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Abstract: In this paper, we theoretically consider the process of the capillary thinning of a polymer fluid
thread bridging two large immobile droplets in the regime of highly stretched polymer chains. We first
derive a new relation between the pressure p and the flow velocity v in unentangled polymer solutions,
which is called the anti-Bernoulli law: it shows that p is higher where v is faster. Using this equation, it
is shown that the flow field is asymptotically irrotational, in particular, in the thread/droplet transition
zones (in the case, the negligible solvent viscosity and inertial effects). On this basis, we predict the free
surface profile and the thread thinning law for the FENE-P model of polymer dynamics. The predictions
are compared with recent theoretical results and some experimental data on capillary thinning.
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1. Introduction

Long liquid cylinders tend to break in many droplets due to capillary surface forces.
For a Newtonian liquid, this phenomenon, related to the well-known Plateau–Rayleigh insta-
bility, typically results in a localized pinching, leading to the formation of necks whose thick-
nesses rapidly decrease over time. In contrast, the thinning of polymer solution threads often
result in a transient formation of nearly uniform (perfectly cylindrical) threads. The char-
acteristic thinning time of such threads strongly increases with polymer molecular weight.
This phenomenon was observed in numerous experiments [1–4], in particular those using
the liquid filament rheometer (LFR) [5]. Most experiments show that the diameter of a
polymer thread is thinning according to an exponential law [1,6,7].

Theoretically, such uniform exponential thinning of polymer filaments was deduced
from rheological (force balance and constitutive) equations for the Oldroyd-B and FENE-
P models [1,7,8]. There was, however, a problem with the early theories: the boundary
condition at the filament ends was stated based on a plausible argument rather than a
rigorous proof. (‘We assume that the axial stress vanished because, in the LFR, the filament
is attached to large stagnant drops on stationary end plates’, as written in ref. [8].) Thus,
Entov and Hinch [8] proposed that the axial polymer stress σp in the thread of radius a0
must be equal to the capillary pressure, σp = γ/a0 (here, γ is the surface tension) to obtain
the total axial pressure equal to the atmospheric pressure well inside the large drops at
the thread ends. A similar equation, but with the prefactor 1/2 in the rhs, was obtained
earlier [9] based on the slender-body approximation, which, however, is not applicable in
the decisive interfacial zone between the thread and an end-droplet. Later, Clasen et al. [7]
derived a different condition:

σp = 2γ/a0 (1)

applying the slender-body approximation in a different way (see also [10]). Quite recently,
the above equation was re-derived [11] based on the Onsager variational principle (in the
regime of negligible viscous stress due to the solvent). Equation (1) was finally rigorously
established [12] for the capillary collapse of a neo-Hookean elastic cylinder in the limit of
small elastic modulus G. It was argued [12,13] that the neo-Hookean elastic model becomes
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equivalent to the Oldroyd-B model in the limit of infinite polymer relaxation time, τ → ∞.
A further discussion of this subject is delegated to Section 4.

In the present paper, we apply the force balance equations for the Oldroyd-B model to
rigorously show that in the decisive transition region near the interface between the thread
and a droplet (referred to also as the entrance zone or the ‘corner flow’ zone [7]), the flow
velocity v, and the pressure p are connected by a conservation equation, which we called
the anti-Bernoulli law since it shows that a faster velocity corresponds to a higher pressure.
On this basis, we derive the ‘boundary condition’, confirming that Equation (1) is correct.
We also show that in the regime of strongly stretched chains, the flow velocity field v(x)
is irrotational and hence can be defined in terms of a potential ϕ(x). In this regime, we
also rigorously demonstrate that the polymer stress must be constant in a cross-section of
the thinning thread (far enough from the end-droplets). These results open up the way to
obtain the three-dimensional flow field and the free surface shape by using an analogy with
electrostatic problems. The result is compared with the universal surface profile obtained in
ref. [12] by solving the self-similarity static equations for the neo-Hookean elastic problem
(which was shown to nearly coincide with the surface profile obtained numerically based
on the Oldroyd-B dynamical equations [12]).

The scope of the paper is as follows: The next Section 2 is summarized in the paragraph
just above. The results are generalized to take into account the finite extensibility (FE) of
polymer chains (using the FENE-P model) in Section 3. In particular, we establish that
the condition, Equation (1), has to be amended to account for FE, derive the new more
general condition, and apply it to rigorously obtain the thinning law for the FENE-P model.
The main results are discussed in Section 4 and are briefly summarized in the last section.

2. Capillary Thinning for the Oldroyd-B Model

Let us consider the typical setup: a thinning filament between two immobile semi-
spherical droplets (Figure 1). The liquid is an unentangled polymer solution. The filament
length L f is much larger than its radius a = a(z, t), which slowly decreases over time.
This process is driven by capillary forces. It is slow due to the capillary-induced extension
of polymer chains (upon the coil–stretch transition) leading to a dramatic increase in the
solution viscosity [14]. Five zones can be distinguished in Figure 1: two end-droplets
adjacent to solid plates, a nearly cylindrical filament of length L f in the middle, and two
transitions zones of length Lt (shown in cyan). The whole liquid bridge is assumed to be
axially symmetric (around the z-axis).

z

zm

Lf

LtLt

Figure 1. A thinning filament of radius a0 and length L f connecting two semi-spherical droplets (a
cross-section along the main axis is shown here); zm corresponds to the middle of the thread. Lt � L f
is the size of the filament/droplet transition regions (shown in cyan).

The filament is typically thin, long, and nearly uniform during the polymer extension
process [6]:

L f � a0(t) (2)
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where 2a0(t) is the thickness in the middle of the thread (z = zm); a(z, t) ' a0(t) in the
filament region. As the liquid is incompressible, the uniaxial extension rate in the thread
is defined by the thinning rate (note that ε̇r = ∂(ln a0)/∂t in Equation (3) is the (negative)
extension rate in the radial direction, and that (by virtue of the incompressibility) ε̇+ 2ε̇r = 0):

ε̇ = ∂vz/∂z ' −2∂(ln a0)/∂t (3)

so the axial flow velocity is: vz ' ε̇(z− zm) in the filament region of length L f . Outside this
region, the liquid cross-section increases rapidly, leading (by virtue of the incompressibility)
to a decrease of vz. Thus, the velocity maximum, v0 = max|vz| ' ε̇L f /2, is reached near the
filament ends.

Let us turn to the force balance in the transition zones next to the filament ends where
the surface shape deviates from a perfect cylinder and its radius shows a significant z-
dependence. The transition region between the thread and the second droplet is depicted
in Figure 2. (Note that the origin, z = 0, is located near the righthand end of the thread. We
define the point z = 0 by the condition a(z = 0) = kea0, where the factor ke can be chosen
as convenient; here it was set ke ≈ 1.25.) As argued below, the axial size, Lt, of this region
(where the droplet surface significantly deviates from both cylindrical and spherical) is
relatively small, Lt ∼ a0 � L f .

a0

0

r

a(z)

v0 z

z

x
r

θ

x

1

2

Figure 2. The thread/droplet transition region; r = a(z) defines the free surface in cylindrical coordinates
(z, r, θ); a0 and v0 are the thread radius and the flow velocity at the end of the uniform thread region.
Note that a longitudinal cross-section including the cylindrical symmetry axis (z) is shown here. Thus,
the upper curve corresponds to the cylindrical angle θ = 0, the lower curve to θ = 180◦, and the r-axis
coincides with the Cartesian x1-axis. The inset clarifies the cylindrical coordinates used here.

