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1. Helfrich energy of steric interaction between neighboring components 

The free energy of steric interaction of neighboring basic components (spikes, loops, or petals) in 

Helfrich approximation is written as:  
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where di(l) is distance between neighboring basic components (Fig. S1); and integral is taken over their 

surface Sside.  

 

 

Figure S1. Schematic presentation of geometric relations: spike, loop and petal 

 

Hedgehog  

At uniform distribution of K spikes, the distance dH(l) between neighbors is:  
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where dh(0) is distance between spikes on the nanoparticle surface: 222 4)0( rKRdK    
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Helfrich free energy of interaction is:  
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, L>>R. (S2) 

 

Chamomile 

Within the framework of the proposed model (see Fig. S1), up to numerical factors, the interaction 

energy fster.c of chamomile loops at L>>R coincides with the expression (S2) 



 

Multipetal structure 

In case of symmetric position of K petals relative to an arbitrary equatorial line, the distance between 

them is:  
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where  dm(0)=2πR/K  is distance between petals at nanoparticle surface.  

Free energy fster.m  is  
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Taking into account that flat petals have surface area:
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we obtain eq. (12). 

 

2. Helfrich energy of aggregate bending 

In general, the Helfrick free energy of bending is written as:  
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where R1 and R2 are curvature radii; kc, k1 and kG are elastic spontaneous, mean and Gaussian kG bending 

moduli (kc>0; k1>0;  kG<0). 

 

Hedgehog 

For straight and long cylindrical spikes R1=r and R2=∞ , and free energy of bending is:  
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Chamomile 

Two characteristic curvatures of loop can be distinguished. The curvature of loop cross-section R1=r and 

curvature R2 of loops as a whole: )412( 22 KLRLY   

The surface area of loops is: YLrYSside /22   , the bending free energy is: 
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taken that  L=NMv/(Kr2)and neglecting terms ~1/N2  we obtain:  
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Multipetal structure 

With the accuracy adopted in these calculations, the free energy of the bending of the petals can be 

neglected [35]. 


