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Abstract: The effect of four lignocellulosic waste fillers on the thermal and mechanical properties
of biocomposites was investigated. Powdered licorice root, palm leaf, holm oak and willow fillers
were melt compounded with polypropylene at two different weight contents, i.e., 10 and 30, and
then injection molded. A commercially available maleated coupling agent was used to improve the
filler/matrix interfacial adhesion at 5 wt.%. Composites were subjected to chemical (FTIR-ATR),
thermal (TGA, DSC, DMA) and mechanical (tensile, bending and Charpy impact) analyses coupled
with a morphological investigation by scanning electron microscopy. Although similarities among
the different formulations were noted, holm oak fillers provided the best combination of thermal
and mechanical performance. In particular, at 30 wt.% content with coupling agent, this composite
formulation displayed remarkable increases in tensile strength and modulus, flexural strength and
modulus, of 28% and 110%, 58% and 111%, compared to neat PP, respectively. The results imply that
all these lignocellulosic waste fillers can be used successfully as raw materials for biocomposites,
with properties comparable to those featured by other natural fillers.

Keywords: lignocellulosic materials; polymer matrix composites; licorice root; palm leaf; holm oak;
willow; mechanical properties; thermal properties

1. Introduction

Lignocellulosic waste is widely available as the by-product of some industrial sec-
tors, such as furniture manufacturing, papermaking, or food production, but also as the
effect of some necessary operations aimed at the effective maintenance of environmental
sites, such as woods, forests, parks, etc. In most cases, the biomass obtained after these
procedures is neither compostable, nor can produce a significant amount of energy to
justify an incineration process, yet it may be considerably hygroscopic [1]. The EU directive
2008/98 suggests not to modify the hierarchy of waste disposal options, stating in practice
that, wherever possible, the use of this biomass in a productive system as a secondary
raw material needs to be attempted, for example in a wood replacement product, such as
particleboards (see e.g., [2]). However, a complete characterization of the material obtained
through the introduction of the lignocellulosic waste in a polymer matrix is necessary
to prove its suitability for the envisaged use [3]. The primary issue in this regard is the
compatibility between the hydrophobic matrix and the hydrophilic filler, and to obtain a
sufficient interfacial strength between the two phases.
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Maleated polypropylene (MAPP) is a compatibilized thermoplastic, normally added
to pure polypropylene (PP), which has been often used in combination with lignocellulosic
materials to produce polymer biocomposites [4]. The most common natural fibers have
been reported to be successfully introduced in MAPP, such as the case of hemp [5], jute [6],
flax [7], coir [8], in the latter case offering also to the fiber a possible penetration into the
automotive sector. In addition, MAPP also offered a sufficient compatibility with different
types of lignocellulosic waste. In particular, when using MAPP, composites including
lignocellulosic agricultural waste, such as sunflower husk, offered a much more effective
interfacial adhesion with the matrix, resulting in improved hardness and notched impact
strength to the composite [9]. Significant effects were also observed on the modification of
thermal degradation profile of the polymer via filling it with by-products, such as oil palm
empty fruit bunch (OPEFB), in which case a polypropylene waste matrix was selected [10].

In practical terms, MAPP was found to be adapted to fillers with the most different
chemical (cellulose, hemicellulose, lignin, etc.) composition and was able to extend the
profile of application of the lignocellulosic waste composites. Of course, this requires a
chemical, thermal and mechanical characterization of the fillers “as received” and of the
obtained composites.

In this work, a number of lignocellulosic waste types are comparatively considered
and characterized into their introduction in MAPP to evaluate their compatibility for use
in a semi-structural composite. They have been considered for their availability and their
different chemical characteristics to offer a wider perspective on their respective suitability
for use in thermoplastic composites. The potential for application of the different waste
elucidated so far in the literature has been quite limited. In particular, holm oak has
been considered as an alternative source for the production of cellulose pulp [11], willow
flour has been proposed as filler for polyethylene matrix [12] and poly(lactic acid) into
microcellular foam [13]. On the two remaining fillers, licorice root and palm oil waste, a
study concerning their characterization before and after introduction in a limited amount
into a poly(urethane-acrylate) (PUA) matrix has been carried out [14]. It is suggested that
for all of the fillers considered, working with MAPP would enable their use as the matrix
reinforcement in significant amounts, thus providing scope for further application.

2. Materials and Methods
2.1. Materials

Four different types of lignocellulosic waste were used in this study, namely willow
(W), holm oak (HO), palm leaf (P) and licorice root (L). These raw materials were sourced
locally considering urban waste and forestry materials available every day, as the most
common source of biomass. Licorice root was provided by Amarelli & Fallani, Rossano
Calabro, Italy. Biomass from neatening palm leaf from parks and inner-city areas was
provided by Ecoflora2 (Ardea, Italy). Willow and holm oak from marginal rural mountain
areas were collected under the supervision of the authors.

Polypropylene (PP) was supplied by Repsol (Milan, Italy) under the trade name of
ISPLEN PP094, while the coupling agent (CA) was a commercial product named Polybond®

3200 by Addivant Corporation (Danbury, CT, USA), which is a maleic anhydride modified
polypropylene homopolymer with a high maleic anhydride content in the range 0.8–1.2%.