To describe the flow and the free surface shape, we can benefit from two approxima-
tions. First, we neglect the inertial effects assuming that the ‘inertial pressure’∼ρv2 is much
lower than the capillary pressure γ/a (here, ρ is density and γ is the surface tension of
the liquid):

ρv2
0 � γ/a0 (4)

This is a natural condition since a uniform filament is not stable if inertial effects are
significant [3]. Second, we assume that polymer stress (σp) dominates over the viscous

stress of the solvent: σp � ηs

∣∣∣ ∂v
∂z

∣∣∣. Again, this condition is obvious well inside the thread (as,
otherwise, the polymer effect would be rheologically negligible, and the liquid would be
equivalent to the Newtonian solvent there); however, it must be assumed for the transition
region. This assumption is justified if the capillary number Cn (defined in Equation (71)) is
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small, as discussed in item 5 of Section 4 (see text around Equation (71)). It is also assumed
that the liquid is incompressible:

∇ · v ≡ vβ,β = 0 (5)

where v = v(x) is the velocity field.
The master dynamical equation is then reduced simply to the force balance:

σαβ,β = 0 (6)

where α, β are Cartesian components, σαβ = σαβ(x, t) is the total stress tensor at the point
x = (x1, x2, x3), x3 ≡ z, and Y,β ≡ ∂Y/∂xβ is a derivative of a variable Y along the
coordinate xβ. It involves two contributions due to the pressure field (p = p(x, t)) and the
extra polymer stress:

σαβ = −pδαβ + σ
p
αβ (7)

The polymer stress tensor is [15]:

σ
p
αβ =

c
N

〈
∂Fel
∂Rα

Rβ

〉
(8)

where Fel = Fel(R) is the elastic free energy of a polymer chain with end-to-end vector
R. Angular brackets here mean the statistical average, c is the concentration of polymer
segments (repeat units), and N is their number in one chain (a monodisperse polymer
is considered in the present paper). For polymer liquids in marginal or theta-solvent
conditions [16,17] (and for concentrated polymer solutions) a Gaussian chain model is
applicable during the coil–stretch transition when the chains are far from their full extension,
R� L (here, L is the chain contour length), so the elastic energy is [15]:

Fel '
3
2

T
R2

R2
coil

(9)

where T is temperature in energy units, Rcoil = N1/2bs =
√

LlK is the unperturbed coil size
(bs is the polymer statistical segment, lK is its Kuhn segment). Hence, recalling Equation (8),
we obtain:

σ
p
αβ ' 3

cT
N2b2

s

〈
RαRβ

〉
' 3

cT
N2b2

s
R̄αR̄β (10)

where we took into account that all the chains in a fluid element are strongly stretched
along the same axis (defined by some unit vector m), so that the end-to-end vector R of
most chains is nearly parallel to m, and therefore,

〈
RαRβ

〉
' const mαmβ = R̄αR̄β, where

R̄ = R̄m, and R̄ is the root-mean-square (rms) of the end-to-end distance. For the sake of
simplicity, in what follows, we omit the ‘bar’ over R and R. (Thus, from now on, R is simply
the rms end-to-end distance of polymer chains, which is widely used in polymer physics.)
Note that we consider the regime of significant chain extension, R� Rcoil , since, otherwise,
σ

p
αβ would be comparable with the ideal gas pressure of polymer molecules, which is

low for long chains. Note also that R̄ = R(x, t) in Equation (10) is the mean end-to-end
vector which generally depends on the chain position x and time t. (More precisely, x is
the position of the chain center-of-mass. In all the cases, we assume that the fields such as
v(x, t) or R(x, t) do not change much on the polymer length-scale Rcoil . This condition is
satisfied if Rcoil � a0.)

Obviously, well inside the thread, polymer chains must be stretched along its main axis
(z): Rz ' R0 � Rcoil , Rx1 ∼ Rx2 ∼ Rcoil , where R0 is R̄ (rms of polymer end-to-end distance)
in the thread; thus, the only relevant component of the polymer elastic stress tensor is:

σ
p
zz ' 3

cT
N2b2

s
R2

0 (11)
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(other components being subdominant).
The model described above is virtually equivalent to the Oldroyd-B dumbbell model,

as the polymer conformation is defined solely by the end-to-end vector R, and the polymer
stress is quadratic in R. Using this model, it was established that the thinning of a polymer
thread in the viscoelastic regime (Rcoil � R� L) is quasi-exponential [1,8]:

a0 ∝ exp(−(1/3)t/τ), R0 ∝ exp((1/6)t/τ) (12)

where τ is the stress relaxation time (τ = τp/2, where τp is the longest relaxation time of a
polymer coil), and t is the time passed since the beginning of coil stretching.

Equation (12) (which is applicable in the transient regime during the polymer stretching
stage) implies that the thinning rate ε̇ (cf. Equation (3)) is constant, ε̇ ' 2/(3τ). However,
strictly speaking, the flow in the thread is not steady, as its radius a0 = a0(t) is decreasing.
Nevertheless, the flow in the entrance region (the ‘corner flow’) can be considered at a differ-
ent angle: The characteristic thinning time is 1/ε̇ ∼ τ. Comparing it with the characteristic
entering time τent ∼ Lt/v0 ∼ Lt/

(
ε̇L f

)
, we see that ε̇τent ∼ Lt/L f ∼ a0/L f � 1, so:

τent/τ � 1. (13)

This means that the entrance flow (at the interface between the thread and a large droplet)
is quasi-stationary to a good accuracy, since the ratio a0/L f is typically small in experiments,
a0/L f . 0.01 [3,6,7,18]. Let us emphasize again that it is assumed here, following the
previous theoretical studies [1,7,8,11,12], that the thread is perfectly cylindrical, the flow
velocity in the thread is parallel to the main axis (z), and the chains are stretched along it.
The force balance (cf. Equations (6) and (7)) in such a geometry demands that the pressure
p is constant (independent of both radial and axial coordinates), p = γ/a0, and that the
polymeric stress σp ≡ σ

p
zz− σ

p
rr ' σ

p
zz is z-independent. In Section 3, we show that well inside

the thread, the stress σp is also constant in the radial direction (cf. text below Equation (56)).
Note that, in contrast, σp does depend on both z and r in the transition regions.

Since the entrance flow (see Figure 2) can be considered as steady, its time dependence
can be neglected at the relevant time scale τent. The formal boundary conditions on the
free liquid surface, defined by r = a(z), are: the surface must tend to a tube of radius a0 at
z/a0 → −∞ (here and below, z/a0 → −∞ means that z < 0 and L f � |z| � a0), and to a
sphere of large radius (which can be approximated by a flat plane) at r/a0 → +∞. (Note

that we use cylindrical coordinates z = x3, r =
√

x2
1 + x2

2, as shown in Figure 2.) In the
limit of no inertia, the equation of motion is reduced to the local force balance, which can
be written as (see Equations (6), (7), and (10)). (Most equations below are approximate, just
like Equation (10). However, the ‘=’ sign is used there for simplicity, except where it is
important to emphasize their approximate nature.)

3
cT

N2b2
s

(
RαRβ

)
,β
= p,α (14)

The pressure at the free surface is defined by its curvature C:

p = γC =
γ√

1 + (a,z)
2

[
1
a
− a,zz

1 + (a,z)
2

]
at r = a(z) (15)

where

a(z)→ a0 at z/a0 → −∞, a,zz ≡
∂2a
∂z2 → 0 at z/a0 → +∞ (16)

and p is the excess pressure on the top of atmospheric pressure. The flow is therefore
defined by an interplay of capillary and viscoelastic effects.
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The basic Equations (5) and (14) involve two unknown fields: polymer extension,
R = R(x), and velocity v = v(x). However, in the entrance zone, these fields can be easily
related to each other. The idea is that the polymer chains must be extended along the
stationary streamlines, and their fragments (blobs) must simply follow the stream (i.e.,
a blob at point x moves with the velocity v(x)). In fact, the relative motions of the blobs due
to elastic forces can be neglected as being too slow since the relevant polymer relaxation
time (τp) is much longer than τent (see Equation (13)). As a result, the chain extension
vector R stays nearly proportional to the flow velocity v for kinematic reasons:

R(x) ' Bv(x) (17)

For a steady flow, the above equation follows from the kinematic equations dv/dt ≡
∂v/∂t + v · ∇v = v · ∇v, dR/dt = R · ∇v (cf. Equation (80) with 1/τp → 0), which ensure
that if R = Bv at some point (which is the case for z < 0, a0 � |z| � L f ), the latter equation
must stay valid (with B = const ) along the whole streamline in the transition region where
the rate 1/τp can be neglected. Here, d/dt means the full rate of change ‘following the
fluid’ for a material element.

