentatwins consist of five tetrahedral sectors, each made up of between a few dozens and a
hundred monomers. Five such tetrahedra assemble in cyclic twin structures, the axis of
which consists of sites with FIV symmetry, while the sectors can have mixed FCC and/or
HCP character.

Figure 6. In a cyclic pentatwin (pentagonal bipyramid), chains that span the boundary between twin
sectors (A) or that pass through the twin axis (B) lose configurational entropy with respect to those in
a bulk, untwinned crystal, as explained in detail in [113]. The white (empty) horizontal wedge is the
angular gap of 7.35◦ left when five equally sized tetrahedra are arranged cyclically around the twin
axis (perpendicular to the paper in this figure).
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In Region II, the number of HCP sites reaches a plateau, while the number of FCC
monomers grows slowly and preferentially at the expense of both AMO and FIV sites.
The total crystallinity in Region II is already appreciable, and most HCP and FCC clusters
are contiguous, so that a conversion of crystalline HCP sites into FCC ones would be
geometrically possible. In spite of this, it turns out to be easier to generate new FCC sites
from the pool of available AMO sites than to convert neighboring HCP sites into FCC ones.
This is consistent with the entropy difference between the amorphous state and both FCC
and HCP crystals being larger than the entropy difference between FCC and HCP [94].

The difficulty of the FCC↔HCP interconversion is also a consequence of the appre-
ciable metastability of the pentatwins: so long as they exist, the composition (HCP and
FCC) of their sectors remains basically unchanged, so that HCP sites residing in pentatwin
sectors are as immune to transformation into FCC as the twin itself [72]. This is the reason
for why the proportion of HCP sites does not vary appreciably, as long as pentatwins exist.

There is also an extra factor, absent in monomeric systems and specific to chain
molecules, that renders most mechanisms of FCC↔HCP interconversion for chains more
difficult than for monomeric systems. At first sight, the most straightforward mechanism
for HCP→FCC conversion is the rearrangement of the stacking . . . A-B-A-B-A-B-. . .→. . .
A-B-C-A-B-C-. . . , which would allow FCC crystalline domains to grow at the expense of
contiguous HCP domains. This rearrangement is, however, totally suppressed in polymer
systems, because it entails a lateral slide of the (0001) HCP planes along the 〈12 · 0〉 direc-
tions. This slide, which is energetically expensive but allowed in monomeric systems [39], is
not possible, even in principle in a polymer system, without breaking the chain backbones.

Easy pentatwin formation, metastability and slide suppression are the main reasons
for the relative long life of the HCP polymorph in Region II. In spite of the efficiency of
the MC scheme, it takes a considerable number of steps in the induction regime (plateau
Region II in Figure 1), which correspond to months in wall-clock time, to initiate the
final HCP→FCC conversion. The axes of these pentatwins appear as linear assemblies
of sites of FIV symmetry, such as those in the right panel of Figure 4, which show the
spatial distribution of sites with FIV symmetry at frame 1622 in Region II. These compact,
non-crystallographic aggregates of tetrahedra also show up conspicuously as long-lived
metastable states, even for monomeric systems. They represent intermediate states of
appreciable stability. Their stability stems from the fact that the tetrahedra that compose
the pentatwin can all grow simultaneously and independently of each other by accreting
further sites from the periphery of the pentatwin. For every new surface layer accreted
on the pentatwin, its axis, i.e., the linear assembly of FIV sites, grows by one site, and the
number of sites in the pentatwin by 5nFIV(nFIV − 1) + 1 sites, where nFIV is the number of
FIV sites along the twin axis, without necessitating any change in the existing structure. As a
consequence of their easy formation and growth, ordered, noncrystallographic, metastable
aggregates of FIV sites are found not to disappear, even in very long MD simulations of
monomeric or polymeric packings [49,50,104,105].

The length of the induction period (Region II) is primarily determined by the slow
disappearance of metastable structures having linear assemblies of FIV sites as their axes.
The disappearance of metastable pentatwins is dictated by the impossibility to indefinitely
grow into a periodic crystalline structure. For completeness’ sake: the exotic possibility of
the appearance of quasicrystalline structures has never been observed in our simulations
of HS packings. In the present work, the difficulty of evolving the system out of this
metastable situation, i.e., of spontaneously resolving the HCP–FCC competition, is marked
by the slowdown in the evolution of all types of sites, i.e., the relative flatness of all curves
in Region II, whose duration, measured in wallclock time, was about two years. The
disappearance of FIV sites signals the end of Region II. It is only when the last linear FIV
assemblies disappear that crystals resume their growth. The HCP–FCC competition is by
then resolved, and the HCP regions start transforming into the stable FCC polymorph.

