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Abstract: Thermal residual strains/stresses cause several defects in hybrid structures and various
studies have reported the reduction of residual strain. This paper describes a method for reducing
thermal residual strains/stresses in metal-CFRP-metal hybrid tubes (MCMHT). The proposed axial
preload tool provides two ways to reduce the thermal residual strains/stresses during the co-cure
bonding process: pre-compressing of the metal layers and pre-stretching of the unidirectional carbon
fiber reinforced polymer (CFRP) layers. An online measurement technique with embedded optical
fiber Bragg grating (FBG) sensors is presented. Thermal residual strains are evaluated based on
classical lamination theory with the assumption of plane stress. The theoretical calculations and
measurement results agree well. Furthermore, the dynamic characteristics of the MCMHTs are tested.
The results show that the reduction of residual strain increases the natural frequency of the MCMHT,
but is detrimental to the damping capability of the MCMHT, which imply that the intrinsic properties
of the metal-composite hybrid structure can be modified by the proposed axial preload tool.

Keywords: metal-composite hybrid structure; residual strain; dynamic characteristic; optical fiber
sensors; metal-CFRP-metal hybrid tube

1. Introduction

As a special hybrid structure, sandwich structure is formed by two thin, stiff, strong
faces, such as metal or fiber-reinforced polymer (FRP) composites, with a lightweight
core material, such as foam, honeycomb, FRP composites, balsa, etc. For meeting the
high-quality needs of modern industry, it combines material science, functional design,
intelligent sensing, and integrated manufacturing into an interdisciplinary concept [1,2].
The three-layered metal-FRP-metal sandwich structure has the potential for lightweight
and high strength, vibration, and noise reduction in the automotive, rail transportation,
marine, and aerospace industries. This metal-composite hybrid structure combines the
superior durability of metals with the attractive properties of FRP composites, such as
lightweight, high specific strength and stiffness, good damping capacity, and tailorable
ability [3].

Many articles about metal-composite hybrid structures study theoretically and ex-
perimentally concerning connection performance between the metal parts and FRP com-
posites [1,4], mechanical properties [5,6], impact resistance [7,8], durability [9,10], machin-
ability [11,12], energy harvesting [13], etc. However, most of the research is conducted
on plate and beam structures, and only a few papers refer to the circular tube with metal-
FRP walls [14–16] and few papers are reported for square tube with metal-FRP-metal
sandwich walls due to difficult fabrication. Meanwhile, there are a limited number of
articles concerning the thermal residual strains/stresses in metal-composite hybrid struc-
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tures. Therefore, this important issue still requires more understanding and knowledge,
especially for complex structural components such as the metal-CFRP-metal hybrid tube.

The thermal residual strains/stresses in metal-composite hybrid structures are in-
evitably generated during the manufacturing process. The most important manufacturing
process factors include differences in elastic properties and coefficients of the thermal
expansion (CTE) of the FRP and metal layers, the cure cycle, and the tool-part interaction.
The thermal residual strains/stresses cause several defects in hybrid structures such as
transverse cracking and delamination, decrease the fatigue performance and dimensional
accuracy, reduce the structure’s strength and modulus, and affect the natural frequencies
and flexural stiffness [17]. Various studies have reported the reduction of residual strain,
including changing the material composition of the hybrid structure [18], modifying the
curing cycle [19–23], using special tools [24–26], post-stretching [27], microwave curing
process [28,29], etc. The axial preload tool proposed in this paper for residual strain reduc-
tion targets hybrid structures based on unidirectional CFRP composite. The measurement
methods can be divided into three categories: non-destructive, semi-destructive, and
destructive [30]. As a non-destructive measurement method, the FBG sensor is used to
monitor residual strain development during cure processing because it is small in diameter,
precise, stable, easy integration, and anti-interference [31]. In this paper, the MCMHT with
sandwich walls based on steel skins and unidirectional CFRP core is proposed and fabri-
cated. The axial preload tool is proposed to reduce the thermal residual strains/stresses
during the co-cure bonding process by pre-compressing of the metal layers or pre-stretching
of the CFRP layers. The analytical model for evaluation of thermal residual strains is pro-
posed based on classical lamination theory. The thermal residual strains are measured
in real-time by the embedded FBG sensors. The modal testing results show the intrinsic
properties of the metal-composite hybrid structure can be modified by the proposed axial
preload tool.