2.2. Biomass Chemical Composition Analysis and Characterization

For the qualitative determination and chemical characterization of biomass compo-
nents, an initial Fourier Transform spectroscopic analysis in the MID-IR region was per-
formed, being a rapid and non-destructive technique. FTIR-ATR analysis was performed
with a Perkin-Elmer (Beaconsfield, UK) FTIR spectrometer Spectrum Two UATR, equipped
with ZnSe crystal. The measurements were performed in a 400–4000 cm−1 range at a
2 cm−1 resolution, 4 scans and processed by a Perkin-Elmer data manager. Measurements
were performed three times per sample.
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Lignocellulosic biomasses were characterized as total content and in Figure 1, the
overlap of the four different FTIR spectrums was reported. They are mostly composed
of lignin, hemicellulose, and cellulose, but there are small differences between the peak
proportions due to their structural complexity.
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Figure 1. FTIR-ATR overlap for Licorice Root (L, red), Palm Leaf (P, blue), Willow (W, green) and
Holm Oak (OH, black).

The major absorption peaks are chosen and shown (Figure 1): the -OH stretching
signified by very strong peaks at 3200–3500 cm−1, stretching of aliphatic –CH and –CH2
and –CH3, between 2800–3000 cm−1. The broad peak, very small in intensity, at around
1730 cm−1, shows a very low holocellulose to lignin ratio. The absorption peak at around
1620 cm−1 is characteristic of aromatic skeletal vibration associated to the out of plane
stretching of aromatic groups, the absorption peaks in the region from 950 to 1200 cm−1

are assigned to the –C–O stretching vibration in holocellulose, and the peak at 1420 cm−1 is
assigned to the –CH, –CH2 bending of aliphatic carbons. The quite strong peak at 1320 cm−1

is assigned to stretching and deformation vibrations of the –C–H group in the glucose unit
of cellulose structure [15].

Then, the chemical composition of the raw lignocellulosic flours was determined, and
expressed as the percentage content of lignin, α-cellulose, and hemicellulose, (see Table 1).
A minimum of three times testing were performed on each sample, and their average value
was calculated. This work was performed with the aim of finding a correlation, based
on the chemical composition of the different samples, with the mechanical properties of
the resulting composites. On the other side, it can be noticed that the markedly different
behavior, when limiting observations to the chemical composition, would only be expected
from palm leaf filler, which has a much lower amount of cellulose, whereas the three other
sources of biomass express comparable chemical composition. In contrast, the amount of
hemicellulose is almost the same for all biomasses. From overlapping, it is noticeable that
the IR spectrums of all samples provide significant evidence, including changes in chemical
arrangement, and functionalization.

Table 1. Fractions of cellulose, lignin, and hemicellulose in biomasses, as extracted.

Biomass Cellulose a (%) Lignin a (%) Hemicellulose a (%)

Palm Leaf b (P) 26 30 12
Licorice Root b (L) 44 12 15

Willow (W) 46 12 12
Holm Oak (HO) 40 13 14

a all % are expressed as enriched fractions. b These values were reported in our previous studies [15].
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Lignin extraction was carried out directly from biomass flours through a dissolving
method [16,17]. The remaining solid residue was washed with acetone to obtain separated
cellulose [18,19]. The last fraction, hemicellulose, was isolated by alkaline extraction [20,21].
The detailed methodology employed for the extraction of the different components is
reported in the Supplementary information provided in Appendix A.

2.3. Composite Processing

Composite materials were prepared using a two-step process, consisting of dry mixing
followed by melt compounding. Woody fillers were previously ground and reduced
to powder with a ball vibro-mill, Retzsch MM 400 (Retsch GmbH, Haan, Germany) for
size reduction and homogenization, with a 35 mL stainless steel chamber equipped with
stainless steel grinding balls with diameter of 20 mm. The grinding frequency for the
grinding process was 20 Hz for 15 min. Figure 2 shows the appearance of the fillers
after grinding.
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Figure 2. Appearance of ground lignocellulosic fillers.

Prior to extrusion, materials were dried overnight at 80 ◦C. A co-rotating twin screw
extruder (Thermo Scientific Process 11, Thermo Fisher Scientific, Waltham, MA, USA) was
used for melt compounding of the dry mixed blends. A decreasing temperature profile
with a maximum barrel temperature of 215 ◦C and a die temperature of 210 ◦C was used,
while the screw speed was kept at 150 rpm. The specimens for mechanical characterizations
were obtained by injection molding (Haake MiniJet II Pro, Thermo Fisher Scientific). The
molten material was transferred by a heated cylinder in the injection molding machine.
The mold was kept at 60 ◦C, while the loading cylinder was heated at 200 ◦C. The injection
procedure consisted of two steps: a first injection step at a pressure of 650 bar for 10 s, and
a post injection step at 200 bar for additional 10 s.

In this work, specimens have been manufactured according to ISO 178, ISO 179-2 and
ISO 527-2 for bending, Charpy impact, and tensile tests, respectively.

All of the composite formulations are listed in Table 2.

2.4. Characterization of Injection Molded Composites
2.4.1. Mechanical Testing

Tensile tests were performed according to ISO 527-2 on a Z010 universal testing
machine with a 10 kN load cell (Zwick/Roell, Ulm, Germany) in displacement control.
Tests were carried out at a rate of 10 mm/min with type 1 BA samples until fracture, and
the strain was measured with a contacting extensometer (gauge length = 30 mm). Five
replicates were performed on each formulation.