Of note, Equation (17) remains valid in the extended transition region, including the
adjacent end part of the thread at z < 0, |z| < ∆, where a0 � ∆ � L f . The condition
∆� L f ensures that the transition time (along the whole transition region including the
∆-part) is much shorter than the polymer relaxation time τp, so that the polymer relaxation
process can be neglected in the ∆-part. On the other hand, the condition a0 � ∆ is sufficient
to state that at −z & ∆ the thread is nearly perfectly cylindrical, so at z = −∆ its radius
is a ' a0, the rms chain extension is R ' R0 and the flow velocity is v ' v0 also being
uniform in the cross-section. Then, applying Equation (17) at z = −∆ we obtain

B ' R0/v0

and therefore B is the same for all the streamlines. Equations (10) and (17) obviously agree
with the convected Jeffreys (or Oldroyd-B) models with infinite relaxation time [14] (cf. item
11 of the Discussion).

The force balance Equation (14) then becomes:

p,α = Ãvα,βvβ (18)

where

Ã = 3
cT

N2b2
s

R2
0

v2
0

(19)

and we took into account the flow incompressibility from Equation (5). Equations (18)
and (5), together with the boundary conditions in Equation (15), an obvious condition vn =
0 at the free surface (where vn is the flow velocity component normal to the surface), and

v→ v0 at z/a0 → −∞, p→ 0 at z/a0 → +∞ (20)

completely define the flow, the pressure field, and the shape of the free surface in the
entrance zone. (Recall that z/a0 → −∞ physically means that z < 0, a0 � |z| � L f ;
in a similar fashion, z/a0 → +∞ means z � a0. Note also that we consider the limit of
a very large droplet, so the excess pressure deeply inside it must tend to 0.) Obviously,
Equations (15) and (16) also imply that:

p→ p0 = γ/a0 at z/a0 → −∞ (21)

There is only one essential non-dimensional parameter in the problem: the ratio X ≡
σpa0/γ of polymer stress σp to the capillary pressure well inside the filament, p0 = γ/a0.
It was set to X = 1 in ref. [8], while X = 2 was derived in ref. [12]. (Note that the quantity
X f = 1+X

2 was denoted X in ref. [5]; X f was defined there as the ratio of the net tensile
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force in the thread to 2πγa0. As follows from Table I of ref. [5], the parameter X = 2X f − 1
is as important as X f itself for Newtonian liquids considered there. This parameter (X)
is even more important for polymer liquids as it highlights a relation between the main
quantities of interest, the polymer stress σp, and the capillary pressure γ/a.) Below, we
show that X can be easily obtained based on the equations considered above. To this end,
let us first analyze the pressure p variation along a streamline. Equation (18) gives (with
v ≡ |v| and the coordinate u equal to the curvilinear distance along the streamline):

∂p/∂u =
(

Ã/v
)
vα,βvαvβ = Ãv∂v/∂u (22)

leading to ∂p/∂u =
(

Ã/2
)
∂v2/∂u; hence,

p− Ã
2

v2 ' const along streamline (23)

This equation is applicable in the entrance zone, where the velocity is changing fast along
streamlines. It connects the local pressure and velocity just like the Bernoulli’s principle
does for an ideal fluid. We shall refer to Equation (23) as the anti-Bernoulli law (due to the
‘minus’ sign leading to a higher pressure for a faster flow). The const in Equation (23) can be
easily found for the flow of Figure 2: Recall that each streamline is coming from the uniform
thread, where both p and v are constant over a cross-section. Therefore,

p− Ã
2

v2 = const = 0 (24)

in the whole entrance zone (|z| � L f ). Note that Equations (24) and (23) are valid if the
Newtonian solvent friction is negligible as assumed below Equation (4) and as discussed in
item 5 of the Discussion section (cf. Equation (71)). The rhs in the above equation equals 0
since both p and v must vanish deeply in the droplet region at z� a0 (cf. Equation (20)).
Thus, Equations (20), (21), and (24) imply that

p0 =
Ã
2

v2
0, v2

0 =
2γ

Ã
1
a0

(25)

and we obtain σp in the thread using Equations (11) and (19):

σp = Ãv2
0 = 2γ/a0. (26)

Hence, the parameter X introduced below Equation (21) is:

X ≡ σp/p0 = σpa0/γ = 2. (27)

The total thread tension force T (defining the total momentum flux through its cross-section)
is therefore:

T = 2πa0γ + πa2
0
(
σp − p0

)
= 3πa0γ (28)

The two terms in the middle of the above equation represent the surface and the internal
axial stress contributions to the total tension T . Equations (27) and (28) agree with the
results of ref. [12].

It is worthwhile to note that Equations (17)–(24) are valid for a virtually arbitrary flow
geometry (involving a long channel as a part of it). Using Equations (18) and (24), we obtain:(

vβ,α − vα,β
)
vβ ≡ 0 (29)

Let us now take into account that, typically, the experimental setup is such that both the free
surface and the flow are axisymmetric. This symmetry is already implied in Equation (15).
For the flow velocity, it means that its axial and radial components (vz and vr) do not
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depend on the polar angle θ, while the polar velocity component vθ must vanish (here, we
use cylindrical coordinates (z, r, θ), cf. Figure 2):

vz = vz(r, z), vr = vr(r, z), vθ ≡ 0 (30)

The factor in brackets in Equation (29) is related to the vorticity ω = ∇× v

vβ,α − vα,β = εαβγωγ (31)

where εαβγ is the Levi-Civita symbol. Therefore, Equation (29) is equivalent to:

ω× v ≡ 0 (32)

For an axisymmetric flow, ω is always parallel to the azimuthal direction (ωr = ωz = 0);
hence, ω and v are orthogonal. Equation (32) then gives ωv ≡ 0, so:

∇× v ≡ 0 (33)

everywhere except at the stagnation points (where v = 0), which are not expected in the
entrance zone. Therefore, the flow is irrotational:

v = ∇ϕ (34)

where ϕ = ϕ(r, z) is a potential field which must satisfy the Laplace equation (in view of
Equation (5)):

∇2 ϕ = 0 (35)

Furthermore, on using Equations (24) and (25), the boundary condition, Equation (15),
transforms to:

v2 =
v2

0a0√
1 + (a,z)

2

[
1
a
− a,zz

1 + (a,z)
2

]
at r = a(z) (36)

while another condition at the free surface (vn = 0) simply says that the boundary curve
r = a(z) must be a streamline with r → a0 at z/a0 → −∞ (obviously, the axisymmetric
problem is essentially two-dimensional, so we can set θ = 0 and r = x1 without loss of
generality).