2. Experimental Procedure
2.1. Material and Structure of the MCMHT

As shown in Figure 1, the MCMHT, with dimensions of 50 mm × 50 mm × 400 mm,
is composed of an internal steel square tube, a square layer of unidirectional CFRP core,
and two orthogonal steel plates. The unidirectional CFRP core in this paper consists of
10 layers of USN 10000/T300 prepreg from the Weihai Guangwei composites company
with dimensions of 460 mm × 1000 mm × 0.1 mm. The material of the steel square tube
is AISI 1045 based on the American Iron and Steel Institute (AISI) grade system. Material
properties of the unidirectional CFRP prepreg and the steel square tube are listed in Table 1.
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Table 1. Material properties of the unidirectional CFRP prepreg and the steel square tube.

Material Properties USN 10000/T300 Prepreg AISI 1045

Longitudinal modulus, E1 (GPa) 137 200
Transverse modulus, E2 (GPa) 9 200

Shear modulus, G12 (GPa) 3.78 80
Major Poisson’s ratio, ν12 0.28 0.29

Longitudinal CTE, α1 (10−6/◦C) −0.5 11
Transverse CTE, α2 (10−6/◦C) 27 11

Density (g/cm3) 1.76 7.85

2.2. Fabrication Method of the MCMHT with the Axial Preload Tool

The detailed fabrication processes of the MCMHT with the axial preload tool are
as follows: (1) manufacturing the internal steel square tube and orthogonal steel plates,
and the metal surfaces need to be roughened with wire wheels to increase the interfacial
adhesive strength between the metal plate and the prepreg. Finally, metal surfaces are
degreased and cleaned with acetone [32,33]. (2) Wrapping 5 unidirectional CFRP prepregs
on the internal steel square tube by hand layup, and the fiber direction of the unidirectional
prepreg is oriented in line with the axis of the internal steel square tube. (3) Placing the FBG
strain sensor (FBGSS) in the middle of the face of the CFRP layers, and the FBG temperature
sensor (FBGTS) placed nearby can be used for temperature compensation. The two optical
fiber sensors are protected by a Teflon tube in the egress location. (4) Wrapping 5 other
unidirectional CFRP prepregs, in the same manner as step 2, to make the total prepreg layers
of 1 mm thickness. (5) Covering the wrapped internal steel square tube and sensors with the
two orthogonal steel plates, which compose of an external steel square tube. (6) Clamping
the external steel square tube with orthogonal clamps and screws at both ends to ensure
enough contact between the steel-CFRP-steel sandwich walls for effective co-cure bonding.
The MCMHT is assembled with [St/010/St] symmetric tacking sequences. (7) Installing the
axial preload tool to reduce the thermal residual strains/stresses by pre-compressing of
the metal layers or pre-stretching of the CFRP layers. Because of the fastening of the CFRP
layers at the end by the end caps and orthogonal clamps, and the design of the threaded
screw motion and thrust bearing, the preload tool can apply compressive forces to the
metal layers or tensile forces to the CFRP layers by rotating the handwheel. The assembly
schematic of the MCMHT with the axial preload tool is shown in Figure 2. Two MCMHTs
are fabricated in this paper, one of which is pre-stretched in the CFRP layers with 4 mm, as
shown in Figure 2b.

The co-cure experimental setup for the MCMHT with the axial preload tool is shown
in Figure 3. The two MCMHTs are put in the high-low temperature oven. A standard
K-type thermocouple is fixed on the surface of each MCMHT with thermally conductive
adhesive. Both signal wires of FBGs and thermocouples are fed through a specially reserved
sealing hole in the oven wall and connected to the FBG interrogator and the thermocouple
temperature indicator. The computer is used to record the Bragg wavelength shifts of FBGs
by the cable connected to the FBG interrogator. The detailed experimental conditions are
listed in Table 2.