The same equipment was used for the three-point bending tests according to ISO 178,
at a rate of 5 mm/min and with a support span length of 64 mm. Strain was accurately
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measured with a displacement transducer in contact with the samples. Five replicates were
performed on each formulation.

ISO 179-2 was used as standard for notched (type A) Charpy impact tests in an
edgewise mode. A span of 62 mm was used, and tests were conducted on a CEAST/Instron
9340 (Pianezza, Italy) instrumented drop weight tower by using an impact velocity of
2.90 m/s. At least five replicates were performed on each formulation.

Table 2. List of PP-based composites.

Formulation PP (wt.%) CA (wt.%) Licorice Root (wt.%) Palm Leaf (wt.%) Willow (wt.%) Holm Oak (wt.%)

PP 100 - - - - -
PP_10L 90 - 10 - - -

PP_10L_CA 85 5 10 - - -
PP_30L 70 - 30 - - -

PP_30L_CA 65 5 30 - - -
PP_10P 90 - - 10 - -

PP_10P_CA 85 5 - 10 - -
PP_30P 70 - - 30 - -

PP_30P_CA 65 5 - 30 - -
PP_10HO 90 - - - - 10

PP_10HO_CA 85 5 - - - 10
PP_30HO 70 - - - - 30

PP_30HO_CA 65 5 - - - 30
PP_10W 90 - - - 10 -

PP_10W_CA 85 5 - - 10 -
PP_30W 70 - - - 30 -

PP_30W_CA 65 5 - - 30 -

2.4.2. Thermal Testing

A Setsys Evolution system by Setaram (Caluire, France) was used to determine the
thermal stability of composites by thermogravimetric analysis (TGA). Samples of around
40 mg were placed in an alumina pan and were analyzed in a nitrogen atmosphere from
25 ◦C to 800 ◦C with a heating rate of 10 ◦C/min.

A differential scanning calorimeter DSC 214 Polyma by Netzsch GmbH (Selb, Ger-
many) under a constant nitrogen flow of 50 mL/min was used to investigate the crystal-
lization and melting behavior of the different formulations. Samples of 9.0 to 10.0 mg were
placed in a concavus aluminum crucible with pierced lid and were analyzed according to
the following thermal program: heating from −40 ◦C to 220 ◦C (5 min hold), cooling to
−40 ◦C (10 min hold), and heating to 220 ◦C, all steps conducted with a rate of 10 ◦C/min.
The degree of crystallinity (Xc) of the samples was calculated according to Equation (1):

Xc (%) =
∆Hm

∆Hm0
× 100(

1 − w f

) , (1)

where ∆Hm is the experimental enthalpy of melting of the sample (J/g), ∆Hm0 the enthalpy
of melting for 100% crystalline PP (J/g) taken as 209 J/g [22], while wf is the weight fraction
of filler in the composite formulation.

Dynamic mechanical analysis (DMA) was performed in a three-point bending mode
on a DMA 242 E Artemis by Netzsch GmbH. Samples (60 × 10 × 4 mm) were subjected to
a heating rate of 2 ◦C/min from −100 ◦C up to 130 ◦C at a frequency of 1 Hz.

For all thermal characterizations, three replicates were performed on each formulation.

2.5. Morphological Characterization

The fracture surfaces of samples after tensile and Charpy impact tests were imaged
by a field-emission scanning electron microscope (FE-SEM) Mira3 by Tescan (Brno, Czech
Republic). Samples were sputter-coated with gold prior to analysis.
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3. Results
3.1. Filler Morphology and Thermal Stability

SEM analysis was used to image the morphology of the different natural fillers.
Figure 3 shows the SEM micrographs of the fillers at different magnifications.
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Figure 3. SEM micrographs of ground fillers (in parenthesis the corresponding magnification).

As can be seen, all lignocellulosic fillers after the milling process featured irregular
morphologies, consisting of long fibers, thinner fibers/fibrils, and non-fibrous materials
in the form of particulates. From SEM micrographs, the length and diameter of around
70 fillers for each waste material were measured to evaluate the average aspect ratio
(length/diameter). In all cases, it was found to be lower than 5, with licorice root displaying
a more refined structure compared to the other waste materials. The four different fillers
can be ranked in the following decreasing order concerning the average aspect ratio (in
parenthesis): licorice root (3.3) > palm leaf (2.9) > willow (2.7) > holm oak (2.3). The
reduced aspect ratio is expected to hinder the reinforcing efficiency of the fillers according
to Halpin-Tsai model and to the lower filler/matrix interfacial area available. In addition,
the occurrence of large particulates might introduce defect points instead of granting a
better distribution of the applied load as happens for high aspect ratio fibers [23].

Figure 4 shows typical thermogravimetric (TGA) and derivative thermogravimetric
(DTG) curves of the powdered lignocellulosic fillers.
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and (b) derivative of weight loss vs. temperature.

As widely discussed in the literature, the initial weight loss is attributed to the removal
of moisture content from the fillers [24], though it was higher in palm leaf compared to
the other fillers. The lignocellulosic fillers were not pre-dried before performing the TGA
analysis, and this explains the occurrence of this first mass loss at temperatures lower than
150 ◦C, where free water evaporates at a lower temperature while the bound water from
chemical bonds with the hydroxyl groups present in hemicellulose and cellulose evaporates
at higher temperatures [25]. The onset of thermal degradation, defined as the temperature
where 5 wt.% loss occurs, was significantly different from palm leaf compared to the other
types of lignocellulosic waste, as reported in Table 3.