The mechanism of the disappearance of linear FIV assemblies in crystals of polymers
is not just due to fluctuations brought about by the localized rearrangements of sites, as is
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the case in systems of monomeric hard spheres. In the case of chain molecules, the cyclic
pentatwin incurs an extra entropic penalty with respect to the untwinned HCP or FCC
crystals, because its sites are not individual spheres, but monomers of a polymeric chain.
There exists an entropic penalty for chains in a cyclic pentatwin caused by the reduced
number of available chain conformations with respect to those in a untwinned crystal.
In the pentatwin, some chains are forced to span the (111) boundaries between sectors
(marked with “A” in Figure 6), or to occupy sites in the [110] twinning axis (the linear FIV
assembly, perpendicular to the plane of the paper marked with “B” in Figure 6). These
two geometric situations force some of the torsional angles along the chain to adopt highly
improbable values, which entails a decrease in entropy.

In [113], we evaluated the entropic difference between a twinned and a crystalline,
but untwinned (bulk) system of hard-sphere chains, and found it to quantitatively explain
the almost complete absence of FIV sites in properly equilibrated crystals of hard-sphere
polymeric chains. The magnitudes of these entropic penalties in a pentatwin have been
estimated to be −0.002k per monomer for chains spanning (111) sector boundaries, and
−0.074k per monomer for chains that pass through the [110] twin axis. The former value
is comparable to the entropy difference between the HCP and FCC polymorphs for equal
monomeric spheres [34,38–42], while the latter is ≈35 times larger. These two entropic
penalties are thus sufficient to destabilize cyclic twins for chains, in agreement with previous
simulation results on hard-sphere chains [71,90,91,114].

Once the induction phase is completed, the numbers of FIV and HCP sites in Region III
both drop to zero, while the number of FCC monomers grows monotonically, up to a
maximum of ≈94%. At the end of Region III, the populations of all site types reach an
equilibrium state, which signals the onset of the production phase (Region IV), in which
all of the properties fluctuate about well defined average values. Each of the frames in
Region IV is a microstate of the macroscopic, crystalline, stable polymorph, generated with
the correct probability from the [VTNsitesµ∗] ensemble. The difference in entropy (and thus,
the stability) between the stable polymorph and all other macrostates comes exclusively
from the number of microstates that correspond to each macrostate, and not from differences
in energy between microstates. Although also present in thermal systems, this entropic
aspect is especially clear in the simulation of athermal ones: the entire evolution and
selection of a given polymorph is not related in any way to differences in internal energy
U (which can only be 0 or ∞, for feasible or infeasible configurations, respectively), but
solely to the number of feasible configurations. The stable polymorph turns out to be the
one with the (overwhelmingly) larger number of microstates.

3.2. Chain Statistics and Conformations

An inspection of system frames shows that as the simulation progresses, monomers
tend to occupy (on average) the sites of crystalline clusters. This requirement has an impact
on the bending and torsional angles along the backbone (see a sketch of Figure A1 for
the definition of bending and torsion angles), for chains with unrestricted torsional and
bending angles cannot efficiently occupy the sites of a crystal.

The distribution of bending angles in the crystal displays a good deal more structure
than in the initial, amorphous state. Individual peaks in the distribution in Region IV
can easily be assigned to angles formed by two successive bonds joining three sites in the
ideal FCC crystal. In particular, the peaks at 60◦ and 120◦ are due to parts of the chains
laying on sites of the 2D compact hexagonal layers from which the FCC crystal is built
up. The broad peaks in Figure 7 that correspond to specially simple arrangements of three
consecutive monomers which occur with high probability, are shown as sketches in the
same figure. The arrows in Figure 7 mark the values of the bending angles for these simple
arrangements. The bending angle values ≈ 30◦, 75◦, and 105◦ are strongly suppressed
in the crystal because they do not match the geometry of three consecutive sites along a
chain on the FCC crystal. The angles of θ = 33.5 and 70.5◦ have been found to play an
important role in the crystallization of bend-core trimers interacting with the Lennard-Jones
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potential [115]. These angles are also unique for the HCP crystal, compared to the angles
of θ = 0, 60, 90, and 120◦, which are common to both the HCP and FCC crystals. In our
simulations at high densities, these bending conformations are improbable also in the initial
amorphous phase, as they correspond to obtuse angles that do not minimize the local
volume for triplets of monomers along the chain backbone. As crystallization proceeds,
their population diminishes as a combined effect of the hard sphere model for the monomer
interactions and the freely jointed model for chain connectivity.