Further statements, which can facilitate numerical solution of the above equations for
the velocity field v(x), can be proven in an elementary way. At large z � a0, the flow is
asymptotically similar to the electrostatic field of an electric charge:

v ' Qx
r3 , Q =

1
2

v0a2
0 (37)

where x is the position vector, r = |x| is the distance from the origin, and Q is obtained
based on the incoming volume flow rate, which is equal to πa2

0v0. Equation (37) implies
that at r� a0, the pressure decreases as:

p/p0 '
1
4

( a0

r

)4
(38)

The pressure therefore becomes negligible in the droplet far from the entrance point, so the
droplet shape there must be close to the static shape defined solely by the Laplace pressure.
It leads to the condition of constant mean curvature, C → 0, in the case of large droplet,
so [4]:

r(z) ' a cosh(z/a) for z� a (39)

where a ∼ a0. The above equation is consistent with Equation (3).18 of ref. [12].
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Next, let us note that the structures of Equations (35) and (36) are such that a simple
rescaling r → r/a0, z→ z/a0, and v→ v/v0 makes the problem free of any parameters (in
other words, the solution is self-similar). It is therefore enough to solve the above equations
for a0 = 1, v0 = 1 and Q = 1/2. The unique rescaled flow field and the free surface curve
a(z) can be found numerically in two steps: (1) by setting a trial a(z) and then solving the
Laplace Equation (35) in the region z > −zmax, r < rmax, and r < a(z) (see Figure 2) with
Neumann boundary conditions: ∇ϕ · n = 0 at the free surface (r = a(z)), ∇ϕ · n = 1 in the
filament cross-section at z = −zmax, and ∇ϕ · n = const at the hemisphere r = rmax inside
the droplet (here n is unit vector normal to the surface); (2) by adjusting a(z) iteratively so

as to satisfy the anti-Bernoulli equation (∇ϕ)2 = 1√
1+(a′)2

[
1
a −

a′′

1+(a′)2

]
at r = a(z).

The resultant thread shape and streamlines in the entrance zone (obtained for zmax = 6
and rmax = 30 taken to obtain a well-converged solution to an accuracy of ∼0.5%) are
shown in Figure 3. In the thread region, z → −∞, the free surface tends to a cylindrical
shape in an exponential fashion:

a(z) ' 1 + const ekz, − z� 1 (40)

where k ≈ 1.393. (The constant k > 0 is the lowest root of the characteristic equation
2kJ0(k) = (1 + k2)J1(k), which comes from the main correction to the potential field ϕ at
−z� 1: ϕ− ϕ0 ' const J0(kr)e−kz, where ϕ0 = z corresponds to a perfectly uniform flow.
Here J0, J1 are Bessel functions.)

-44 -33 -22 -11 00 11 22 33 44 55 66 77 88

66

55

44

33

22

11

00

z/a0

r/a0

Figure 3. The free surface shape (red line) and streamlines (black curves) in the transition zone coming
from Equations (5), (33), and (36) for a0 = 1.

The asymptotic behavior in the opposite regime, z� 1, can be deduced from the force
balance, which says that the total momentum flux in the cylindrical part (the thread tension
T = 3πγ, cf. Equation (28)) must be equal to the momentum flux, T+, across a hemisphere
r = const � 1, z > 0. The contribution of both polymer stress and pressure to T+ can be
neglected since they rapidly tend to zero at large r: σp ∼ p ∝ 1/r4 (cf. Equation (38)); hence,
pr2 → 0 at r→ ∞. Therefore, T+ at r� 1 is defined solely by the surface tension γ:

T+ ' 2πaγ/
√

1 + (a′)2 (41)

The equation T+ = 3πγ leads to

a(z) ∝ exp(2z/3), z� 1 (42)

This asymptotic behavior was predicted [12] using a similar argument. However, the point
that the polymer stress can be neglected in the droplet region was not proven there. Of
note, the numerical solution for a(z) shown in Figure 3 is in harmony with the asymptotic
laws, Equations (40) and (42).
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3. Finite Extensibility Effects
3.1. FENE-P Model

The theory described above was developed for the Oldroyd-B model. Below, it is
generalized to account for nonlinear finite extensibility effects. In the general case, the
polymer chain tension ∂Fel

∂R depends on the end-to-end distance R in a nonlinear fashion
(cf. Equation (9)):

∂Fel
∂R

=
T
R2

1
RκFE(s) (43)

where s = R/L is the stretching degree (whose maximum value is 1), and R2
1 = Nb2

s /3 is
related to the coil size Rcoil = bs

√
N. The factor κFE(s) must tend to 1 at low s, when the

Gaussian model is valid (recall that we consider polymers in marginal or theta solvents).
By contrast, κFE must generally strongly increase for 1− s� 1 to provide a finite exten-
sibility (FE): κFE → ∞ at s → 1. The whole function κFE(s) is, however, not universal: it
depends on the polymer flexibility mechanism. One of the most popular FE models was
introduced by Warner [19]. It serves as a part of the FENE-P dumbbell model [14,20,21] with

κFE(s) =
1

1− s2 (44)

Using Equations (43) and (44), we obtain:

Fel = −
3
2

TNK ln(1− s2) (45)

where NK = L/lK = L2/
(

Nb2
s
)

is the number of Kuhn segments in a polymer chain.
The elastic force, Equation (43), defines the polymer stress tensor, cf. Equation (8):

σ
p
αβ =

c
N

∂Fel
∂Rα

Rβ =
G
R2

1
κFE(s)RαRβ (46)

where G = cT/N is the shear elastic modulus defining the polymer elastic response at
short times (t . τ). (Note that internal relaxation modes are ignored in the FENE models.)

3.2. Equations of Motion in the Entrance Zone

We now turn to dynamical equations applicable in the transition zone where the flow
is non-uniform but is virtually steady (cf. Equation (13) and the text below it). In this
regime, as argued above Equation (17), the polymer extension (the end-to-end vector) R is
proportional to the flow velocity v, cf. Equation (17). Note that polymer contraction due to
elastic force can be neglected in the entrance region even if the chains are stretched close to
full extension (s close to 1) because s rapidly decreases hydrodynamically (affinely with the
fluid element) down to s ∼ 0.5 upon entering the transition region due to a fast deceleration
of the flow there. Indeed, the rate of affine contraction of chains in the transition region
is defined by the flow velocity gradient, |∂vz/∂z| ∼ v0/a0 ∼ (L f /a0)τ

−1; it is much faster
than the rate (∼1/τ) for the non-Gaussian elastic relaxation, since the factor L f /a0 (the ratio
of the thread length to its radius) is very large, as stated in Equation (2) (and as observed
experimentally). Therefore, considering the entrance flow for the FENE-P model, we can
treat the flow as quasi-stationary setting τ → ∞ and using Equation (17) just like for the
Oldroyd-B model.

The factor B in Equation (17) is constant along a streamline, but strictly speaking, it
may vary among the streamlines. In Section 2, we provided a plausible argument showing
that B is constant in the whole entrance zone. This property is proved below on more
general grounds. Remarkably, even with a variable B equation, R = Bv still ensures that
the field R(x) is solenoidal:

∇ · R = B∇ · v + v · ∇B = 0 (47)
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since v and ∇B are necessarily orthogonal.
Using Equations (6), (7), (46), and (47) we obtain:

∂p
∂xα

=
c
N

∂2Fel
∂Rα∂Rγ

Rβ
∂Rγ

∂xβ
(48)

Recall that we neglect inertial effects and the stress contribution due to the solvent viscosity
for the reasons considered in Section 2. Next, taking into account that Fel can be considered
as a function of R2, one obtains:

∂2Fel
∂Rα∂Rγ

= 2F′elδαγ + 4F′′el RαRγ (49)

where

F′el ≡
∂Fel

∂(R2)
, F′′el ≡

∂2Fel

∂(R2)
2 (50)

The above equations lead to:

∂p
∂xα

= 2
c
N

[
F′el Rβ

∂Rα

∂xβ
+ F′′el RαRβ

∂R2

∂xβ

]
(51)

Considering the pressure gradient along a streamline, using Equation (51), we obtain:

∂p
∂u

=
∂F
∂u

(52)

where the function F = F (R) must satisfy the equation:

∂F
∂u

=
c
N

(
F′el + 2F′′el R

2
)∂R2

∂u
(53)

and u is a curvilinear coordinate (the contour length) along a streamline. From Equation (53),
we obtain:

F (R) =
c
N

(
2F′el R

2 − Fel

)
(54)

so that Equation (52) leads to:
p−F (R) = const (55)

along each streamline. Taking into account that F (0) = 0 and that both p and the chain
extension R must vanish in the droplet far away from the thread, we find that const = 0 in
Equation (55), so:

p = F (R) (56)

Equation (56) is valid in the whole entrance region including the thread-end region (z < 0,
a � |z| � L f ), where p ' p0 and vz ' v0 are nearly uniform both axially and radially
(in a cross-section). Using Equation (56), we find that the same must be true for the chain
extension R and the polymer stress σp related to it. Recalling that both σp and R = R0
are z-independent within the thread (see text below Equation (13)), we conclude that
these quantities do not change in the radial direction in the whole thread. This means,
in particular, that the factor B = R0/v0 in equation R = Bv (cf. Equation (17)) is the same
for all streamlines. Equation (56) can be therefore written in the form:

p = F (Bv) (57)

which generalizes the anti-Bernoulli law, Equation (24).
For the FENE model, Equations (45) and (54) give:
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F (R) =
3
2

GNKF̃ (s) (58)

where R = sL and

F̃ (s) = 2s2

1− s2 + ln(1− s2) (59)

In the regime s� 1, both F (R) and the elastic energy density Fel(R) = c
N Fel(R) are nearly

quadratic in R and are equal:

F (R) ' Fel(R) ' 1
2

G
R2

R2
1
=

3
2

GNKs2 , s� 1 (60)

Therefore, in this case, the anti-Bernoulli law also says that the local pressure is equal to the
elastic energy density. However, in the opposite regime of nearly fully stretched chains,
1− s� 1, F (R) becomes much larger than Fel(R):

F (R) ' 3
2

GNK
1

1− s
, Fel(R) ' 3

2
GNK ln

1
1− s

, 1− s� 1

Based on the anti-Bernoulli law, we have shown in Section 2 that the flow must be
irrotational for the Oldroyd-B model: ω ≡ ∇× v = 0 (cf. Equation (33)). This property is
not preserved in the more general case considered in this section: it is replaced by a more
general relation derived below (cf. Equation (63)).

For symmetry reasons, ω has only one nonzero component (= ω) in the azimuthal
direction perpendicular to the rz-plane. Using local coordinates with axis u tangential to a
streamline (at a given point O) and axis u⊥ perpendicular to it (cf. Figure 4), we obtain:

ω = ∂v/∂u⊥ − ∂v⊥/∂u (61)

where v⊥ is the velocity component along axis u⊥. Noting that ∂v⊥/∂u is proportional to
the local curvature, C, of the streamline:

∂v⊥/∂u = Cv (62)

and using Equations (54) and (56), we find:

∂p
∂xα

=
∂F
∂R2

∂R2

∂xα
=

c
N

(
F′el + 2F′′el R

2
)∂R2

∂xα

Comparing the above equation with Equation (51) and recalling Equation (17), we finally
obtain: (

F′el + 2F′′el R
2
) ∂v

∂u⊥
= F′el

∂v⊥
∂u

(63)

Hence, in the general case, ∂v/∂u⊥ 6= ∂v⊥/∂u and ω 6= 0. Note, however, that Equa-
tions (62) and (63) still ensure that ω = 0 for a straight streamline, C = 0. This is true,
in particular, both well inside the droplet and in the thread. Therefore, Equations (37)
and (38) remain valid at r� a0.

O

u

u
⊥

Figure 4. Coordinates u and u⊥ attached to point O of a generic streamline shown as thick curve.
Note that some actual streamlines are depicted in Figure 3.
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3.3. Flow in the Thread and the Thinning Law

Turning to the flow in the cylindrical part of the thread, we first recall that it is uniform
in a cross-section, so both the pressure p and the polymer stress σ

p
αβ do not depend either

on the axial coordinate z or r in the thread. The pressure p = p0 in the thread is defined by
Equation (56), where R = R0 is the chain extension:

p0 = F (R0) (64)

On the other hand, the polymer stress σp = σ
p
zz − σ

p
rr is (cf. Equation (46)):

σp = 3GNKs2κFE(s), s ≡ R0/L (65)

The s-dependence of the ratio X = σp/p0 is shown in Figure 5. It is clear that σp/p0 is not a
constant: for s� 1, the above equations lead to σp/p0 = 2, while for 1− s� 1, the result
is σp/p0 = 1.

X

s

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

.

Figure 5. The dependence of X = σp/p0 on the stretching degree s = R/L.

The kinetics of the chain extension for the FENE-P model can be described with evolution
equation:

dR
dt

= ε̇R− 1
τp

κFE(R/L)R (66)

Here, ε̇ is the extension rate in the axial direction, which is related to the thread thinning rate,
see Equation (3), and R = R0. The second term in the rhs of Equation (66) is proportional
to the elastic force [20]. (Note that a thermal noise term is not present in Equation (66) since
thermal fluctuations are negligible in the regime R� Rcoil we consider.)

Next, using Equations (3), (21), and (64), we find that ε̇ = 2 d ln F̃ (s)
dt , so Equation (66)

becomes:
1
R

dR
dt

= 2
d ln F̃ (s)

dt
− 1

τp
κFE(s) (67)

It leads (using Equation (44)) to the following ODE for s = s(t):

ds2

dt
= 4s2 d ln F̃ (s)

dt
− 1

τ

s2

1− s2 (68)

Equation (68) is valid for the FENE-P model. It can be integrated to give (with substitution
y ≡ s2):

− ln y + y + 4
∫ 1 + y

2y + (1− y) ln(1− y)
dy =

t
τ
+ const (69)

The above equation defines the time dependence of the stretching degree, s(t), which
is shown in Figure 6. The time dependence of the ratio σp/p0 is indicated there as well.
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Obviously, this ratio strongly decreases near the breakup point (the const in Equation (69)
was chosen to obtain the breakup at t = 0). The resultant thinning law, a0(t) = γ/F (R0) =

2γ
3GNK

1
F̃ (s) , is drawn in Figure 7. The straight dashed line highlights the fact that a0(t)

follows the classical exponential law, a0(t) ∝ exp
(
− t

3τ

)
, [1], as long as s = R0/L . 0.5.

X

s

t/τ

30 25 20 15 10 5 0
0

0.5

1

1.5

2

.

Figure 6. Time dependencies of X and s (vs. t/τ); t = 0 is the putative breakup point.
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Figure 7. Time-dependence of the thread radius: a0 (upper solid curve) and ln a0 (lower curve) vs.
t/τ. The dashed line indicates the asymptotic exponential law, Equation (12).

4. Discussion

1. In the present paper, we investigated the dynamics of a viscoelastic liquid bridge
(a cylindrical ligament) connecting two large droplets (see Figure 1). Its thinning is governed
by capillary and viscoelastic forces and is coupled to the flow both in the ligament and
in the transition zone between the thread and a droplet (see Figure 2). As a fluid, we
consider an unentangled polymer solution whose rheology can be described by either the
Oldroyd-B or the FENE-P dumbbell models. The developed theory is focused on the regime
of strongly stretched polymers whose conformational tensor

〈
RαRβ

〉
is dominated by a

single eigenvalue (here, R is the end-to-end vector of a polymer chain). The models we
used assume that the stress tensor contribution of a polymer chain is defined by the vector
R and therefore is proportional to RαRβ. The prefactor in such a relation is either constant
(cf. Equation (10) for Oldroyd-B model) or depends on the degree of chain stretching
s = R/L (for the FENE-P model). Both models ignore hydrodynamic interactions (HDI) in
the system (see point 9 below).