For the fabrication of the co-cure bonding of MCMHTs with the axial preload tool,
the manufacturer’s recommended cure cycle is used. The process is a typical curing cycle
for thin CFRP/epoxy composite and is characterized by a heat-up ramp and dwell stages.
The temperature is enhanced to the cure temperature (120 ◦C) in 1.5 h and held for 1.5 h.
Finally, the MCMHTs are cooled to room temperature. During those stages, the adhesive
bonding between the unidirectional CFRP prepregs and internal/external steel square tube
is realized by the prepreg’s resin. During the cooling stage, thermal residual strains/stresses
appear due to the different CTE between the steel and the composite.
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Figure 2. Structure of the MCMHT with the axial preload tool: (a) assembly schematic; (b) real
fabricated MCMHTs.
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Table 2. The detailed experimental conditions.

Experimental Condition MCMHT without
Pre-Stretching

MCMHT with
Pre-Stretching

Material Unidirectional CFRP prepreg and AISI 1045
Curing equipment The high-low temperature oven

Sensor FBGTS1 and FBGSS1 FBGTS2 and FBGSS2
Axial preload tool Without pre-stretching With pre-stretching of 4 mm

2.3. Measurement of Strains through Optical Fiber Sensors
2.3.1. Sensing Principle of FBG Sensor

The FBG is composed of a periodic distribution of the refractive index, which is
made by ultraviolet exposure in the optical fiber core. When an incident broadband light
passes through an FBG, a narrow-band light with a particular wavelength, called a Bragg
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wavelength, is reflected. The Bragg wavelength, λB, satisfies the Bragg scattering condition.
It is expressed by the following equation [34]:

λB = 2·ne f f ·Λ, (1)

The value of the Bragg wavelength depends on the effective refractive index of the
fiber core, ne f f , and the grating period, Λ. However, when the FBG is subjected to axial
strain ε or temperature changes ∆T, both the grating period and the effective refractive
index change, and then result in the Bragg wavelength shift, ∆λB. The Bragg wavelength
variation which is sensitive to strain and temperature simultaneously can be expressed as:

∆λB = λB(1 − Pe)ε + λB(α f + ξ)∆T = Kεε + KT∆T, (2)

where Pe, α f , ξ are the effective photo-elastic coefficients, the thermal expansion coefficients,
and the thermo-optic coefficients, respectively, and Kε, KT are the strain sensitivity con-
stants and the temperature sensitivity constants, respectively. The strain and temperature
sensitivity constant of FBG sensors depend on the type of fibers. As Pe has a typical value
of 0.22 for fused silica [35], Kε is 1.2 pm/µε in this paper without calibration for an FBG of a
central wavelength of 1547 nm. However, KT requires a calibration procedure because FBG
exhibits linear thermal-optic behavior only over a certain temperature range. The detailed
calibration procedure can be seen in the next section.

According to Equation (2), it can be found that the changes of FBG wavelength are pro-
portional to axial strain and temperature. As consequence, a single FBG cannot avoid strain-
temperature cross-sensitivity, as both strain and temperature induce a Bragg wavelength
shift. Several techniques to achieve such discrimination are available in the literature [36].
In this paper, two separate FBG sensors are embedded into a structure to avoid FBG cross-
sensitivity. The FBGTS is a 10 mm long FBG encapsulated in a stainless-steel tube as shown
in Figure 4. Considering a normal optical fiber with an outer diameter of 0.125 mm, the
inner and outer diameters of the stainless-steel tube are 0.2 mm and 0.4 mm: as small as
possible to avoid affecting hybrid structural integrity. As consequence, the FBGTS only
has relations with the temperature change theoretically. Therefore, Equation (2) can be
simplified as [37]:

∆λB1 = KT1∆T, (3)
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The FBGSS is a bare FBG with no treatment and is affected by axial strain and tem-
perature. In this paper, the FBGTS is placed near to the FBGSS for the same temperature
changes. Then the axial strain can be obtained from the measured wavelength shift by
combining Equation (2) with Equation (3) [37].