Table 3. Thermal degradation parameters for the different natural fillers.

Lignocellulosic Filler Td5 (◦C) a Td10 (◦C) b Tmax (◦C) c

Palm leaf 254.4 ± 0.9 275.5 ± 0.8 335.4 ± 0.7
Licorice root 269.1 ± 1.1 295.9 ± 0.9 355.3 ± 1.1

Holm oak 262.1 ± 0.9 285.3 ± 1.2 358.5 ± 0.8
Willow 269.7 ± 0.7 289.8 ± 0.9 354.3 ± 1.2

a Temperature at 5% weight loss, b temperature at 10% weight loss, c temperature at maximum degradation rate.

The lower thermal stability of palm leaf was confirmed also with increasing tempera-
ture, with a maximum degradation temperature at 335 ◦C, around 20 ◦C lower than the
other fillers. All of these values are in line with those exhibited by other common natural
fibers [26]. After 250 ◦C, a sudden weight loss was observed, indicating the decomposition
of hemicellulose and glycosidic linkages of cellulose. When comparing the fillers, it is
worth noting that palm leaf filler featured two well-separated degradation peaks in the
range 250–350 ◦C [27], a first peak around 290 ◦C and a second peak at 355 ◦C, which can
be assigned to the thermal decomposition of hemicellulose and cellulose, respectively [28].

This behavior is different from that usually observed with other natural fillers [29–33],
which is more similar to that featured by holm oak, willow fillers, and to a lower degree, by
licorice root waste. The different intensity of the main cellulose peak degradation suggests a
lower cellulose content in palm leaf compared to the other fillers, as confirmed by chemical
analysis (Table 1). The high-temperature tail shown in Figure 4 is due to the degradation of
lignin [34], which resulted in a higher charred organic material residue for palm leaf with
respect to the other lignocellulosic fillers.

3.2. Thermal Properties of Injection Molded Composites

Thermogravimetric analysis provided information about the thermal stability of PP as
a function of an increasing number of natural fillers. The results of TGA and derivative of
the thermogravimetric analysis (dTG) for all composite formulations are shown in Figure 5.
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Average parameters for thermal degradation, such as onset temperature at 5% weight
loss (Td5), temperature at 10% weight loss (Td10), and maximum degradation temperature
(Tmax) are summarized in Table 4.

The thermal degradation of the neat PP starts at approximately 427 ◦C and reaches
its maximum at around 465 ◦C. As can be inferred from Figure 5 and Table 4, all of the
composite formulations feature an intermediate behavior between PP and natural fillers.
Regardless of filler type, the introduction of lignocellulosic fillers in neat polymer resulted
in a reduction in its thermal stability, a trend that increased with increasing amount of
filler. The PP weight loss occurred in a one-step degradation process from 420 to 500 ◦C, by
random scission and thermal depolymerization of weak sites of the PP main chains [35]. It
can be noted that the decomposition of composites is much more complicated, with a lower
onset temperature of decomposition in the range 200 ◦C to 360 ◦C due to the degradation
of hemicelluloses and cellulose [36]. The most thermally stable composite material was
the one incorporating holm oak waste, while the lowest thermal stability, particularly
evident at the maximum weight content, was displayed by composites featuring palm
waste as filler, thus confirming results reported in Table 3. The presence of coupling
agent was found not to affect the overall thermal degradation profile, but considering a
constant amount of filler, it resulted in a reduced thermal stability compared to untreated
formulations, except for licorice root filler. This result is in contrast with other studies,
where usually the use of a maleated compatibilizing agent improved the thermal stability
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of the composites, due to the improved interfacial adhesion and additional intermolecular
bonding through esterification reaction between hydroxyl groups of lignocellulosic fillers
and anhydride functional group of maleated PP [36]. However, it is not totally unexpected
to see a decrease in thermal stability, as it has been demonstrated elsewhere that the
amount of compatibilizing agent in a composite needs to be optimized depending on the
type of filler, and when used beyond this threshold, it might induce a dispersion effect
rather than a coupling effect at the filler/matrix interface [37,38]. This leaves room for
further improvements. Another important result is that the onset temperature of thermal
degradation is well above 200 ◦C for all composites, confirming the feasibility of their
production by extrusion and injection molding.

Table 4. Thermal parameters obtained from Figure 5.

Sample Td5 (◦C) Td10 (◦C) Tmax (◦C)