As one of the main results, we have shown that for the Oldroyd-B model, the capillary-
driven flow is nearly irrotational and satisfies the Laplace equation. In addition, we have
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established a general relation between the pressure and velocity fields (valid for a broad
class of polymer flows) which is referred to as the anti-Bernoulli law (cf. Equation (23); an
equivalent static conservation law was derived for a neo-Hookean elastic solid [12]). Using
these results, we obtained a self-similar solution (involving a single length-scale, the radius
a0 of the thread) for the shape of the free surface and for the pressure and velocity fields.
In cylindrical coordinates (r, z), the free surface is given by r = a(z) = a0 f (z/a0). The nu-
merically obtained free surface profile a(z) for a0 = 1 and the corresponding flow structure
are shown in Figure 3. The calculated a(z) is compared in Figure 8 with the similarity solu-
tion for the bead-string structure of a neo-Hookean elastic body obtained in ref. [12]. (Note
that le = 21/3a0 was taken as a unit length in ref. [12], so the data have been rescaled
accordingly.) The obvious good agreement supports the conclusion of refs. [12,13] that
(as conjectured earlier in refs. [22,23]) the neo-Hookean model asymptotically reproduces
the geometry of a polymer liquid bridge formed in the course of its capillary thinning (ac-
cording to the Oldroyd-B constitutive equation) in the regime of sufficiently long polymer
relaxation time τ. Of note, it was recently shown that the universal interfacial shapes ob-
tained in ref. [12] (and, therefore, the theoretical profile of Figures 3 and 8) are in agreement
with high-resolution experimental data on aqueous solutions of high-molecular-weight
polymers (PEO) and biopolymers (hyaluronic acid) [24,25].

00
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22

2.52.5

33

3.53.5

44

4.54.5

55

-55 -44 -33 -22 -11 00 11 22 33

z/le

a(z)/le

Figure 8. The dependence a(z)/le vs. z/le in the transition zone: our data (crosses), the similarity
solution for the bead-string structure obtained using a neo-Hookean elastic model [12] (solid line);
le = 21/3a0 is the elasto-capillary length.

2. The conservation (anti-Bernoulli) law defining pressure in terms of the flow field
(cf. Equation (24)) was obtained here based on the steady-flow dynamical equations
(Equations (6) and (17)). Of note, in the form of Equation (56), p = F (R), this law is akin to
the conservation law established for neo-Hookean solids [12]. The main difference is that
Equation (56) is more general: it also accounts for non-linear elastic effects related to the
finite extensibility of polymer chains.

3. To quantitatively establish the thinning kinetics, a0 = a0(t), one needs a ‘closure’
relation between the pressure p0 and the axial polymer stress σp in the thread. This relation
cannot be obtained by considering a cylindrical thread as such. Long ago, Entov and Hinch [8]
assumed that the total axial stress in the thread (σp − p0) must be equal to that in the droplet,
i.e., to zero (if atmospheric pressure is subtracted from p0): p0 = σp. It is found here that
the rigorous anti-Bernoulli law, Equation (24), demands a different relation, p0 = σp/2,
in agreement with more recent predictions for the Oldroyd-B model [7,11,12]. It is remarkable
that a generalization of the anti-Bernoulli law for polymer chains with finite extensibility,
Equation (57), leads to a variable ratio X = σp/p0 which depends on the degree of polymer
extension s = R/L. While for s � 1 we obtain σp/p0 = 2, this ratio decreases with s (see
Figure 5), reaching its minimum, σp/p0 = 1, in the regime of completely stretched chains,
s→ 1. Incidentally, it is the latter ratio that was assumed in ref. [8].

It may seem that the model of a nearly uniform thread cannot be used for s close to 1
since in this regime of highly extended chains the liquid behaves nearly as a Newtonian fluid
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with renormalized viscosity [4,26–28] η∗ ' ηs

(
1 + π

18kH
c
N L3

)
, where kH ' 0.5 ln(1/φ) is a

hydrodynamic factor [29] and φ is volume fraction of polymer. Thus, the classical Plateau–
Rayleigh instability (undulations of the thread shape) must emerge in this regime (at s close to
1, s > sc ∼ 0.5), so that the uniform thread approximation seems to fail. The point, however,
is that: (i) Before the instability (at s < sc), the undulations are weak, and their amplitude
(in radial direction) due to thermal fluctuations is ã0 ∼

√
T/γ. (Here we make a plausible

assumption that the amplitude of thermal fluctuations of the radius in the dynamically stable
thread are comparable to that for a statically stable liquid cylinder of the same diameter.)
Therefore, ã0 � a0, since, typically,

√
T/γ . 1 nm, while a0 � 1 nm. (ii) The growth rate

of their amplitude (coming from the Rayleigh theory [30]) is |d(ln ã)/dt| ∼ 1
6

γ
aη∗ , so it is

comparable with the thread thinning rate, [4,5] ε̇/2 ∼ 1
6

γ
aη∗ . Therefore, as the thread thins

by a factor of k, the undulations grow by the same factor, so the thread radius a becomes
comparable with the undulation amplitude ã for k = k∗ ∼

√
a0/ã0 � 1. Considering

a = a(s) as a function of s, we find, according to the theory of Section 3.3 that a(s)/a(0.5) ∼
1− s for s & 0.5, that is, 1/k ∼ 1− s. The above argument therefore shows that the thread
undulations remain small (ã� a) if 1− s� 1/k∗. Hence, the theory of Section 3.3 is actually
applicable in the regime where the chain extension degree s is close to the maximum (=1):
this is true in the region 1� 1− s� 1/k∗ since k∗ � 1. In this regime, the ratio X indeed
becomes very close to 1, as stated in the previous paragraph.

4. The developed theory was applied to obtain the thread thinning dynamics for the
FENE-P model. While this problem was treated already in ref. [8], it is treated here for the
first time in a rigorous way. The numerically obtained thinning law, a0(t) (see Figure 7)
includes both the elasto-capillary (exponential thinning) and the terminal stage (quasi-linear
thinning). It is based on the asymptotically exact dependence of the ratio X = σp/p0 on the
degree of chain stretching established in Section 3 (see also point 3 above).

The predicted thinning law is universal (up to arbitrary horizontal and vertical shifts)
when plotted in semilog scale vs. t/τ. The theory is compared with experimental data on
semidilute, unentangled polymer solutions (cf. Figure 5 of ref. [18]) in Figure 9, where t/τ = 0
for the theoretical curves is set to be the putative breakup point (a0 = 0). One can observe a
good agreement down to the crossover regime; however, at later times (on the right to a red
circle), the experimental curve deviates from the prediction. We attribute this discrepancy
to a new regime most probably associated with the blistering (pearling) instability [2,31],
which is normally accompanied by the polymer/solvent phase separation and formation of
secondary solvent droplets (which can be both flow- and capillary-induced [28,29,32–34]).
Interestingly, according to Figure 9, this transition occurs where the chains are not yet fully
stretched, at s ≈ 0.5, corresponding to X = σp/p0 ≈ 1.75.

5. Considering the thinning of a cylindrical polymer thread, we assumed that the pres-
sure p there is constant in the radial direction (i.e., it is homogeneous in a cross-section). This
assumption was adopted in the previous theoretical studies on capillary thinning [1,7,8,11,12].
In the case of negligible inertia, it simply follows from the force balance in the cylindrical
geometry since the flow velocity v is parallel to the main axis, and so is the elastic force due
to stretched polymer chains. In addition, however, the theory developed in Sections 2 and
3 implies that the axial polymer stress σp is also uniform (independent of r) in the thread.
For the Oldroyd-B model, this condition is justified in the limit of vanishing solvent viscosity
as follows: First, it is straightforward to show that the argument (cf. Section 2) leading to the
anti-Bernoulli law, Equation (24), is generally valid in the form:

p = σ
p
‖ /2 (70)

(where σ
p
‖ = σ

p
uu is the polymer stress component along the streamline). Obviously, in the

thread, σ
p
‖ ' σp and (as argued above) p = const . Therefore, Equation (70) implies that σp

is also constant (r, z-independent) there. The conjecture that for negligible solvent viscosity
the stress profile in the thread is uniform [12] is thus rigorously proved using a dynamical
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approach. (Of note, it was also established [12] that the radial distribution of the axial
stress is uniform for a soft neo-Hookean elastic solid. Hence, here, again, we confirm the
correspondence between viscoelastic and elastic models [13].) In Section 3.2, we show that
this statement is also valid for the models with finite chain extensibility.