Figure 7. Probability distribution function of bending angles averaged over Regions I through IV.
Values of θ > 120◦ are forbidden, due to an overlap of monomers 1–3. Three-site arrangements that
correspond to specific bending angles are sketched as indicated by the arrows. The following color
and style format is used throughout the manuscript: Region I (dashed black); Region II (dotted green);
Region III (dashed-dotted blue); Region IV (solid red).

As Figure 8 shows, the distribution of torsional angles (φ defined by monomers 1-2-3-4
in Figure A1) in the crystal also strongly deviates from the flat distribution of individual,
isolated chains, and also from the distribution of the initial, amorphous configuration.
Wide, bimodal peaks result from the overlap of closely spaced, favored torsion angles,
like 54◦ and 60◦. The peaks in the torsion angle distribution also correspond to specific
conformations of four consecutive monomers (three bonds) whose positions correspond
to neighboring sites in an FCC crystal. The torsion angles compatible with an ideal FCC
crystal correspond to the values of φ = 0, 54.7, 70.5, 90, 109.5, 125.3, and 180◦. Some of
these four-monomer sequences on the sites of a perfect FCC crystal are sketched along the
torsion angle distribution in Figure 8. The virtually perfect symmetry about φ = 0◦ of the
distribution in Figure 8 is further proof of the robust configurational sampling due to the
efficiency of the MC protocol and the great length of the simulation. It is further evident
that for both the bending and torsion angle distributions, the minima and maxima become
progressively more pronounced as crystal perfection advances, which is consistent with the
observation that monomers tend to occupy, within fluctuations, the sites of an FCC crystal.
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Figure 8. Probability distribution of torsion angles averaged over Regions I through IV. Value of 0◦

corresponds to the trans conformation. Also shown are four-site arrangements that correspond to
specific torsion angles, as indicated by the arrows.

A key question that arises is whether chains with torsional and bending angles distri-
butions, that so markedly deviate from those in the amorphous state, also have unusual
overall conformational properties. Ideal chain behavior in the crystal may at first sight
seem counterintuitive and incompatible with the fact that monomers occupy the sites of a
crystal and with the far from uniform distributions of bending and torsion angles. On the
one hand, the great length of the chains renders local conformational details imposed by the
geometry of the FCC crystal irrelevant. Still, there is another reason for the chains to display
ideal behavior. As will be qualitatively discussed in the next Section (and quantitatively in
a companion paper [94]), the stable macrostate for the polymer system is a crystal because
it maximizes the sum of monomer translational entropy, because they occupy the sites of a
crystal, and chain conformational entropy. This is because chains adopt ideal conformations
compatible with monomers occupying the sites of the crystal. Thus, the crystal results from
a combination of maximal positional freedom for the individual monomers about the sites
of an ideal crystal, and maximal conformational variability for the entire chains. This result
is independent of chain length, even for chains of moderate length (l ≈ 10) [71]. The chains
in the present study are far longer. Confirmation that all chains in the system are deep in
the polymeric regime is also provided by a plot of Kuhn length b0 in Figure A2.

Figure 9 shows the probability distribution function of the end-to-end vector mod-
ulus |Ree| for chains of lengths l = 800 ± 50 and l = 1200 ± 50 (scatter symbols), to-
gether with the expected distributions (dashed lines) for the same chain lengths, given by
4π|Ree|2 f (Ree) with:

f (Ree) =

(
3

2πlb0

) 3
2

exp
(
−3|Ree|2

2lb0

)
(2)

being the distribution of the end-to-end vector, and σ = 1 has already been taken into
account in (2). In addition, the dashed lines are curves of the same functional form (2), fitted
to the distributions obtained from the simulation. Gaussian behavior is clearly observed for
both chain lengths in the FCC crystal in accordance with the ideal random-walk behavior.
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Figure 9. Probability distribution of the modulus of the end-to-end vector, |Ree| averaged over the
production phase, Region IV, for chains of lengths l = 800± 50 and l = 1200± 50 (small intervals
of l instead of single values have been used to obtain better statistics), together with the expected
distributions according to Equation (2), setting Kuhn length b0 = 1.52, according to Figure A2.