PP 423.7 ± 0.5 436.1 ± 0.6 464.8 ± 0.6
PP_10W 354.1 ± 0.9 407.5 ± 1.1 468.2 ± 0.9

PP_10W_CA 349.2 ± 1.2 399.7 ± 0.8 467.8 ± 1.3
PP_30W 324.4 ± 0.9 359.4 ± 0.6 468.3 ± 1.2

PP_30W_CA 306.6 ± 1.3 342.5 ± 0.9 469.3 ± 1.1
PP_10HO 389.3 ± 1.0 427.2 ± 0.8 466.8 ± 0.9

PP_10HO_CA 371.6 ± 1.2 422.5 ± 1.1 466.8 ± 0.7
PP_30HO 361.7 ± 1.2 419.0 ± 0.9 466.8 ± 1.3

PP_30HO_CA 317.2 ± 1.1 359.5 ± 1.3 466.5 ± 0.9
PP_10P 358.8 ± 0.9 424.9 ± 1.2 466.3 ± 1.4

PP_10P_CA 349.6 ± 0.7 421.5 ± 1.1 466.4 ± 1.2
PP_30P 321.8 ± 0.9 385.4 ± 0.9 468.1 ± 0.9

PP_30P_CA 299.1 ± 0.8 337.9 ± 0.8 469.4 ± 0.9
PP_10L 349.9 ± 1.2 402.1 ± 1.3 468.8 ± 1.3

PP_10L_CA 354.7 ± 1.3 408.7 ± 1.2 468.2 ± 0.9
PP_30L 312.5 ± 1.1 344.1 ± 1.4 472.3 ± 0.8

PP_30L_CA 308.9 ± 1.2 342.8 ± 1.3 473.2 ± 0.9

The thermal transitions of neat PP and its composites were evaluated by DSC, analyz-
ing the melting temperature (Tm), the crystallization temperature (Tc), and the enthalpy of
fusion, which was used for determining the crystallinity index (Xc) (Table 5). The thermo-
grams (not shown) obtained for the neat matrix and for all composites were conventional
and very similar to each other.

Table 5. Thermal properties of composites obtained from DSC analysis.

Sample Tc (◦C) Tm (◦C) Xc (%)

PP 116.6 ± 0.3 152.0 ± 0.3 36.3 ± 0.1
PP_10W 114.4 ± 0.6 150.3 ± 0.3 37.5 ± 0.3

PP_10W_CA 108.6 ± 0.4 149.5 ± 0.4 38.4 ± 0.2
PP_30W 108.1 ± 0.2 149.0 ± 0.4 42.5 ± 0.1

PP_30W_CA 107.5 ± 0.4 149.0 ± 0.6 40.0 ± 0.3
PP_10HO 115.8 ± 0.1 151.5 ± 0.3 40.3 ± 0.2

PP_10HO_CA 110.0 ± 0.4 149.1 ± 0.5 40.7 ± 0.2
PP_30HO 111.9 ± 0.8 150.4 ± 0.7 50.8 ± 0.5

PP_30HO_CA 108.1 ± 0.2 149.2 ± 0.3 44.3 ± 0.7
PP_10P 109.4 ± 0.6 149.2 ± 0.3 36.6 ± 0.5

PP_10P_CA 108.6 ± 0.1 149.0 ± 0.1 38.5 ± 0.2
PP_30P 107.1 ± 0.2 148.0 ± 0.4 44.6 ± 0.6

PP_30P_CA 109.7 ± 0.6 148.6 ± 0.6 39.6 ± 0.2
PP_10L 106.2 ± 0.3 148.2 ± 0.6 35.3 ± 0.3

PP_10L_CA 107.8 ± 0.3 149.4 ± 0.6 36.4 ± 0.3
PP_30L 107.0 ± 0.6 147.2 ± 0.5 31.5 ± 0.6

PP_30L_CA 108.0 ± 0.3 148.9 ± 0.2 33.4 ± 0.1
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The values of melting temperature and associated enthalpy were obtained from the
second heating scan while the crystallization temperature was calculated from the cooling
curve. The dynamic crystallization behavior did not highlight any positive effect of the
fillers on the crystallization kinetic of polypropylene. On the contrary, irrespective of
filler type, a decrease in the crystallization temperature was detected but with a very
limited modification of the perfection of matrix crystallites, which is usually ascribed to
the heterogeneous nucleation promoted by the presence of the lignocellulosic fillers, as
confirmed by the small variations in terms of melting temperature [39]. It is interesting
to note that, with the exception of the licorice root fibers, the crystallinity fraction of the
remaining composite formulations increased compared to the neat matrix, in contrast with
other lignocellulosic agricultural wastes [40–42]. In this regard, the best performance is
offered by holm oak fillers. In addition, the coupling agent played a role and provided the
fillers surface with chemical features responsible for nucleating the transcrystallinity [36],
without decreasing the regularity of the matrix molecular chains and corresponding packing
efficiency. It has been shown that maleated PP is mainly located at the interfacial region [43]
and the strong interaction between the lignocellulosic fillers and the matrix can provide
transcrystallinity effect [44]. With increasing filler content and presence of coupling agent,
a decrease in the degree of crystallinity was measured, though it remained higher than the
neat PP. This effect might be due to the presence of excessive density of nuclei induced
by the higher amount of filler/matrix interfacial area available, which restricts the crystal
growth around the fillers with the growing front impinging quickly with spherulites
nucleated in the bulk.

3.3. Dynamic Mechanical Behavior of Injection Molded Composites

DMA was used to assess the effect of filler species on the viscoelastic properties and
fiber/matrix interaction of composite formulations as a function of temperature. The results
are displayed in Figure 6 in the form of thermograms of the storage modulus (E’) and tanδ.
Table 6 lists the glass transition temperature (Tg) evaluated as tanδ peak, and the E’ values
at different temperatures.

Table 6. Glass transition temperature (Tg) and storage modulus values (E’) of PP-based composites
at different temperatures.