 (m
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Figure 9. The time dependence of the thread thickness d = 2a0. Red solid curves: theoretical results (cf.
Section 3.3). Thick black curves: experimental data for semidilute aqueous solutions of Praestol-2540
with different concentrations from 125 to 1000 ppm (cf. Figure 5 of ref. [18]). Red circles indicate the
onset of significant deviations between theoretical and experimental curves. The theoretical breakup
points are indicated with red arrows for each red curve. For the two highest concentrations, we also
indicate the reduced time t/τ (with t = 0 corresponding to the theoretical breakup). Thin red dashed
lines indicate the exponential asymptotic behavior at short times (according to Equation (12)).

Numerical studies of the Oldroyd-B model with a finite Newtonian solvent viscosity
ηs [12] reveal a weak radial dependence of σp, which was attributed to an effect of ηs. We
tend to agree with this interpretation. The effect of ηs (which was neglected in the present
study) is unimportant as long as ηs

∣∣∣ ∂v
∂z

∣∣∣ � σp, which is true everywhere (including the
entrance region) if a capillary number is small:

Cn ≡ ηsL f /(6τγ)� 1 (71)

The above condition was adopted in the previous sections. Note that for any ηs, this
number (Cn) can be made however small, provided that the polymer time τ is sufficiently
long. For a finite ηs, the polymer stress σp in the thread may vary along the radius. We
expect that (at least for a small Cn) a maximal relative variation of σp in the radial direction
should be defined by Cn. It may also be worth mentioning that an increase in the solvent’s
viscosity does not necessarily lead to a higher Cn since the ratio ηs/τ depends mainly on
the polymer molecular weight rather than on ηs (note that τ is nearly proportional to ηs if
polymer volume fraction is low [15,35]).

6. It is well-known [7,11,12,36] that the elasto-capillary thread thinning (according to
an exponential law, Equation (12)) is preceded by a fast initial process of the thread forma-
tion, which is primarily governed by capillary and inertial forces. In a typical scenario, a
cylinder of initial radiusR0 and length > 2πR0 undergoes the Plateau instability. A thread

of radius a0i ' R0

(
GR0
2γ

)1/3
is formed as a result of this process [7,11,12,36]. The char-

acteristic time of this initial stage is inertial in nature, ti ∼
(
ρR3

0/γ
)1/2. In the inertial

regime, ti also defines the period of oscillations of the emerging semi-droplets (connected
by the thread). Their damping rate is proportional to the solvent viscosity ηs defining
the dissipation rate, so the damping time is tdamp ∼ t2

i γ/(ηsR0) ∼ ρR2
0/ηs. (Note that
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tdamp � ti as long as R2
0 � η2

s /(ργ), which literally means that initially the system falls
in the inertial regime.) This time must not exceed τ (since, otherwise, the thread thinning
would be strongly perturbed by droplet oscillations). Hence, we have to demand that

ρR2
0/(ηsτ) . 1 (72)

This condition is compatible with Equation (71) if

ρR3
0/
(

τ2γ
)
� 1 (73)

which simply means that ti � τ. Note that the condition (73) also ensures that inertial ef-
fects are negligible in the thread: ρv2

0 � γ/a0, as was assumed in Section 2 (cf. Equation (4)).
Thus, Equations (71) and (72) define the range of allowed ηs:

ρR2
0/τ . ηs � 2τγ/R0 (74)

(Here, we assumed that the filament length is comparable withR0, L f ∼ 3R0, which was the
case in the previous numerical studies [7,12,23].) Obviously the conditions of Equation (74)
are always satisfied for a sufficiently long polymer relaxation time τ.

7. The fluid dynamics considered here are dominated by the longitudinal polymer
stress σ

p
‖ (along a streamline). This property is quite natural in the regime of strongly

stretched polymer chains, when the polymer chain end-to-end distance R is much larger
than the equilibrium coil size Rcoil , R � Rcoil . In fact, it was implicitly assumed that
polymer chains are strongly stretched during an initial fast inertio-capillary stage of polymer
thread development [36], i.e., before the elasto-capillary regime of the thread thinning
considered in this paper. Such initial process leads to a uniaxial polymer stress field, cf.
Equation (10), both in the thread (of radius a0) and in the droplet/thread transition region
of size ∼ a0. However, the applicability of this approximation in the droplet at large
distances from the transition region, r � a0, may be questioned. Indeed, R ∝ v ∝ 1/r2

(cf. Equations (17) and (37)) strongly decreases there with the distance r, so the chains
become less stretched in the radial direction (along the streamline), and, more importantly,
they become expanded in the lateral directions: the lateral size R⊥ grows as R⊥ ∼ Rcoilr/a0.
It leads to an emergence of the lateral stress σ⊥ ∼ G(r/a0)

2. The stress growth stops as soon
as the travel time tv(r) for a fluid element to reach the distance r from the origin becomes
comparable with the stress relaxation time τ. Using Equation (37) with v0 = ε̇L f /2 =

L f /(3τ), we obtain tv(r) ∼ r3/(v0a2
0), so that tv ∼ τ is reached at r = r∗ ∼ L1/3

f a2/3
0 .

The maximum lateral stress is, therefore, σ⊥ ∼ G
(

L f /a0

)2/3
. This stress should lead to an

additional curvature ∆C ∼ σ⊥/γ of the free surface, which can be neglected if ∆Cr � 1,
leading to the condition:

Ec ≡ GL f /(3γ)� 1 (75)

Here, Ec is nearly equivalent to the elasto-capillary number introduced in refs. [7,12] (with
L f ∼ 3R0). It is noteworthy that the same condition, Ec � 1, also ensures that the chains
are strongly stretched during the initial inertio-capillary process: R � Rcoil , a0 � L f
(cf. refs. [7,12]).

8. To sum up the previous two points, there are three main conditions of validity of
the theory: Equations (71), (74), and (75). It is noteworthy that Equations (71) and (75) are
similar and are actually equivalent in the dilute/semidilute transition regime since the
polymer contribution ηp to the total viscosity is ηp = Gτ (for the Oldroyd-B model) and
ηp ∼ ηs at c ∼ c∗, where c∗ is the coil overlap concentration. Furthermore, in the semidilute
regime (c > c∗), Equation (71) follows from Equation (75).

9. In the present study, we totally neglected the hydrodynamic interactions (HDI),
which are not incorporated either in the Oldroyd-B or FENE-P models. Such a simplification,
which was also adopted in the previous theoretical works on the subject [1,7,8,11,12,37],
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may be appropriate in the semidilute or concentrated solution regime (c > c∗). The ef-
fects related to topological constraints (entanglements between polymer chains) [38] are
disregarded here as well, so the region of applicability should be formally restricted to the
unentangled polymer regime. It is worth noting, however, that both models employed here
seem to also work well for dilute polymer solutions, at least as far as the capillary thinning
kinetics are concerned [8,28,32,39]. Moreover, the main effect of the HDI is to modify the
polymer relaxation time, which is completely irrelevant in the entrance zone with high
deformation rate. Therefore, the approach to describe the flow in such zones (cf. Sections 2
and 3.2) also remains valid for dilute polymer solutions.