ε = ∆λB/Kε − (∆λB1KT)/(KT1Kε), (4)

2.3.2. Temperature Calibration

Four FBGs (two FBGTSs and two FBGSSs) and a standard K-type thermocouple are
fixed on an aluminum plate with a thermally conductive adhesive in an oven. It is ensured
that the FBGs are in strain-free condition, so they respond to temperature change only. The
Bragg wavelength shifts of FBGs are monitored by an FBG interrogator with a minimum
resolution of 1 pm and a maximum sampling frequency of 4 kHz. The reliability of the
encapsulated FBGTS must be confirmed before the calibration procedure. When the two
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FBGTSs are subjected to axial load at room temperature, no obvious wavelength shift is
observed, so the two FBGTSs are considered as in strain-free condition. Both signal wires of
FBGs and thermocouples are fed through the sealing strip of the oven door and connected to
the FBG interrogator and the thermocouple temperature indicator. As the oven temperature
is uniformly increased from 25 ◦C–200 ◦C, the results of the Bragg wavelength shifts are
recorded by the computer. From the linear fitting results, the initial central wavelengths KT
of the Four FBGs are listed in Table 3.

Table 3. The temperature sensitivity constants of the four FBGs.

FBG Initial Central
Wavelength/nm KT/pm/◦C

Fitting Linear
Correlation
Coefficient

FBGTS1 1546.914 11.80 99.95%
FBGTS2 1546.860 11.84 99.91%
FBGSS1 1537.041 11.20 99.84%
FBGSS2 1546.936 11.07 99.82%

2.4. Experimental Setup of Modal Testing

Modal testing is performed to study the dynamic characteristics of the MCMHTs with
different thermal residual strain states under vibrational excitation. According to the exper-
imental equipment, as shown in Figure 5, the MCMHT with pre-stretching is suspended
to emulate the free–free boundary. For comparison, the same experiment is done for the
MCMHT without pre-stretching. A force transducer connected to the hammer is used to
measure the force history of vibrations of the MCMHT caused by an impact hammer. With an
accelerometer bonded on the surface, the acceleration response of the MCMHT is detected in
a similar way. The excitation and response signals are subsequently acquired and analyzed by
the LMS analysis system developed by Siemens company. Based on the obtained frequency
response function (FRF), the modal parameters, including the first natural frequencies and
damping ratio, can be processed by the modal analysis module. In order to obtain relatively
accurate results, each MCMHT is measured with 7 excitation points along its length and each
excitation point is applied 3 times to obtain the average FRF.
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3. Evaluation of Thermal Residual Strains Based on Classical Lamination Theory

The analytical model considers thermal residual strains produced only during the
cooling phase stage, based on the following assumptions [38]: (1) the CFRP layers are
plane stresses; (2) each lamina has a unique and linearly elastic deformation; (3) perfect
bonding occurs between layers without gaps, debonding and other defects. Classical
lamination theory is applied to predict the laminate properties of orthotropic continuous
fiber laminated composites.
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3.1. Material Properties of the Laminate with Arbitrary Lamina Orientation Angle

The stiffness and transformation matrices for predicting the engineering constants of
the CFRP layers are expressed as follows [39]. The stiffness matrix [Q] and transformation
matrix [T] are:

[Q] =


E1

1−ν12v21

v12E2
1−ν12v21

0
v21E1

1−ν12v21

E2
1−v12v21

0
0 0 G12

, (5)

[T] =

 cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

, (6)

The stiffness for angled lamina is:

[Q] = [T]
−1

[Q]

1 0 0
0 1 0
0 0 2

[T], (7)

where E1, E2, G12, ν12, v21, θ represent longitudinal Young’s modulus, transverse Young’s
modulus, shear modulus, major Poisson’s ratio, minor Poisson’s ratio, and lamina orienta-
tion angle, respectively.

The extensional stiffnesses matrix [A], strain-curvature coupling stiffness matrix [B],
and bending stiffness matrix [D] for laminate are given by:

[A] = ∑N
k=1 (Qij)k

(zk − zk−1) = ∑N
k=1 (Qij)k

tk, , (8)

[B] =
1
2 ∑N

k=1(Cij)k(z2
k − z2

k−1) = ∑N
k=1(Cij)ktkzk, (9)

[D] =
1
3 ∑N

k=1(Cij)k(z3
k − z3

k−1) = ∑N
k=1(Cij)k(tkz−2

k +
t3
k

12
), (10)

where zk and tk represent the vertical position of the kth lamina from the mid-plane and
thickness of the kth lamina, respectively. N represents the total number of layers of the
laminate. The subscript i, j = 1, 2, . . . , 6, whose meaning can be found in any textbook of
composite mechanics.