3.3. Entropic Origins of Crystallization

The space available to monomers, its homogeneity and its isotropy, can conveniently
be analyzed by means of the Dirichlet tesselation of space in Voronoi polyhedra, based on
the coordinates of the monomers, as described in the context of the CCE-norm.

The increase in the regularity of the volume available to the monomers as the crystal
is formed can be observed in Figure 10. This figure shows the probability distribution of
the local density (measured as the ratio of the volume of a monomer (Vsph = π

6 ) to the
volume of its Voronoi cell (VVC) for Regions I through IV. Since the [VTNsitesµ∗] ensemble is
isochoric, the curves in Figure 10 have the same mean value, but their shapes and variances
do change in the course of the simulation. The wider initial distribution reflects the greater
abundance of monomers with either low or high local volume fraction (i.e., high or low
volume of their Voronoi cell), while the narrower distribution in Region IV highlights the
greater spatial homogeneity (in the sense of the distribution having smaller variance) of the
volume of the Voronoi cells in the FCC state. The distribution in Region IV (crystal) follows
a Gaussian distribution almost perfectly (dashed line in Figure 10), which is consistent with
the fluctuations of the monomers about the sites of an FCC crystal [116,117]. For reference
purposes, the local volume fractions of the liquid and solid phases of the monomeric HS
fluid at equilibrium are 0.667 and 0.736 times the maximum close packed density (0.7405),
i.e., ϕHS

l = 0.494 (ϕ∗l
HS = 0.667) and ϕHS

s = 0.545 (ϕ∗s
HS = 0.736), respectively [42,118]

(marked with vertical lines in Figure 10).
A clearer insight into the mechanism of the phase transition is given by the evolution

of the volume accessible (Vac) to a monomer within its own Voronoi cell. A simple yet
convenient definition of accessible volume is that of the region of the Voronoi cell within
which the center of the spherical monomer can be placed while keeping its distance to the
nearest face of the Voronoi polyhedron < 0.5. The accessible volume in each Voronoi cell is
computed here via straightforward MC integration. Although much more refined methods
exist, like the analytical treatment in [119], the present approach is sufficiently precise for
the calculations.
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Figure 10. Local volume fraction distribution for the four different regions. The local volume fraction
for a given monomer is defined as the ratio of the volume of a monomer (Vsph = π

6 ) to the volume
of its Voronoi cell VVC. The average of all distributions is identical and coincides with the overall
volume fraction ϕ = 0.56. The equilibrium distribution (Region IV) follows the Gaussian behavior to
excellent accuracy, as can be seen by the corresponding fit, with 0.563 and 0.0227 being the mean and
standard deviation, respectively. Vertical dashed lines mark the volume fractions of the liquid and
solid phases of the monomeric HS fluid at equilibrium, ϕHS

l = 0.494 and ϕHS
s = 0.545, respectively.

The shape of the accessible volume is a smaller version of the Voronoi polyhedron,
but with slightly rounded vertices, and whose faces are parallel to the faces of the Voronoi
polyhedron. The logarithm of its size gives, to first order [120–122], a quantitative measure
of the translational entropy of the monomer, under the neglection of multibody correlation
and conformational entropy; that is, ignoring the fact that it belongs to a polymeric chain.
Figure 11 shows a typical Voronoi cell as a wireframe representation, and the accessible
volume as the red solid shape within the Voronoi cell. Unlike the total system volume
V, the total accessible volume Vac is not conserved and is very sensitively related to
changes in translational entropy. Figure 12 shows the distribution of the accessible volume
for all Nsites = 54,000 monomers, in the initial amorphous state at the beginning of the
MC calculation, early in Region I and in the last frame of Region IV, i.e., when the FCC
polymorph has fully developed. The distribution of accessible volume becomes clearly
narrower, and its mean value shifts to the right. The mean relative accessible volume
〈Vac/VVC〉 almost triples from 9.0× 10−5 to 2.5× 10−4 as the system crystallizes. The
whole distribution shows this increase vividly (Figure 12), and is direct evidence that, by
adopting a spatially more homogeneous and geometrically more isotropic arrangement in
the crystal, monomers increase their translational freedom, and hence, the system entropy.
This is the main driving force for the crystallization of the chains, just as in a system of
monomeric hard spheres.
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Figure 11. Volume accessible to a monomer with εFCC = 0.18 within its Voronoi cell. For this
monomer: Vac/VVC = 0.00024. Accessible volume is colored in red and the Voronoi polyhedron is
shown in wireframe representation.