10. In this paper, we ignored any effects of polymer/solvent separation assuming
that polymer concentration c = const . It is well-known that an inhomogeneous polymer
distribution in a solution may be generated by a flow, for example, due to the stress–
concentration coupling (SCC) effect [32,40–42]. This effect is not relevant for the cylindrical
thread where the stress is uniform, so the concentration is uniform as well. Moreover,
while in principle, the SCC effect is present in the entrance zone, it is very weak there:
in fact, we argued (cf. Section 2) that polymer chains are extended along the streamlines
which are curved in the entrance zone. This curvature generally leads to a net elastic force
perpendicular to the streamline, f⊥, acting on an internal part of the chain, f⊥ ∼ fel R/a,
where R is the chain length, 1/a is the typical streamline curvature, and fel = ∂Fel/∂R is
the elastic tension of the chain (cf. Equation (9)). The force, f⊥, leads to the perpendicular
velocity, v⊥, of the chain relative to the solvent, v⊥ ∼ (R/τ)(R/a). The typical time
the chain spends in the entrance zone is t ∼ a/v, so its typical lateral displacement is
u⊥ ∼ v⊥t ∼ (R/τ)(R/v). The relative concentration change due to this displacement
is ∼ u⊥/a ∼ R2/(avτ) ∼ R2/(aL f ), where we recalled that v ∼ L f ε̇ ∼ L f /τ. Taking
also into account that R � a � L f , we find that u⊥/a � 1, so the SCC effect is indeed
negligible and c ' const in the system we considered.

11. The polymer stress tensor defined in Equation (8), with the conditions specified
before Equation (10), can be written as:

σ
p
αβ ' 3

cT
N2b2

s

〈
RαRβ

〉
(76)

Its rate-of-change prescribed by the Oldroyd-B model can be expressed in terms of the
upper convective derivative:

∇p
σαβ= dσ

p
αβ/dt− vα,γσ

p
γβ − σ

p
αγvβ,γ (77)

as

τ
∇p
σαβ= −σ

p
αβ + δαβcT/N (78)

(here, d/dt ≡ ∂/∂t + v · ∇ is the full rate-of-change referred to a moving physical element
of the fluid). The above equation is equivalent to the standard Oldroyd-B equation (see,
e.g., Equation (2.2) in ref. [12]). (Note that σ

p
αβ here is the full polymer stress, while

the polymer stress σ(p) in the standard Oldroyd-B model does not include the isotropic
equilibrium polymer stress contribution δαβcT/N, so σ

p
αβ = σ(p)αβ + δαβcT/N.)

To further simplify the equations, we took into account that, in the thread (and,
in particular, near its mid-point), all the chains are strongly stretched in a similar way along
the filament axis (z-axis). Therefore, the polymer stress tensor there must be dominated
by a single eigenvalue corresponding to an eigenvector R parallel to this axis, as argued
around Equation (10):

σ
p
αβ ' 3

cT
N2b2

s
RαRβ (79)

The prefactor in the above equation is such that it makes sure that |R| is equal to the root-
mean-square (rms) end-to-end distance of polymer chains in a fluid element. Equations (77)
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and (78) then ensure that if Equation (79) is valid at some point (note that Equations (76)
and (79) together are equivalent to Equation (10)), it will be also valid at all the points
downstream (as long as the polymer chains remain strongly stretched in a single direction),
with vector R changing according to

dRα

dt
= vα,βRβ −

1
τp

Rα (80)

where τp = 2τ. To derive Equation (80), we neglected the second term in the rhs of
Equation (78): this term is small because |σp| � cT/N since the polymer (the dumbbell) is
strongly stretched.

In the case of a steady flow, it is enough to know that Equation (10) is applicable in a
cross-section of the thread: then, it must also be valid in the whole volume downstream (as
long as the eigenvalue of the tensor σp associated with the eigenvector R remains strongly
dominating). Note also that (again for a steady flow) the full rate of change of velocity is:

dvα

dt
= vα,βvβ (81)

Interestingly, Equations (80) and (81) show that if R = Bv at some point at t = 0, the two
vectors remain parallel at all points downstream (along the streamline which includes the
initial point): R = B(t)v with B(t) = B(0) exp(−t/τp). The validity of this statement can
be demonstrated simply by substitution of the solution, R = B(t)v, in Equation (80) to
make sure that this equation is satisfied using Equation (81).

5. Summary

We studied the thinning dynamics of a liquid bridge containing long flexible polymer
chains in the viscoelastic (elasto-capillary) regime where the thread diameter decreases
according to the classical exponential law and the chains are highly stretched with respect
to their equilibrium coil size, so that the polymer stress tensor can be approximated by a
vector dyad, σ

p
αβ ∝ RαRβ. It is shown that the liquid flow in the transition zone between

the thread and a large end-droplet can be considered as quasi-stationary and that the time
spent by a polymer chain in this zone is much shorter than the polymer relaxation time τ.
Moreover, it is rigorously demonstrated based on the full Oldroyd-B equations (cf. item
11 of the Discussion) that if the polymer stress tensor in a material element is a vector
dyad initially, it will remain a dyad provided that the polymer relaxation time is very long,
τ → ∞. This statement is valid for any flow, whether it is irrotational or not, steady or
not, and for any initial orientation of R. If, in addition, the flow is steady and initially the
polymer end-to-end vector R is parallel to the velocity v, then R will stay parallel to v and
proportional to it at all points down the streamline. The validity of Equation (17) in the
transition zone is justified this way.

Using the Oldroyd-B model in the transition zone, we established a general relation
between the pressure and the flow velocity for the case of negligible solvent viscosity ηs.
The relation says that the excess pressure is proportional to the square of velocity. Using
this relation (termed the anti-Bernoulli law) and the axial symmetry of the flow, we also
found that the flow must be irrotational. These results allow us to obtain the flow field
and the free surface shape in the transition zone using an obvious electrostatic analogy
(cf. Figure 3). The obtained surface profile is in good agreement with asymptotically exact
Equations (42) and (40) and with recent numerical results for a similar model [12] obtained
with a different theoretical approach (cf. Figure 8).

Using the developed theory, we show that the ratio of the polymer normal stress
difference σp to the capillary pressure p0 in the thread is X = σp/p0 = 2 in the elasto-
capillary regime if the polymer relaxation time τ is sufficiently long (more precisely, when
both capillary numbers, Cn and Ec, are small, cf. Equations (71) and (75)), which is in
agreement with recent theoretical studies [11,12]. Furthermore, it is also proven that σp
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is uniform in a cross-section of the thread, σp = const , in the limit ηs → 0 or for a long
polymer relaxation time, τ → ∞.

The proposed theory (including the anti-Bernoulli law, cf. Equation (57)) is also general-
ized to account for the case of polymer chains with finite extensibility (the FENE-P dumbbell
model). It shows (cf. Section 3) that the thread thinning turns significantly faster than
the classical exponential law, i.e., Equation (12), if the degree of chain stretching s = R/L
exceeds s ∼ 0.4. In this regime, the maximum flow velocity v0 considerably increases with
respect to the classical prediction v0 = L f /(3τ), while the ratio X = σp/p0 decreases down
to X ' 1.

The developed theory paves the way to consider other flow regimes (such as a flow out
of a droplet into a filament) and other rheological effects, for example, the effects of solvent
viscosity ηs or of an increasing filament length L f for the capillary thinning dynamics. We
expect that the exponential thinning law, Equation (12), should be significantly modified if
ηs/τ & γ/L f (i.e., Cn & 1). In this regime, the solvent viscosity ηs must be very important
for the transition regions near the thread ends. Such effect was considered to some extent
based on the Onsager variational principle [11,37]. However, the effect of ηs on the flow
field in the transition regions was not analyzed in these studies. This effect could be a
subject of a separate publication.
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