Sample Tg (◦C) E’@−50 ◦C
(MPa)

E’@0 ◦C
(MPa)

E’@25 ◦C
(MPa)

E’@50 ◦C
(MPa)

E’@80 ◦C
(MPa)

PP 3.2 ± 0.1 4380.2 ± 16.4 2330.5 ± 17.2 1262.8 ± 14.5 712.2 ± 14.1 298.4 ± 11.8
PP_10W −2.2 ± 0.1 4917.3 ± 13.4 2085.4 ± 9.7 1230.3 ± 12.4 739.8 ± 12.1 350.7 ± 12.6

PP_10W_CA −2.3 ± 0.1 4840.6 ± 20.1 2095.3 ± 11.1 1243.4 ± 10.8 752.3 ± 11.4 362.4 ± 11.9
PP_30W −0.4 ± 0.1 5399.4 ± 11.8 2609.1 ± 12.8 1614.8 ± 13.1 1023.8 ± 12.1 506.7 ± 12.1

PP_30W_CA −2.3 ± 0.1 5529.4 ± 12.1 2653.8 ± 11.4 1674.4 ± 12.1 1077.4 ± 11.4 554.8 ± 12.2
PP_10HO 2.7 ± 0.1 4785.7 ± 12.8 2420.7 ± 10.9 1342.4 ± 10.2 763.2 ± 11.1 361.4 ± 9.9

PP_10HO_CA 0.3 ± 0.1 4836.8 ± 13.1 2486.4 ± 12.8 1401.7 ± 13.1 800.9 ± 11.9 370.7 ± 11.4
PP_30HO 0.3 ± 0.1 4810.3 ± 14.7 2436.4 ± 11.4 1347.8 ± 13.9 785.6 ± 11.7 368.4 ± 12.2

PP_30HO_CA 0.4 ± 0.1 5136.4 ± 12.6 2656.3 ± 11.8 1596.2 ± 12.9 999.4 ± 10.9 510.4 ± 12.4
PP_10P 0.4 ± 0.1 4776.1 ± 11.1 2241.7 ± 10.8 1249.4 ± 13.4 736.8 ± 12.1 334.4 ± 11.9

PP_10P_CA 1.4 ± 0.1 4848.7 ± 10.8 2367.4 ± 11.7 1367.8 ± 12.1 814.7 ± 13.1 374.4 ± 12.9
PP_30P −0.6 ± 0.1 4953.1 ± 11.7 2371.4 ± 12.8 1378.1 ± 10.9 828.4 ± 12.1 396.5 ± 11.9

PP_30P_CA −0.5 ± 0.1 5394.1 ± 11.9 2688.4 ± 12.6 1630.7 ± 11.9 1018.7 ± 13.4 512.4 ± 10.9
PP_10L −0.5 ± 0.1 4627.4 ± 10.8 2051.8 ± 9.9 1168.4 ± 11.7 698.4 ± 10.8 324.4 ± 11.7

PP_10L_CA −0.5 ± 0.1 4890.4 ± 11.9 2150.3 ± 10.9 1231.4 ± 12.7 756.4 ± 11.1 346.8 ± 12.3
PP_30L −2.6 ± 0.1 6152.3 ± 11.2 3023.8 ± 11.4 1902.8 ± 10.9 1203.7 ± 12.8 597.9 ± 12.6

PP_30L_CA −1.4 ± 0.1 6680.7 ± 12.7 3444.9 ± 12.6 2302.7 ± 11.9 1504.2 ± 13.1 804.7 ± 11.9
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With increasing temperature, the storage modulus values of neat PP and composite
formulations decreased as the matrix softened, but the reduction in matrix modulus in
composites was partially compensated by the stiffness of the fillers, especially at filler
amount of 30 wt.%. All of the fillers provided higher values of E’ compared to untreated
PP, with the best performance offered by licorice root fillers, suggesting that the degree
of crystallinity is less important than the filler/matrix interfacial adhesion in governing
the evolution of storage modulus with temperature [45]. This is supported by the highest
level attained by the storage modulus with the addition of coupling agent, in all composite
formulations. It is believed that the maleated polypropylene causes a strong interaction
between the fillers and PP matrix, likely creating a stronger and stiffer interfacial layer.

The tan δ curve of neat PP is usually characterized by three relaxations: the α transition
around 100 ◦C, the β transition around 10 ◦C, and the γ transition around −80 ◦C [46]. γ
transition, characterized by localized bond movements (bending and stretching) and side
chain movements, is not clearly defined in the thermograms of Figure 6, because it is very
close to the starting temperature of the DMA test. Indeed, two transitions were clearly
noted, one around 0 ◦C and the other around 80 ◦C. The peak close to 0 ◦C (β relaxation)
corresponds to the glass transition temperature of PP, where relaxation of unrestricted
amorphous PP chains occurs. The first characteristic for all of the investigated materials
is the lack of a significant change in the glass transition temperature. In fact, the main
relaxation peak occurs for all specimens in a quite narrow temperature range of 3–6 ◦C. This
small variation might be due to the plasticizing effect of moisture in composite samples
containing hydrophilic lignocellulosic fillers.

However, with increasing filler content, tan δ peak values dropped in filler/compatibilized
PP composites. The height and area under the tanδ curve indicate the total amount of energy
that can be dissipated by a material, therefore a large area points toward a high degree
of molecular mobility and higher damping properties. It is believed that for composite
samples, the reduction in peak area, particularly evident for formulations reinforced with
holm oak and palm leaf fillers, suggests a restricted mobility of PP molecules in the
relaxation process, due to the stronger filler/matrix interfacial adhesion [40,47,48]. In this
regard, the modification of PP matrix with the maleated coupling agent resulted in being
particularly effective. The α transition is linked to the relaxation of the rigid amorphous
PP chains in the crystalline phase [49], which can occur by a lamellar slip mechanism and
rotation in the crystalline phase [50]. In all composite samples, the α relaxation region
displayed a gradual decrease in the peak amplitude with increased amount of fillers and
coupling agent, suggesting that the lamellar movement in the crystalline phase is strongly
affected and hindered by the presence of the fillers, as observed in other studies [35,40,47].