Figure 12. Relative local accessible volume distribution in the amorphous state (black dashed line)
and in the crystalline state (red solid line). Relative accessible volume is the ratio of the local accessible
volume of a monomer to the volume of the Voronoi cell of the same monomer. The distributions of
the absolute accessible volume follow the same trend. Two snapshots of different accessible volumes
from sites of the last recorded configuration (frame 1400) are shown as examples.

The entropic driving force for crystallization can also be gauged by the correlation
between local density and crystal quality, as measured using the CCE norm. Low values of
this norm εFCC, i.e., high local similarity to the perfect FCC crystal, are correlated with high
local density, as Figure 13 demonstrates. In Figure 13, data points with εFCC values below
0.30 have quite a perfect FCC crystalline environment. This numerical value separates the
monomers into two non-overlapping clusters, one for non-FCC sites, in which no correlation
between density and crystal quality is apparent, and a much more numerous second one,
in which the correlation between density and crystal quality is very marked. As expected,
monomers with an almost perfect FCC environment have significantly higher local density.
The bottom panel in Figure 13 documents the wide range of accessible volumes for FCC
sites: the accessible volume Vac for sites of very similar and quite perfect FCC character
(with an average εFCC ≈ 0.2) spans a range of two and a half orders of magnitude. This
distribution is of course not static: the accessible volume of a given monomer fluctuates
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along the simulation within the approximate range [2× 10−5, 6× 10−3] while keeping an
almost constant value of εFCC, i.e., a quite perfect FCC character.

Figure 13. Parity plot of local volume fraction (upper panel) and accessible volume (bottom panel)
at frame 14,000 in Region IV vs. the corresponding FCC-CCE norm, εFCC. Red ellipse denotes FCC
sites. Blue ellipse corresponds to non-FCC sites. Horizontal dashed lines in the upper panel mark
the volume fractions of the liquid and solid phases of the monomeric HS fluid at equilibrium, i.e.,
ϕHS

l = 0.494 and ϕHS
s = 0.545, respectively. The vertical dashed line denotes the CCE-norm threshold

εthres = 0.3.

This is in complete agreement with the entropic origin of the transition: even though
local density (inversely related to Voronoi cell volume) increases upon crystallization,
monomer translational entropy increases because the accessible volume increases on aver-
age. The broad distribution for Region I in Figure 10 (black line) implies that an appreciable
number of sites have very small Voronoi cells and hence very little accessible volume (black
line in Figure 12).

During crystallization, Voronoi polyhedra not only become more homogenous in size,
(as evidenced by the narrower distribution in Figure 10 and the shifted distribution in
Figure 12 for Region IV), but also more isotropic. We have monitored the change in Voronoi
cell isotropy in two complementary ways. A first straightforward measure is given by the
modulus |R| of the vector joining the position of a given monomer and the centroid of its
Voronoi cell. As crystallization takes place, the monomer and the centroid of its Voronoi
cell tend to be closer together on average (shift to the left in the mean of the distribution of
|R| in Figure 14), but also the distribution of |R| becomes narrower.

A resolved view in the change of the Voronoi cells is further provided by the evolution
of the descriptors quantifying the shape of the Voronoi polyhedra, as derived from the
second-order gyration tensor (see definition and corresponding results in Appendix A.3).
In a rather literal sense, the increase in the accessible volume within Voronoi polyhedra,
accompanied by greater uniformity and isotropy, is the force driving the transition from
the amorphous to the perfect FCC crystal state, in spite of the opposition due to a loss of
chain conformational entropy.



Polymers 2022, 14, 4435 18 of 27

Figure 14. Distribution of the modulus of the vector joining the position of a given monomer and the
centroid of its Voronoi cell, |R|, for the four different regions.