For symmetric laminate, the effective longitudinal Young’s modulus of the laminate
Ex, the effective transverse Young’s modulus of the laminate Ey, the effective laminate
in-plane shear modulus Gxy, and the effective laminate longitudinal Poisson’s ratio νxy, are
defined as:

Ex =
σx

ε0
x
=

A11 A22 − A12
2

t A22
, (11)

Ey =
σy

ε0
y
=

A11 A22 − A12
2

t A11
, (12)

Gxy =
τxy

Y0
xy

=
A66

t
, (13)

νxy =
A12

A22
, (14)

νyx =
A12

A11
, (15)

where t represents the thickness of the laminate.



Polymers 2022, 14, 4368 8 of 12

3.2. Strains in Metal-CFRP-Metal Hybrid Structure

Figure 6 is the evaluation of thermal residual strains in metal-CFRP-metal hybrid
structure after the co-cure bonding process. Figure 6a represents that no strain appears
in the dwell stage except for the pre-stretching strain εp. Figure 6b shows an ideal state
where there is no interface interaction between the metal and CFRP layers. εt

m and εt
c

represent the thermal strain in the metal layer and the CFRP layer, respectively. As shown
in Figure 6c, εr

m and εr
c represent the thermal residual strain in the metal layer and the CFRP

layer, respectively.
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Based on the unique deformation, total strains of the two materials, which are composed
of pre-stretching strain, thermal residual strain, and thermal strain, can be described as:

εr
m + εt

m = εp + εr
c + εt

c, (16)

Taking into account the isotropic metal layer and the anisotropic CFRP layer, the above
equation can be expressed as:[

εm]+[αm]∆T =
[
εp
]
+ [εc]+[αc]∆T, (17)

where [εm] =

[
εm
εm

]
,
[
εp
]
=

[
εp1
εp2

]
, [εc] =

[
εc1
εc2

]
, [αm] =

[
αm
αm

]
and [αc] =

[
α1 cos2 θ + α2 sin2 θ

α1 sin2 θ + α2 cos2 θ

]
.

In which εm, εc1, εc2 represent the strains of the steel, and CFRP layer in the axial and transverse
directions, respectively. εp1, εp2 represent the pre-stretching strains of the CFRP layer in the axial and
transverse directions, respectively. αm, αc1, αc2 denote the CTEs of steel, and CFRP layers in the axial
and transverse direction, respectively. ∆T denotes the temperature difference at different phases.

According to the force equilibrium equation from the mechanics of materials, residual strains in
the MCMHT can be described as:

AmEm[εm]+Ac[C][ εc] = 0, (18)

where [C] =

 Ex
1−νxyvyx

νxyEy
1−νxyvyx

vyxEx
1−νxyvyx

Ey
1−νxyvyx

.

In which Am and Ac represent the cross-sectional areas of steel and CFRP layers, respectively.
Em and [C] represent Young’s modulus of steel and the stiffness matrix of CFRP layers, respectively.

Then, from Equations (17) and (18), the thermal residual strain in the CFRP layers can be
expressed by:

[εc] = [A]−1([B] ∆T −
[
εp
]
), (19)
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where [A] =

1 + Ex Ac
Em Am(1−νxyvyx)

νxyEy Ac

Em Am(1−νxyvyx)
vyxEx Ac

Em Am(1−νxyvyx)
1 + Ey Ac

Em Am(1−νxyvyx)

 and [B] = [αs]− [αc].

4. Measurement Results and Discussion
4.1. Comparison of Theoretical Calculation with Measurement by the FBGSS

The plot of temperature and strain history for the MCMHTs with and without pre-stretching
during the co-cure bonding process is given in Figure 7. Simultaneous measurements of temperatures
and strains during the co-cure bonding process are performed by the FBG sensors in real-time. It can
be observed that the tendency of the temperature and strain measured for the MCMHTs with and
without pre-stretching is consistent. The temperature measured by the FBGTS has good agreement
with the cure cycle applied by the high-low temperature oven.
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the co-cure bonding process.