3.4. Mechanical Properties of Injection Molded Composites

Tensile strength and modulus values of the composites (Figure 7) were within the
ranges of 19.9–32.8 MPa and 1.1–2.3 GPa, respectively, and compared favorably with those
found in the literature for other natural fillers, as summarized in Table 7.

The composite formulations displayed a macroscopic ductile behavior at 10 wt.%
of fillers, but this tendency was reduced by increasing filler content above 10 wt.% and
by adding the coupling agent, as can be seen in Figure 8. In all cases, for both non-
compatibilized and compatibilized systems, the Young’s modulus was enhanced compared
to neat PP, which is a quite common result in polymer matrix composites, as the stiff
lignocellulosic fillers are able to hinder the molecular mobility of polymer chains [47]. This
confirms the results from DMA tests. Apart from holm oak fillers, in non-compatibilized
formulations, a decrease in tensile strength with increasing filler content was noted, which is
ascribed to a lack of interfacial adhesion with the hydrophobic PP, only partially balanced by
an increase in crystallinity (Table 5). Indeed, licorice root fillers, characterized by the lowest
crystallinity fraction compared to the neat PP, featured the lowest tensile strength among all
configurations. This behavior has been observed in many other studies dealing with fossil-
based [42] and renewable polymer matrices [51–53]. Holm oak fillers featured a different
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trend, with an increase in tensile strength over the baseline even in non-compatibilized
composites, due to the higher crystallinity degree in the resulting formulations (Table 5).
The coupling agent proved to be effective for all four fillers investigated in the present
study, with the best performance offered by composites reinforced with holm oak and
willow fillers.
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Table 7. Summary of mechanical properties of polymer matrix composites reinforced with natu-
ral fillers.

Matrix Type Filler Type Coupling
Agent

Tensile
Modulus

(GPa)

Tensile
Strength

(MPa)

Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Filler
Content
(wt%)

Reference

PP Yerba mate no 0.8 22.5 39.4 2.2 30 [54]
PP (recycled) Yerba mate yes 0.6 23.7 35.4 1.8 30 [55]

PP Buckwheat husk no 1.6 18.5 - - 30 [47]
PP Wood flour no 2.5 26.0 - - 30 [47]
PP Buckwheat husk yes 1.6 29.0 - - 30 [47]
PP Wood flour yes 2.2 35.5 - - 30 [47]
PP Flax yes 1.1 27.5 49.5 1.7 30 [56]
PP Poplar yes 1.4 23.0 37.5 2.4 30 [57]
PP Rice husk yes 1.6 26.5 38.0 2.3 30 [57]
PP Wheat straw yes 1.5 27.0 42.0 2.5 30 [57]
PP Corn stalk no 3.7 26.1 - - 40 [58]
PP Corn stalk yes 3.8 38.5 - - 40 [58]
PP Microcrystalline cellulose no 2.4 32.0 37.5 1.6 20 [59]
PP Microcrystalline cellulose yes 2.7 42.0 42.5 1.6 20 [59]
PP Poplar yes 5.4 28.2 47.1 5.3 50 [60]
PP Hemp yes 2.7 32.0 49.5 1.8 30 [61]

The covalent bonding between the anhydride group and the hydroxyl groups of the
lignocellulosic fillers along with chain entanglement between maleated coupling agent
and PP chains are responsible for a sound filler/matrix interface and stress transfer [37,62].
The stronger interfacial adhesion is clearly visible in the SEM micrographs of the fracture
surfaces of composites after tensile tests, collected in Figures 9–16 for the different fillers.
As can be seen in Figures 9, 11, 13 and 15, a ductile failure at the microscopic scale governs
the fracture surface of non-compatibilized systems, but it shows more brittle features after
the addition of coupling agent which hinders the chains mobility. At the same time, a
poor filler/matrix interfacial adhesion in all systems has been detected, characterized
by filler pull-out and clear debonding at the filler/matrix interface, with fillers barely
wetted by the matrix. In compatibilized systems (Figures 10, 12, 14 and 16), the enhanced
interfacial adhesion is well-supported by fillers embedded and wetted by the PP matrix
with negligible evidence of gaps at the filler/matrix interface.

The flexural properties displayed similar trends to those of the tensile ones (Figure 17),
with stiffness in the range of 1.1–2.1 GPa and strength in the range of 29.6–51.3 MPa, well
comparable with other natural fiber composites (Table 7).

Figure 18 shows the impact resistance as a function of filler type and coupling agent.
It can be clearly seen that the neat PP matrix has an impact absorption energy much higher
than the composites.