4. Conclusions

We have investigated the stability of crystal polymorphs for freely jointed chains of
hard spheres deep in the polymeric regime through unprecedentedly long simulations,
based on Monte Carlo algorithms. These simulations shed light on the competition between
crystal polymorphs and on crystal perfection. Structural characterization of the local
environment around each site allowed for a precise identification of crystal morphologies,
which range from the early, defect-ridden, cyclic twin structures of mixed HCP/FCC type
to the final, highly perfect, stable FCC crystal. We find the stable polymorph macrostate
to be highly degenerate: all realizations (microstates) of the stable FCC macrostate consist
of chains whose monomers tend to occupy, within spatial fluctuations, the sites of the
ideal FCC crystal, while maintaining the constraints of chain connectivity and bond length.
Polymer chains nevertheless display ideal behaviors, as their great lengths render local
conformational details imposed by the geometry of the FCC crystal irrelevant.

The present simulations allow us to identify the entropic origin of the phase transition:
the loss of chain conformational entropy is more than compensated for by the increase in
translational entropy as the accessible volume within the Voronoi polyhedra increases. We
have also carried out an analysis of accessible volume that provides further insights into
the changes in homogeneity and isotropy of Voronoi cells responsible for the increase in
monomer translational entropy. This increase in translational entropy is still large enough
to drive the phase transition, in spite of chain conformational loss.

In addition, the present MC results also provide a basis for the calculation [94] of
the entropic advantage of the FCC with respect to the HCP polymorph. The proposed
methodology is currently being extended to tackle semi-flexible athermal polymers in the
bulk and under confinement, as well as in composites with colloidal nanoparticles in the
form of spheres and cylinders of varied size.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204435/s1. Video showcasing the evolution of fivefold
sites in Regions I and II (first 5000 frames of the MC simulation).

https://www.mdpi.com/article/10.3390/polym14204435/s1
https://www.mdpi.com/article/10.3390/polym14204435/s1
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Abbreviations
The following abbreviations are used in this manuscript:

AMO Amorphous
BCC Body-Centered Cubic
CCAMs Chain-Connectivity-Altering Moves
CCE Characteristic Crystallographic Element (norm)
FCC Face Centered Cubic
FIV Fivefold
HCP Hexagonal Close Packed
HS Hard Sphere
KMC Kinetic Monte Carlo
MC Monte Carlo
MD Molecular Dynamics
PBC Periodic Boundary Condition
rHCP Random Hexagonal Close Packed
VC Voronoi Cell
List of variables
b asphericity
blen bond length
b0 Kuhn length
c acylindricity
dl mumerical tolerance in bond length
G second-order gyration tensor
I position index
k Boltzmann constant
l, lave, lmin, lmax chain length, average, minimum-, maximum chain length
ndis number of trials in configurational bias schemes
nFIV number of fivefold sites
N number of polymer chains
N f rames number of frames
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Nsites total number of monomeric sites
NV number of vertices of the Voronoi polyhedron
rij distance between monomers i and j
rm position vector of a monomer.
R displacement from Voronoi Cell centroid vector
Rg radius of gyration
Ree end-to-end distance
s entropy
SX order parameter for crystal type X
T temperature
uHS hard sphere interaction energy
U internal energy
V, Vac, Vsph, VVC volume, accessible volume, monomer volume, Voronoi cell volume
Va accessible volume
Greek symbols
∆scon f

m conformational entropy difference per monomer
∆strans

m translational entropy difference per monomer
εX CCE-norm with respect to crystal type X
φ torsion angle
κ2 relative shape anisotropy
λ2

1, λ2
2, λ2

3 eigenvalues of G
ϕ volume fraction
ϕ∗ volume fraction relative to maximum HS packing density (0.7405)
σ monomer diameter
µ chemical potential
ν Flory exponent
τc total crystallinity
θ bending angle

Appendix A

Appendix A.1. Definition of Bending and Torsion Angles

Figure A1 schematically shows the definition of bending and torsion angles, as adopted
in the present work.

Figure A1. Definition of bending angles θ1, θ2, and torsion angle φ. The angle φ is measured with
respect to the plane defined by bonds 1–2 and 2–3.