The trend of strain history is also the same for the two MCMHTs, but their values are slightly
different due to the pre-stretching strain. The residual strains of the CFRP layers transform from
tensile strains to compressive strains during the dwell and cooling stages. As one of the MCMHTs
is pre-stretched in the CFRP layers as shown in Figure 2b, the pre-stretching strain in this case is
100 µε, taking into account the slippage between the CFRP layers and the axial preload tool. Table 4
reports the comparison of the residual strains for the two MCMHTs obtained by the FBGSS and
theoretical calculation. Considering that the thermal tensile strain is 30 µε, it is observed that the
residual compression strains for the MCMHT reduce from 810 µε to 720 µε, obtained by the FBGSS
through pre-stretching of the CFRP layers. Indeed, it can also be reduced by pre-compressing of
the metal layer because of the interaction between the CFRP and the metal. The important point is
that the axial preload tool proposed in this paper can be used either clockwise or counterclockwise
to achieve the pre-stretching of the CFRP layers or the pre-compressing of the metal layers. The
measured results and theoretical calculations verify that the residual strains of the MCMHT can be
modified by the axial preload tool. Furthermore, the residual strain can theoretically be eliminated by
suitable preloading.

Table 4. Comparison of the residual compression strains for the two MCMHTs obtained by the FBGSS
and theoretical calculation.

MCMHT by the FBGSS/µε by Theoretical
Calculation/µε Relative Difference

With pre-stretching 720 659.2 −8.4%
Without

pre-stretching 810 759.2 −6.2%
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4.2. The Dynamic Characteristics of the MCMHT
Acceleration FRFs of 7 excitation points for the MCMHTs with different thermal residual strain states

are processed by the LMS analysis system as shown in Figure 8. Dynamic characteristics of the MCMHTs
from the modal analysis module are given in Table 5. It is observed that the first natural frequency of the
MCMHT with pre-stretching is 5.2% higher than that without pre-stretching. Nevertheless, the damping
of the MCMHT with pre-stretching decrease by 11.5% compared to the MCMHT without pre-stretching.
The modal testing results imply that the reduction of residual strain increases the natural frequency of the
MCMHT, but is detrimental to the damping capability of the MCMHT.
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Table 5. Dynamic characteristics of the MCMHTs from the modal analysis module.

Characteristics without
Pre-Stretching

with
Pre-Stretching Relative Difference

Natural
frequency/Hz 1883 1980 5.2%

Damping ratio 0.96% 0.85% −11.5%

5. Conclusions
The axial preload tool is proposed to reduce the thermal residual strains/stresses during the

co-cure bonding process by pre-compressing of the metal layers or pre-stretching of the CFRP layers.
Residual strain determination by embedded optical fiber sensors in metal-composite hybrid structures
is presented. Thermal residual strain results obtained from FBG sensors are compared with those
obtained from theoretical calculations. Moreover, the dynamic characteristics of the MCMHTs with
different stress states are compared. For future work, the embedded FBG sensors can be used for
real-time structural health monitoring of composite structures, based on the multiplexing capability
of FBG sensing technology. For example, damage such as microcracks, delamination at interfaces, or
crushing of polymer matrix can reduce stiffness overall. By the embedded FBG sensors array, it is
possible to determine the initiation, size, and location of the damage. The following conclusions can
be drawn from the results obtained:

1. To reduce thermal residual strain, the proposed axial preload tool can apply compressive forces
to the metal layers or tensile forces to the CFRP layers by rotating the handwheel. This shows
the axial preload tool can change the strain state of the metal-composite hybrid structure;

2. Thermal residual strain of the metal-composite hybrid structure obtained from embedded
optical fiber sensors show good agreement with the theoretical calculation based on classic
laminate theory;

3. The modal testing results imply that the reduction of residual strain increases the natural
frequency of the metal-composite hybrid structure, but is detrimental to its damping capability.
This shows that the intrinsic properties of the metal-composite hybrid structure can be modified
by the proposed axial preload tool.
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