Generally, the inclusion of stiff fillers in a ductile matrix results in a significant reduc-
tion in fracture toughness [54,63], but the reasons are different and complex in nature, and
no conclusive study is available to explain the poor impact performance of composites
reinforced with natural fillers [64]. Some possible causes involve the reduced matrix duc-
tility induced by the plastic constraint exerted by the stiff fillers, the stress concentration
at filler ends and the poor filler/matrix interfacial adhesion. It can be mentioned that in
many situations, the presence of fillers provides positive or negative influence depending
on the interfacial adhesion [65]. In the present study, no remarkable differences among
composite configurations were observed, but a general trend involving an increase in
impact strength with increasing filler content and the presence of coupling agent can be
highlighted [55,59,66,67]. The fracture surface showed a brittle character (Figures 9–16),
but the better filler/matrix adhesion enhanced the work of fracture of the interphase that
resisted crack propagation, thus supporting the effectiveness of maleated PP.
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4. Conclusions

Composites of PP and four ground lignocellulosic waste fillers were successfully
produced by extrusion up to 30 wt.% filler content with compatibilization performed by
a commercial maleated coupling agent. All the fillers, i.e., licorice root, holm oak, palm
leaf and willow, shared a common and irregular morphology with a limited fiber aspect
ratio, lower than 5, and a reduced notched Charpy impact strength, when compared to
neat PP. On the other side, thermal analysis by TGA highlighted the best thermal stability
of composites reinforced with holm oak fillers, while from DSC, a nucleating effect was
exhibited by all fillers with the exception of licorice root. The higher crystallinity resulted
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in an increase in tensile strength over the neat PP even in non-compatibilized holm oak-
based composites, in contrast to the remaining formulations. DMA results highlighted
a reduction in β-relaxation peak area with increasing filler content and the presence of
coupling agent, suggesting a restricted mobility of PP molecules due to the stronger
filler/matrix interfacial adhesion in holm oak fillers-based composites. This resulted in
materials with the best combination of tensile and flexural properties, with enhancements
over the neat PP of 28% and 110% in tensile strength and modulus, respectively, and of 58%
and 111% in flexural strength and modulus, respectively. Even willow-based composites
featured intriguing mechanical properties, with improvements of 27% and 100% in tensile
strength and modulus, respectively, and of 35% and 88% in flexural strength and modulus,
respectively. Although some differences were reported, all waste fillers investigated in the
present study provided composites with mechanical performance comparable to those of
other natural fillers, thus confirming their suitability as a valuable untapped source of raw
materials for the production of sustainable and higher value biocomposites.
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G.P., F.S., F.N. and J.T.; resources, C.S., E.M., S.G., F.N., A.C. and F.S.; data curation, G.P., I.B., S.G., F.N.
and F.S.; writing—original draft preparation, C.S., S.G. and F.S.; writing—review and editing, E.M.
and G.P.; visualization, F.S., G.P. and I.B.; supervision, E.M., S.G., C.S. and F.S.; funding acquisition,
F.N. All authors have read and agreed to the published version of the manuscript.
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Appendix A

Lignin extraction was carried out directly from biomass flours through the dissolving
method with a mixture of 2:1 of acetic acid and choline chloride(Figure A1) (deep eutectic
solvent, DES) [15].
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Figure A1. Extraction procedure starting from biomasses.

The overlap of lignin FTIR spectra is reported in Figure A2. All lignin spectrums
show a broad band between 3200–3500 cm−1, attributed to the hydroxyl groups in phenolic
and aliphatic structures. Lignins from licorice root, palm leaf, willow, and Holm Oak,
show strong bands in this region, with peaks between 2800–3000 cm−1, arising from –CH,
–CH2 and –CH3 stretching belonging to aliphatic groups that can be originated from fatty
acids present in the lignin separations. In the characteristic region of –C=O and –COOH
functionalities, broad to medium peak are found at 1720 cm−1. The band at 1320 and
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1620 cm−1 indicates the high proportion of syringyl units in lignin, (Figure A2—blue line
for palm leaf sample), assigned to aromatic functionality, vibration allied to the –C=CH
out-of-plane bending of aromatic skeletal structures [16]. This peak seems to be associated
to the one at 780 cm−1, which is due to the symmetrical substitution on aromatic rings and
their –C=C stretching. Finally, the characteristic peak at 1020 cm−1 which is due to the
–C–O single bond stretching [17].

The remaining solid residue was washed with acetone followed by water to obtain
separated cellulose [18].
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FTIR-ATR spectrum overlaps of the cellulose for all samples [19] is reported in
Figure A3. All spectrums are similar and show a strong absorption band at 3300 cm−1

which is ascribed to hydroxyl group stretching. Bands at 2900 cm−1 and 1320 cm−1 are
relative to stretching vibrations of the -C-H group in the glucose element. The peak band at
900 cm−1 is representative of the β-glycosidic linkage between glucose units. The signal
at 1020 cm−1 is assigned to -C-O functionality of ether functions and secondary alcohols
characteristic of the cellulose chain backbone. In contrast, hemicellulose was isolated by
alkaline extraction [20].
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Also, for hemicellulose fraction, similar peaks can be designed. The IR spectrum
in Figure A4 show strong –OH stretching and –CH, –CH2, –CH3 absorption at 3320 and
2950 cm−1, respectively. The characteristic and very high in intensity peak at 1630 cm−1

is due to –C=O stretching in hemicellulose, which is more present with respect to the
other fractions, due to the presence of glucuronic and galacturonic acid moieties. The
–CH2 wagging and the –C–O stretching of C5 substituted aromatics, such as guaiacyl and
syringyl units, were assigned at 1320 cm−1. The bands at 1050 and 900 cm−1 arise from
–C–O–C stretching at the glycosidic linkages in hemicellulose [21].
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