Appendix A.2. Kuhn Length and Ideal Chain Statistics

A useful measure of chain coiling is given by Kuhn’s bond length or by the equivalent
freely jointed, phantom chain (i.e., without any kind of excluded volume interactions) [123].
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This equivalent phantom chain has the same contour length and the same squared end-to-
end distance as the original chain (with excluded volume through Equation (1)). In order to
fulfill these two conditions, the equivalent chain has two degrees of freedom: the number
of equivalent segments l′ and its bond length, also known as the Kuhn length, b0.

From these two conditions:

l′b0 = l〈blen〉
l′b2

0 =
〈
|Ree|2

〉 }⇒ b0 =

〈
|Ree|2

〉
l〈blen〉

where
〈
|Ree|2

〉
is obtained for all chain lengths.

Figure A2 shows a plot of Kuhn length b0 as a function of chain length in Regions I and
IV. The independence of Kuhn length b0 on chain length indicates that even the shortest
(l = lmin = 600) chains in the system behave as ideal and fully flexible chains, and that all
chains in the system can be characterized by the same Kuhn length b0 = 1.52± 0.05 (taking
the bond length as a unit).

The very small value of the Kuhn length (≈1.5 times the bond length) indicates an
extremely high degree of chain coiling. Interestingly, no particular deviation in b0 is
detected between the initial, amorphous state (early part of Region I) and the perfected
FCC chain crystal (Region IV), even if the bonded geometry undergoes significant changes
during the transition, as demonstrated in Figures 7 and 8. The only appreciable difference is
the slightly larger variance in the distribution of b0 (larger fluctuations of the dashed curve
in Figure A2) for different chain lengths, as expected from the greater spatial heterogeneity
of the system in the amorphous state.

Figure A2. Plot of Kuhn length b0 as a function of chain length averaged over Regions I and IV.
Within statistical uncertainty, the Kuhn length b0 = 1.52± 0.05 is independent of the chain length
l ∈ [lmin, lmax], and is the same for both regions.

Appendix A.3. Shape Measures of the Voronoi Polyhedra

For a given Voronoi polyhedron, we define G as the averaged dyadic of the position
vectors of its vertices with respect to the centroid:

G =
1

NV
RR (A1)
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i.e., the number-averaged analog of the moment of inertia tensor of a set of points of unit
mass placed at the vertices of the Voronoi polyhedron.

Several scalar shape measures can be extracted from G, such as the asphericity b,
acylindricity c, and the relative shape anisotropy κ2 coefficient, which are defined, respec-
tively by:

b = λ2
1 −

1
2
(λ2

2 + λ2
3) c = λ2

2 − λ2
3

κ2 =
3
2

λ4
1 + λ4

2 + λ4
3

(λ2
1 + λ2

2 + λ2
3)

2
− 1

2
(A2)

where λ2
1, λ2

2, and λ2
3 are the three eigenvalues of the positive definite G, ordered such that

λ2
1 > λ2

2 > λ2
3.

Notice that while κ2 is dimensionless, b and c have dimensions of length squared;
they are usually made dimensionless through division by 1

2 G. The lower the values of b, c,
and κ2, the more isotropic the shape of the Voronoi polyhedron. An axisymmetric point
distribution has c = 0, while a spherically symmetric one has b = c = κ2 = 0. The Voronoi
polyhedron for the FCC crystal, the rhombic dodecahedron, and for the HCP crystal, the
trapezo-rhombic dodecahedron, both also have b = c = κ2 = 0.

In Figure A3, we show the evolution of the (dimensionless) b, c, and κ2 along the
entire MC simulation. All shape descriptors (A2) in Figure A3 decrease monotonically from
the initial values as the simulation evolves (the relative drops are b ≈ 33%, c ≈ 17%, and
κ2 ≈ 43%), and remain constant (within fluctuations) in Region IV of the stable polymorph.
It is remarkable how faithfully all shape descriptors track the evolution of the systems
through the four regions and the final onset of crystallinity. As with accessible volume,
the distributions of the shape descriptors (Figure A4) also become narrower, indicating a
greater homogeneity of Voronoi cells.

Figure A3. Shape descriptors asphericity b, acylindricity c, and relative shape anisotropy κ2. The first
two are made dimensionless by dividing by half the trace of G.
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Figure A4. Probability distributions of shape descriptors b, c, and κ2 for Regions I and IV. The first
two are made dimensionless by dividing by half the trace of G.
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